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ABSTRACT

This paper establishes rates of universal approximation for the neural tangent kernel
(NTK) in the standard setting of microscopic changes to initial weights. Concretely,
given a target function f , a target width m, and a target approximation error ε > 0,
then with high probability, moving the initial weight vectors a distanceBf,ε/(ε

√
m)

will give a linearized finite-width NTK which is (
√
ε+Bf,ε/

√
εm)2-close to both

the target function f , and also the shallow network which this NTK linearized.
The constant Bf,ε can be independent of ε — particular cases studied here include
f having good Fourier transform or RKHS norm — though in the worse case it
scales roughly as 1/εd for general continuous functions. The method of proof is to
rewrite f with equality as an infinite-width linearized network whose weights are a
transport mapping applied to random initialization, and to then sample from this
transport mapping. This proof therefore provides another perspective on the scaling
behavior of the NTK: redundancy in the weights due to resampling allows weights
to be scaled down. Since the approximation rates match those in the literature for
shallow networks, this work implies that universal approximation is not reliant
upon any behavior outside the NTK regime.

1 MAIN RESULT AND OVERVIEW

Consider functions computed by a single ReLU layer, meaning

x 7→
m∑
j=1

sjσr

(
wT

jx+ bj

)
, (1.1)

where σr(z) := max{0, z}. While shallow networks are celebrated as being universal approximators
(Funahashi, 1989; Hornik et al., 1989; Barron, 1993; Leshno et al., 1993) — they approximate
continuous functions arbitrarily well over compact sets — what is more shocking is that gradient
descent can learn the parameters to these networks, and they generalize (Zhang et al., 2016).

Working towards an understanding of gradient descent on shallow (and deep!) networks, researchers
began investigating the neural tangent kernel (NTK) (Jacot et al., 2018; Du et al., 2018b; Allen-Zhu
et al., 2018), which replaces a network with its Taylor expansion at initialization, meaning

x 7→ ε√
m

m∑
j=1

sj
(
ṽj + w̃j

)T
x̃σ′r

(
w̃T

j x̃
)
, where x̃ = (x, 1) ∈ Rd+1; (1.2)

here w̃j = (wj , bj) ∈ Rd+1 is frozen at Gaussian initialization (henceforth the bias is collapsed in
for convenience), thus the increments (ṽj)

m
j=1 are the genuine model parameters, and the dropping of

the other Taylor terms as well as the ε/√m scaling are conventional in this literature.

As eq. (1.2) is merely affine in the parameters, it is not shocking that gradient descent can be analyzed.
What is shocking is that: 1. gradient descent on eq. (1.1) with small learning rate will track the
behavior of eq. (1.2), 2. the weights hardly change as a function of m, specifically ‖ṽj‖2 = O(1/

√
m).

Contribution. This work provides rates of universal approximation for the NTK as defined in
eq. (1.2), moreover in the “NTK setting”: the increments ṽj must be small, meaning ‖ṽj‖ ≤
Õ(1/ε

√
m). Some further consequences:
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• As sketched in the abstract and as detailed shortly (the main result is Theorem 1.3), the
approximation rates are concrete, and improve with the good behavior of the target function.
The classical universal approximation results to not yield better bounds, and therefore
universal approximation is not something networks can do which the NTK can not.

• The target distance here is an L2 metric, but over a function space; by contrast, the NTK
optimization literature on regression problems has the network with scaling polynomially in
the network width (Du et al., 2018a; Oymak & Soltanolkotabi, 2019; Li & Liang, 2018).
The analysis here must rely upon properties of the target function, necessarily ones which
will explode if the target is to simulate random labels. Consequently, the present work
complements the optimization work.

• The analysis boils down to two steps: (a) constructing the transport mapping, (b) sampling
from it. The sampling naturally introduces a factor 1/m, which is then split into 1/

√
m · 1/√m,

and one 1/m is then pushed into the weights — this trivial algebra contributes the scaling
behavior of the earlier ṽj reporting in all the bounds!

1.1 MAIN RESULT

To state the main result, a little more notation is necessary. As before, the activation will always
be the ReLU σr(z) = max{0, z}; converting to other activations incurs constant factors and is not
considered here. Weights have the biases pushed in as before, e.g., w̃ = (w, b) ∈ Rd+1. Rather than
writing down increments ṽ ∈ Rd+1, this work uses transport mappings on weight space, meaning

T : Rd+1 → Rd+1;

in this way, an initial weight w̃ always has a new weight it is clearly associated with, namely T (w̃),
and the distance traveled is ‖T (w̃)− w̃‖2.

The notion of function space distance used here is the L2 metric: given a probability distribution P
on {x ∈ Rd : ‖x‖ ≤ 1}, define the L2(P ) metric as

‖f‖L2(P ) =

√∫
f(x)2 dP (x),

and L2 will denote the usual (Lebesgue) integral over all of Rd.

In various places, G will denote a standard Gaussian N (0, I) of appropriate dimension; somewhat
sloppy, G will be used both as a function computing a density, and as a probability law (and appear
as dG within integrals). Gσ means a Gaussian with coordinate-wise variance σ2, thus N (0, σ2I),
and f ∗Gσ means the convolution of a function f with Gσ .

The initial distribution will always be uniform on the sign coefficients s ∈ {±1}, and Gaussian on
the weights and biases w̃. Due to positive homogeneity of the ReLU, the variances and scalings are
effectively pushed into the first term; the scaling here is standard in the literature.
Theorem 1.3. Let target function f : Rd → R, target accuracy ε > 0, target width m, and a
probability measure P over ‖x‖ ≤ 1 be given. Then there exists a transport mapping T and constant
Bf,ε so that, with probability at least 1− δ over the choice of initial weights,

max
j
‖T (w̃j)− w̃j‖2 ≤ Õ

(
Bf,ε
ε
√
m

)
,∥∥∥∥∥∥x 7→ f(x)− ε√

m

∑
j

sjT (w̃j)
Tx̃σ′r(w̃

T

j x̃)

∥∥∥∥∥∥
L2(P )

≤ Õ
(
ε+

Bf,ε√
m

)
,

∥∥∥∥∥∥x 7→ ε√
m

∑
j

sjσr(T (w̃j)
Tx̃)− ε√

m

∑
j

sjT (w̃j)
Tx̃σ′r(w̃

T

j x̃)

∥∥∥∥∥∥
L2(P )

≤ Õ

([√
ε+

Bf,ε√
εm

]2)
,

and Bf,ε can be bounded as follows.

• If f = h ∗Gσ , then Bf,ε = Õ(‖h‖L2σ
−d).
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• The corresponding RKHS is universal (cf. Section 3.3 for the space and its norm), thus f
may be approximated by h with Bf,ε = Õ(ln(‖h‖H/ε)).

• If f is continuous, then Bf,ε = Õ(‖f‖L2
δ−d), where δ := ω−1f (ε) (cf. Section 3.2).

In terms of organization, this introduction will close with further related work. Section 2 shows
how a network may be sampled, given a transport mapping. Example transport mappings are then
constructed in Section 3:

• Section 3.1 uses Fourier transforms to construct transport mappings; the construction
utilizes elements of the universal approximation proof due to Barron (1993). The bounds are
particularly nice in the case of convolutions, and yield the corresponding part of Theorem 1.3.

• Section 3.2 then uses the convolution bound to give a quick transport mapping for continuous
functions; the use of convolutions in function approximation is classical (Weierstrass, 1885;
Wendland, 2004).

• Section 3.3 constructs a natural RKHS for the NTK, and from there derives an easy bound
on transport mappings via the RKHS norm of the target function.

Section 4 concludes and gives some open problems.

1.2 FURTHER RELATED WORK

Approximation literature. The closest prior work is due to (Barron, 1993), who gave good rates
of approximation for functions f : Rd → R when the associated quantity

∫
|̂(w)| · ‖w‖2 dw is small,

where f̂ denotes the Fourier transform of f . The proofs in Section 3.1 will use elements of the
corresponding proof. Like the work of (Barron, 1993), the present work also chooses to approximate
in the L2(P ) metric. Another related work by Sun et al. (2018) uses an RKHS approach to universal
approximation, however does not consider the NTK (or the NTK setting of small weight changes).

Optimization literature. This work is motivated and inspired by the optimization literature, which
introduced the NTK to study gradient descent in a variety of parallel and nearly-parallel works (Jacot
et al., 2018; Du et al., 2018b; Allen-Zhu et al., 2018; Arora et al., 2019). As stated above, these
results rely on a width which is polynomial in the number of data points here, whereas the analysis
here must rely on properties of the target function.

One close relative to the present work is that of (Chizat & Bach, 2019), which abstracts away many
aspects of the preceding proofs in an attempt to explain, amongst other things, how it is that the
weights can change so little. The provided perspective is that it is due to the scaling ε/

√
m, a view

corroborated by the work here: indeed, the work here relates this scaling constant to the 1/m which
arises naturally via random sampling.

Another related line of papers on optimization are the mean-field analyses, which relate gradient
descent to a Wasserstein flow in the space of distributions on parameters (Chizat & Bach, 2018; Mei
et al., 2018). The analysis here does not have any explicit ties, however it is interesting and suggestive
that transport mappings appear in both.

2 SAMPLING FROM A TRANSPORT

This section will establish: given an initial transport T so that

f(x) = Es,w̃sT (w̃)Tx̃σ′r(w̃
Tx̃),

a finite width network can be created by sampling ((sj , w̃j))
m
j=1, and then using the transport mapping

to construct the NTK.
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To see how the scaling naturally arises, note simply via sampling that

Es,w̃sT (w̃)Tx̃σ′r(w̃
Tx̃) ≈ 1

m

1

m

1

m

m∑
j=1

sjT (w̃j)
Tx̃σ′r(w̃

T

j x̃)

=

[
ε√
m

]
·
[

1

ε
√
m

][
ε√
m

]
·
[

1

ε
√
m

][
ε√
m

]
·
[

1

ε
√
m

] m∑
j=1

sjT (w̃j)
Tx̃σ′r(w̃

T

j x̃)

=
ε√
m

m∑
j=1

sj

(
T (w̃j)

ε
√
m

)T

x̃σ′r(w̃
T

j x̃);

the expression in bold immediately implies that, after sampling, the weight increments move 1/
√
m

as far!

This only forces the new parameters to be small, but it does not cause them to be near initialization;
to achieve this, they can simply be added in, noting that Ess = 0:

ε√
m

m∑
j=1

sj

(
T (w̃j)

ε
√
m

)T

x̃σ′r(w̃
T

j x̃); =
ε√
m

m∑
j=1

sj

(
T (w̃j)

ε
√
m

+ w̃j

)T

x̃σ′r(w̃
T

j x̃).

By construction, the new weights are now very close to the initial weights.

Lemma 2.1. Define B := supw̃ ‖T (w̃)‖2, and R :=
√
d+ 1 +

√
2 ln(m/δ), and

Tm,ε(w̃) :=
T (w̃)

ε
√
m

+ w̃, f(x) := Es,w̃sT (w̃)Tx̃1[w̃Tx̃ ≥ 0].

With probability at least 1− 2δ over ((sj , w̃j))
m
j=1,∥∥∥∥∥∥f(x)− 1√

m

∑
j

sjT (w̃j)
Tx̃1[w̃T

j x̃ ≥ 0]

∥∥∥∥∥∥
L2(P )

≤
(

B√
m

+ εR

)
·
(

1 +
√

ln(1/δ)
)
.

and
∥∥Tm,ε(w̃)− w̃

∥∥
2
≤ B

ε
√
m

, and ‖w̃j‖ ≤ R.

The key step of the proof is to apply McDiarmid’s inequality to the entire L2(P ) norm, with the
randomness coming from ((sj , w̃j))

m
j=1. In order to control the expected value, the classical Maurey

sampling lemma is used (Pisier, 1980), which is also the sampling tool invoked by Barron (1993).
Lemma 2.2 (Maurey). Let basis functions v 7→ g(·; v) be given, along with a random sample
((sj , vj))

m
j=1 from a product measure ν over s ∈ {−1,+1} and v ∈ Rp for some p. For convenience

define

f(x) :=

∫
sg(x; v) dµ(s, v) and gj(x) := g(x; vj).

Then

E((sj ,vj))mj=1

∥∥∥∥∥∥f − 1

m

m∑
j=1

sjgj

∥∥∥∥∥∥
2

L2(P )

≤
Ev
∥∥g(·; v)

∥∥2
L2(P )

m
.

Once again using McDiarmid’s inequality, it is possible to show that the sampled NTK is close to
the sampled network. As in the optimization literature, this proof relies upon an anti-concentration
property, namely that the initialization is much larger than the adjustment, which requires ‖x‖ to not
be too small. This gives a constant r which is positive whenever the distribution is not simply the
point mass at the origin, and thus was left in the constants of Theorem 1.3.
Lemma 2.3. Let probability measure P over {x ∈ Rd : ‖x‖ ≤ 1} be given, along with a constant r
so that Pr[‖x‖ ≥ r] ≥ 1/2. Let T be a transport map with maxw̃ ‖T (w̃)‖ ≤ B1 and maxw̃ ‖T (w̃)−
w̃‖2 ≤ B2 . Then, with probability at least 1− 2δ,∥∥∥∥∥∥ ε√

m

∑
j

sjT (w̃)Tx̃1[w̃Tx̃ ≥ 0]− ε√
m

∑
j

sjσr(T (w̃)Tx̃)

∥∥∥∥∥∥
L2(P )

≤ εB2

(√
B2

1

2πr2
+
√

2 ln(1/δ)

)
.
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3 CONSTRUCTING A FEW TRANSPORT MAPPINGS

The previous section should how to satisfy the usual NTK setting given a way to write a function as a
transport map from initialization; this section will construct the corresponding transport maps.

3.1 TRANSPORT MAPS VIA FOURIER TRANSFORMS

The first approach uses Fourier transforms. The interested reader is directed to standard analysis
textbooks for an overview of Fourier transforms (Folland, 1999). The technical details are not
essential to the present discussion, however; the key is that the Fourier transform gives an immediate
way to write down a function as an infinite-width network! Specifically, the Fourier inversion theorem
gives (for well-behaved f ) the formula

f(x) =

∫
exp(2πixTw)f̂(w) dw,

where f̂ is the Fourier transform of f ; this is an infinite-width network with complex exponential
activations! A key insight of Barron (1993) was that if the left hand side is real, then right hand side
can be forced to be real: recalling that f̂ may be written as a radial component |θ(w)| ≤ 1 and a
magnitude component |f̂(w)|,

<f(x) = <
∫

exp(2πixTw)f̂(w) dw

= <
∫

exp(2πixTw + 2πiθ(w))|f̂(w)|dw

=

∫
cos
(
2π(xTw + θ(w))

)
|f̂(w)|dw.

After this step, the proof here goes a separate way, though interestingly still relies on many of the
same quantities. In order to introduce a Gaussian distribution on w, the entire integrand may be
scaled by G(w)/G(w); further introducing the bias b may be accomplished via a variety of integration
tricks, most notably writing

cos(z)− cos(0) = −
∫ z

0

sin(b) db = −
∫ ∞
0

sin(b)1[z − b ≥ 0] db,

where the last expression now has the indicators which appear in the NTK! After some changes of
variable and algebra, an initial transport map is explicitly given as follows.
Lemma 3.1. Let f : Rd → R be given, and define

T (w, b)d+1 = b′ := 2

[
f(0) +

∫
|f̂(w)|dw

]
+
|f̂(w)|
G(w)

sin(2πz)eb
2/21[θ(w)− b ≥ 0],

and
g(x) :=

∫
T (w̃)Tx̃1[w̃Tx̃ ≥ 0].

If this g exists and is well-defined, then f = g everywhere.

While it is nice that this transport mapping gives an equality, it is difficult to use with Section 2 due
to certain large factors, for instance eb

2/2. Instead, all the mapping in the present work will use
some sort of truncation of the transport mapping. Truncating the above transport gives the following
lemma.
Lemma 3.2. Let f : Rd → R be given, and define

T (w, b)d+1 = b′ := 2

[
f(0) +

∫
|f̂(w)|dw

]
+
|f̂(w)|
G(w)

sin(2πz)eb
2/21[θ(w)−b ≥ 0]1[θ ≥ −B]1[‖w‖ ≤ B],

and
g(x) :=

∫
T (w̃)Tx̃1[w̃Tx̃ ≥ 0].
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Then

sup
w̃
‖T (w)‖2 ≤ 2|f(0)|+ 2

∫
|f̂(w)|dw + sup

‖w‖≤B
|b|≤B

|f̂(w)|
G(w)

eb
2/2.

sup
‖x‖≤1

|f(x)− g(x)| ≤
∫
‖w‖≥B

|f̂(w)|dw +

∫
‖w‖≥B

|f̂(w)| · ‖w‖ dw.

The quantities in this bound are quite complicated; evaluating them on some easy cases gives the
following estimates.
Lemma 3.3. Let Gσ be a Gaussian density with covariance σ2I where σ ≤ 1/2π, and f : Rd → R
be an arbitrary function whose Fourier transform f̂ exists, and let ε > 0 be given.

1. Let T1 denote the truncated transported map for Gσ as defined in Lemma 3.2, and let g1
denote the mapping defined by T1. If B = O(ln(1/ε)/σ), then

sup
‖x‖≤1

|Gσ(x)− g1(x)| ≤ ε and sup
w̃
‖T1(w̃)‖ = O

(
(2πσ2)d/2

)
.

2. Let T2 denote the truncated transported map for f ∗Gσ as defined in Lemma 3.2, and let g2
denote the mapping defined by T2. If B = O(ln(‖f‖L2/ε)/σ), then

sup
‖x‖≤1

|(f ∗Gσ)(x)− g2(x)| ≤ ε and sup
w̃
‖T2(w̃)‖ = O

(
‖f‖L2

(2πσ2)d/2
)
.

3.2 TRANSPORT MAPS FOR CONTINUOUS FUNCTIONS

Approximation of continuous functions now proceeds by the apocryphal technique of randomized
smoothing, or rather convolution with a Gaussian (Weierstrass, 1885; Wendland, 2004). The precise
bound will rely upon a quantity which converts between an output tolerance ε of a function and an
input tolerance δ.
Definition 3.4. Let f : Rd → R be given, and define modulus of continuity ωf as

ωf (δ) := sup
{
f(x)− f(x′) : max{‖x‖, ‖x′‖} ≤ 1 + δ, ‖x− x′‖ ≤ δ

}
.

♦

If f is continuous, then ωf (defined here over a compact set) is not only finite for all inputs, but
moreover limδ→0 ωf (δ)→ 0. It is also possible to use this definition with discontinuous functions;
note additionally that the convolution bounds in Lemma 3.3 only required an L2 bound on the
pre-convolution function f !
Lemma 3.5. Let f : Rd → R and δ > 0 be given, and define with M := sup‖x‖≤1+δ |f(x)|. Let
Gσ denote a Gaussian with variance

σ2 := δ2/(d+
√

8d ln(4M/ωf (δ))

Then
sup
‖x‖≤1

‖f − f ∗Gσ‖L2(P ) ≤ 2ωf (δ).

Moreover, if f is continuous, then limδ→0 ωf (δ)→ 0.

The proof splits the integrand into two parts: points close to x, and points far from it. Points close to
x must behave like f(x) due to continuity, whereas points far from x are rare and due not matter due
to the Gaussian convolution. The full details are in the appendix.

3.3 A NATURAL REPRODUCING KERNEL HILBERT SPACE

The natural Hilbert space is directly on transport mappings:

‖T ‖2H =

∫
‖T (w̃)‖2H dG(w̃).
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Defining a feature mapping Φx(w̃) = x̃1[w̃Tx̃ ≥ 0] gives function representation

〈T ,Φx〉H =

∫
T (w̃)Tx̃1[w̃Tx̃ ≥ 0] dG(w̃)

as desired, and kernel

k(x, x′) = x̃Tx̃′
π − arccos(x̃Tx̃′/(‖x̃‖ · ‖x̃′‖))

2π
.

Since the Taylor series of this dot product kernel has infinitely many even terms, the Kernel is
universal (Steinwart & Christmann, 2008, Lemma 4.55). (Indeed, it is even universal if biases and
the point x = 0 are excluded!)

As the space is directly over transport mappings, all that remains is to prove that truncation still yields
a good transport mapping; after this, the tools of Section 2 may be applied. Meanwhile, controlling
this truncation is nothing more than an application of Cauchy-Schwarz and Gaussian concentration.
Lemma 3.6. Let T≤B(w) := T (w)1[‖w‖ ≤ B] denote the truncated transport, and P a probability
measure on ‖x‖ ≤ 1. Then∥∥∥〈T ,Φ·〉 − 〈T≤B ,Φ·〉∥∥∥2

L2(P )
≤ ‖T ‖2H exp(−(B − d)2/(10d2)).

4 OPEN PROBLEMS

The optimization community has also investigated phenomena learned by deep networks which go
beyond NTK (Allen-Zhu & Li, 2019); is there some way to exhibit this for the present approximation
setting; namely an approximation-theoretic statement which is possible with deep networks but
impossible with the NTK?

More on the technical side, there are many possible improvements. The transport maps plugged into
Section 2 are all truncated; is there some way to avoid the use of truncation? As another technical
point, Section 3.3 pointed out that universal approximation does not need biases; is there an explicit
construction of transport maps, perhaps even with the techniques here, which does not include biases?
Lastly, the work here only explicitly discusses the ReLU; other activations are left out as, on the one
hand, one can always swap in other activations with the penalty of some constant factors, and perhaps
a worse dependence on 1/ε; on the other hand, are there some general approximation-theoretic claims
which work much better with certain activations than others?
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A DEFERRED PROOFS

Proof of Lemma 2.1. First, by construction,∥∥Tm,ε(w̃)− w̃
∥∥
2
≤
∥∥∥∥T (w̃)

ε
√
m

∥∥∥∥
2

=
B

ε
√
m
.

To control the function approximation error, note by Gaussian concentration and a union bound, with
probability at least 1− δ,

max
j
‖w̃j‖ ≤

√
d+ 1 +

√
2 ln(m/δ) = R;

8
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henceforth condition away this failure event, meaning subsequently ‖w̃‖2 ≤ R.

Let
(
(sj , w̃j)

)m
j=1

be drawn IID from µ, define for convenience gj := sjTm,ε(w̃j)Tx̃1[w̃T
j x̃ ≥ 0] and

f(x) := Es,w̃g1(x), and first note the mapping

(
(sj , wj)

)m
j=1
7→

∥∥∥∥∥∥f − ε√
m

∑
j

sjgj

∥∥∥∥∥∥
L2(P )

satisfies the bounded differences condition with constant C := 2√
m

(Rε + B/
√
m): using the

general inequality
∣∣‖p− q‖ − ‖r − q‖∣∣ ≤ ‖p − r‖, given two parameter collections ((sj , w̃j))

m
j=1

and ((s′j , w̃
′
j))

m
j=1 and corresponding gj and g′j only differing in one index k,∥∥∥∥∥∥f − ε√

m

m∑
j=1

sjgj

∥∥∥∥∥∥
L2(P )

−

∥∥∥∥∥∥f − ε√
m

m∑
j=1

s′jg
′
j

∥∥∥∥∥∥
L2(P )

≤

∥∥∥∥∥∥ ε√
m

m∑
j=1

sjgj −
ε√
m

m∑
j=1

s′jg
′
j

∥∥∥∥∥∥
L2(P )

=
ε√
m

∥∥skgk − s′kg′k∥∥L2(P )

≤ 2ε√
m

sup
w̃

∥∥g(·; w̃)
∥∥
L2(P )

≤ 2ε√
m
‖Tm,ε(w̃)‖2

≤ 2ε√
m

(
‖Tm,ε(w̃)− w̃‖2 + ‖w̃‖

)
≤ C.

By McDiarmid’s inequality, with probability at least 1− δ,∥∥∥∥∥∥f − 1

m

m∑
j=1

sjgj

∥∥∥∥∥∥
L2(P )

≤ E((sj ,vj))mj=1

∥∥∥∥∥∥f − 1

m

m∑
j=1

sjgj

∥∥∥∥∥∥
L2(P )

+ C
√
m ln(1/δ)/2.

To finish, note since Es,w̃s = 0 that

f(x) = Es,w̃sT (w̃)Tx̃1[w̃Tx̃ ≥ 0]

= εEs,w̃s
(
T (w̃)

ε
+ w̃
√
m

)T

x̃1[w̃Tx̃ ≥ 0]

= E
ε√
m

∑
j

sjgj ,

whereby Lemma 2.2 grants

E((sj ,vj))mj=1

∥∥∥∥∥∥f − ε√
m

m∑
j=1

sjgj

∥∥∥∥∥∥
L2(P )

≤

√√√√√√E((sj ,vj))mj=1

∥∥∥∥∥∥f − 1

m

m∑
j=1

sjgj

∥∥∥∥∥∥
2

L2(P )

≤
√

1

m
sup
‖w̃‖≤R

‖ε
√
mTm,ε‖22

≤ B√
m

+ εR =
C
√
m

2
.

9
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Proof of Lemma 2.2. Following the usual Maurey scheme (Pisier, 1980),

E((sj ,vj))mj=1

∥∥∥∥∥∥f −m−1
∑
j

sjgj

∥∥∥∥∥∥
2

L2(P )

=
1

m2
E((sj ,vj))mj=1

∥∥∥∥∥∥
∑
j

(
f − sjgj

)∥∥∥∥∥∥
2

L2(P )

=
1

m2
E((sj ,vj))mj=1

∑
j

∥∥f − sjgj∥∥2L2(P )

=
1

m
E((sj ,vj))mj=1

‖f − s1g1‖2L2(P )

=
1

m
E(s1,v1)‖f − s1g1‖

2
L2(P )

=
1

m
Ev1

(
‖g1‖2L2(P ) −‖f‖

2
L2(P )

)
≤ 1

m
Ev1‖g1‖

2
L2(P ) .

Proof of Lemma 2.3. Define S := ((sj , w̃j))
m
j=1; the proof proceeds via the bounded differences

property on the map

g(S) :=

∥∥∥∥∥∥ 1√
m

∑
j

sjT (w̃)Tx̃1[w̃Tx̃ ≥ 0]− 1√
m

∑
j

sjσr(T (w̃)Tx̃)

∥∥∥∥∥∥
L2(P )

,

which can be simplified via σr(z) = z1[z ≥ 0] into

g(((sj , w̃j))
m
j=1) =

∥∥∥∥∥∥ 1√
m

∑
j

sjT (w̃)Tx̃1[w̃Tx̃ ≥ 0]− 1√
m

∑
j

sjT (w̃)Tx̃1[T (w̃)Tx̃ ≥ 0]

∥∥∥∥∥∥
L2(P )

,

=
1√
m

∥∥∥∥∥∥
∑
j

sjT (w̃)Tx̃
(
1[w̃Tx̃ ≥ 0]− 1[T (w̃)Tx̃ ≥ 0]

)∥∥∥∥∥∥
L2(P )

.

To verify the bounded differences property, note by the general inequality
∣∣‖p‖ − ‖q‖∣∣ ≤ ‖p − q‖

with pairs S := ((sj , w̃j))
m
j=1 and S′ := ((s′j , w̃

′
j))

m
j=1 differing on a single element k that

∣∣g(S)− g(S′)
∣∣ ≤ 1√

m

∥∥∥∥∥∑
j

sjT (w̃j)
Tx̃
(
1[w̃T

j x̃ ≥ 0]− 1[T (w̃j)
Tx̃ ≥ 0]

)

−
∑
j

s′jT (w̃′j)
Tx̃
(
1[w̃′Tj x̃ ≥ 0]− 1[T (w̃′j)

Tx̃ ≥ 0]
)∥∥∥∥∥

L2(P )

,

≤ 1√
m

∥∥∥skT (w̃k)Tx̃
(
1[w̃T

kx̃ ≥ 0]− 1[T (w̃k)Tx̃ ≥ 0]
)

− s′kT (w̃′)Tx̃
(
1[w̃′Tk x̃ ≥ 0]− 1[T (w̃′k)Tx̃ ≥ 0]

) ∥∥∥
L2(P )

,

≤ 1√
m

(∥∥T (w̃k)Tx̃
∥∥
L2(P )

+
∥∥T (w̃′k)Tx̃

∥∥
L2(P )

)
≤ 2B1√

m
.

Thus, by McDiarmid’s inequality, with probability at least 1− δ,

g(S) ≤ Eg(S) +
√

2B2
1 ln(1/δ).

10
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To bound the expectation, since Eg(S) = E
√
g(S)2 ≤

√
Eg(S)2, defining

Vj(x) :=
(
1[w̃T

j x̃ ≥ 0]− 1[T (w̃j)
Tx̃ ≥ 0]

)
,

the quantity Eg(S)2 may be bounded as

mEg(S)2 = ESEx

∑
j

sjT (w̃)Tx̃
(
1[w̃Tx̃ ≥ 0]− 1[T (w̃)Tx̃ ≥ 0]

)2

= ESEx

∑
i

(
T (w̃i)

Tx̃Vi(x)
)2

+
∑
i 6=j

sisjT (w̃i)
Tx̃T (w̃j)

Tx̃Vi(x)Vj(x)


≤ ESEx

B2
1

∑
i

Vi(x)2


= mB2

1Ew̃1ExV1(x)2.

To analyze these further, note |V1(x)| = 1
[
1[w̃T

1x̃ ≥ 0] 6= 1[T (w̃1)Tx̃ ≥ 0]
]

=: A(w̃, x), so it
suffices to upper bound Ex,w̃A(w̃, x). By rotational invariance, this is upper bounded by the definition
of r and Gaussian concentration on a single-variate Gaussian Z, specifically by

Pr
[
|Z‖x‖| ≤ ‖T (w̃1)− w̃1‖

]
≥ 1

2
Pr
[
|Zr| ≤ ‖T (w̃1)− w̃1‖

]
≤ 1

2
√

2π

∫ ‖T (w̃1)−w̃1‖/r

−‖T (w̃1)−w̃1‖/r
e−Z

2/2 dZ

≤ ‖T (w̃1)− w̃1‖
r
√

2π
≤ B2

r
√

2π
,

which together gives

g(S) ≤
√

Eg(S)2 +B2

√
2 ln(1/δ) ≤ B2

(√
B2

1

2πr2
+
√

2 ln(1/δ)

)
.

The final bounds come from multiplying back in the factor ε in the statement which was dropped
from g.

Proof of Lemma 3.1. Proceeding as in the initial steps of (Barron, 1993), and letting θ(w) be a
function with so that f̂(w) may be written as a radial component |θ(w)| ≤ 1 and a magnitude
component |f̂(w)|,

f(x)− f(0) = <
∫

exp(2πixTw)f̂(w) dw

= <
∫

exp(2πixTw + 2πiθ(w))|f̂(w)|dw

=

∫
cos
(
2π(xTw + θ(w))

)
|f̂(w)|dw.

The next step is similar; Barron (1993) introduces a factor ‖w‖ to control cos, which does not have
compact support, whereas this proof will introduce the Gaussian density G(w) in order to recover the
random initialization:

f(x)− f(0) =

∫
|f̂(w)|
G(w)

cos
(
2π(xTw + θ(w))

)
G(w) dw.

The next step is to replace cos and introduce b, where the proofs now differ. Focusing on the cos term
(which is the only term with x), setting h(z) := cos(2πz) and z := wTx + θ(w) for convenience,

11
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assuming z ≥ 0 (the other case is analogous)

h(z)− h(0) =

∫ z

0

h′(b) db

=

∫
R
h′(b) · 1[z − b ≥ 0] · 1[b ≥ 0] db

=

∫
R
h′(b) · 1[wTx+ θ(w)− b ≥ 0] · 1[b ≥ 0] db

= −
∫
R
h′(θ(w)− b) · 1[wTx+ b ≥ 0] · 1[θ(w)− b ≥ 0] db via b 7→ θ(w)− b

= −
∫
R
h′(θ(w)− b)eb

2/2 · 1[wTx+ b ≥ 0] · 1[θ(w)− b ≥ 0]e−b
2/2 db.

Plugging this back in,

f(x)− f(0) =

∫
|f̂(w)|
G(w)

cos
(
2π(xTw + θ(w))

)
G(w) dw

= h(0)

∫
|f̂(w)|dw + 2π

∫
|f̂(w)|
G(w)

sin(2πz)eb
2/21[w̃Tx̃ ≥ 0]1[θ(w)− b ≥ 0] dG(w̃).

Define T (w, b) = (0, b′), where

T (w, b)d+1 = b′ := 2

[
f(0) +

∫
|f̂(w)|dw

]
+
|f̂(w)|
G(w)

sin(2πz)eb
2/21[θ(w)− b ≥ 0],

whereby the fact Ew̃1[w̃Tx̃] dw̃ = 1/2 grants

∫
T (w̃)Tx̃1[w̃Tx̃ ≥ 0] dG(w̃) =

∫
T (w̃)d+11[w̃Tx̃ ≥ 0] dG(w̃)

= 2

∫ [
f(0) +

∫
|f̂(w)|dw

]
1[w̃Tx̃ ≥ 0] dG(w̃)

+

∫
|f̂(w)|
G(w)

sin(2πz)eb
2/21[θ(w)− b ≥ 0]1[w̃Tx̃ ≥ 0] dG(w̃)

= f(x).

Proof of Lemma 3.2. Directly by construction, since |θ(w)| ≤ 1,

sup
w̃
‖T (w̃)‖2 ≤ 2|f(0)|+ 2

∫
|f̂(w)|dw + sup

‖w‖≤B
|b|≤B

|f̂(w)|
G(w)

eb
2/2.

12
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For the function approximation error, for any ‖x‖ ≤ 1, using the form of the exact transport mapping
for f from Lemma 3.1,∣∣∣∣f(x)−

∫
T (w̃)Tx̃1[w̃Tx̃ ≥ 0] dG(w̃)

∣∣∣∣
=

∣∣∣∣f(x)−
∫
T (w̃)d+11[w̃Tx̃ ≥ 0] dG(w̃)

∣∣∣∣
≤

∣∣∣∣∣
∫
‖w‖>B

∫
|f̂(w)|
G(w)

sin(2πz)eb
2/21[θ(w)− b ≥ 0]1[w̃Tx̃ ≥ 0] dG(b) dG(w)

∣∣∣∣∣
≤
∫
‖w‖≥B

∫ ∣∣∣∣∣ |f̂(w)|
G(w)

sin(2πz)eb
2/21[θ(w)− b ≥ 0]1[w̃Tx̃ ≥ 0]

∣∣∣∣∣dG(b) dG(w)

=

∫
‖w‖≥B

∫ ∣∣∣∣∣ |f̂(w)|
G(w)

sin(2πz)1[θ(w)− b ≥ 0]1[w̃Tx̃ ≥ 0]

∣∣∣∣∣dbdG(w)

≤
∫
‖w‖≥B

|f̂(w)|
G(w)

∫ ∣∣| sin(2πz)|1[b ≤ 1]1[−b ≤ wTx]
∣∣dbdG(w)

≤
∫
‖w‖≥B

|f̂(w)|
G(w)

max{0, 1− wTx}dG(w)

≤
∫
‖w‖≥B

|f̂(w)|max{0, 1− wTx}dw

≤
∫
‖w‖≥B

|f̂(w)|dw +

∫
‖w‖≥B

|f̂(w)| · ‖w‖ dw.

Proof of Lemma 3.3. The proof plugs the estimates from Lemma A.1 into the truncated transport
bounds in Lemma 3.2.

Lemma A.1. Let Gσ be a Gaussian density with covariance σ2I where σ ≤ 1/2π, and f : Rd → R
be an arbitrary function whose Fourier transform f̂ exists, and let B ≥ 1 be arbitrary.

1. Gσ satisfies ∫
|Ĝσ(w)|dw =

(
2πσ2

)− d
2

,

sup
‖w‖≤B
|b|≤B

|Ĝσ(w)|
G(w)

eb
2/2 = (2π)

d
2 exp

(
(1− (

√
2πσ)2)B2

)
,

∫
‖w‖>B

|Ĝσ(w)| · ‖w‖2 dw ≤ 4d
√
d
(

2πσ2
)− d+1

2

Bd exp

(
− B2

2(2πσ)−2

)
.

2. The convolution fσ := f ∗Gσ satisfies∫
|f̂σ(w)|dw ≤

∫
|Ĝσ(w)|dw ·

√∫
f2(x) dx,

sup
‖w‖≤B
|b|≤B

|f̂σ(w)|
G(w)

eb
2/2 ≤ sup

‖w‖≤B
|b|≤B

|Ĝσ(w)|
G(w)

eb
2/2 ·

√∫
f2(x) dx,

∫
‖w‖>B

|f̂σ(w)| · ‖w‖2 dw ≤
∫
‖w‖>B

|Ĝσ(w)| · ‖w‖2 dw ·

√∫
f2(x) dx.

13
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Proof of Lemma A.1. 1. The Gaussian density is separable, Gσ(x) =∏d
i=1

1√
2πσ2

exp
(
− x2

i

2σ2

)
, so its Fourier transform can be written as

Ĝσ(w) =

d∏
i=1

e−2π
2σ2w2

i =
(

2πσ2
)− d

2
d∏
i=1

1√
2π(2πσ)−2

exp

(
− w2

i

2(2πσ)−2

)
,

and immediately
∫
|Ĝσ(w)|dw =

(
2πσ2

)− d
2 .

Next, note that

|Ĝσ(w)|
G(w)

eb
2/2 = (2π)

d
2 exp

(
‖w‖2(1− (2πσ)2) + b2

2

)
,

so

sup
‖w‖≤B
|b|≤B

|Ĝσ(w)|
G(w)

eb
2/2 =

{
(2π)

d
2 exp

(
B2(2− (2πσ)2)/2

)
if σ < 1/2π

(2π)−
d
2 exp

(
B2/2

)
else.

Lastly, it is shown via induction on d that∫
‖w‖>B

|Ĝσ(w)| · ‖w‖2 dw ≤ 4d
√
d
(

2πσ2
)− d+1

2

Bd exp

(
− B2

2(2πσ)−2

)
.

When d := k = 1,∫
|w1|>B

|Ĝσ(w1)| · |w1|dw1 = 2

∫
w1>B

e−2π
2σ2w2

1 · w1 dw1 = 2

[
− 1

4π2σ2
e−2π

2σ2w2
1

]∞
w1=B

=
1

π

(
2πσ2

)−1
exp

(
− B2

2(2πσ)−2

)
.

Now, let d := k > 1. By breaking down the area of integration into ‖w‖ > B ⇐⇒ |w1| ≤
B, ‖w2:d‖ >

√
B2 − w2

1 or |w1| > B, ‖w2:d‖ ≥ 0, the following fact can be shown by
induction and the Chernoff bound on Gaussian tail, that∫

‖w‖>B
|Gσ(w)|dw ≤ 2d−1 exp

(
− B

2

2σ2

)
.

Because
√
a+ b ≤

√
a+
√
b for a, b ≥ 0, the quantity of interest can be evaluated via∫

‖w‖>B
|Ĝσ(w)| · ‖w‖2 dw ≤

∫
‖w‖>B

|Ĝσ(w)| · (|w1|+ ‖w2:k‖2) dw2:k dw1

=

(∫∫
|w1|≤B, ‖w2:k‖>

√
B2−w2

1

+

∫∫
|w1|>B, ‖w2:k‖≥0

)
|Ĝσ(w)| · (|w1|+ ‖w2:k‖2) dw2:k dw1,

and the four terms are computed separately below.

• By the Chernoff bound on Gaussian tail,∫∫
|w1|≤B, ‖w2:k‖>

√
B2−w2

1

|Ĝσ(w)| · |w1|dw2:k dw1

=

∫
|w1|≤B

|Ĝσ(w1)| · |w1|
∫
‖w2:k‖>

√
B2−w2

1

|Ĝσ(w2:k)|dw2:k dw1

≤
(

2πσ2
)− k−1

2

2k−1
∫
|w1|≤B

|Ĝσ(w1)| exp

(
− B2 − w2

1

2(2πσ)−2

)
· |w1|dw1

=
(
πσ2/2

)− k−1
2

exp

(
− B2

2(2πσ)−2

)
·
∫
|w1|≤B

|w1|dw1

=
(
πσ2/2

)− k−1
2

B2 exp

(
− B2

2(2πσ)−2

)
.
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• By the inductive hypothesis,∫∫
|w1|≤B, ‖w2:k‖>

√
B2−w2

1

|Ĝσ(w)| · ‖w2:k‖2 dw2:k dw1

≤ 4k−1
√
k − 1

(
2πσ2

)− k+1
2

Bk−1 ·
∫
|w1|≤B

|Ĝσ(w1)| exp

(
− B2 − w2

1

2(2πσ)−2

)
dw1

= 4k−1
√
k − 1

(
2πσ2

)− k+1
2

Bk−1 exp

(
− B2

2(2πσ)−2

)
·
∫
|w1|≤B

|Ĝσ(w1)|dw1

= 4k−1 · 2
√
k − 1

(
2πσ2

)− k+1
2

Bk exp

(
− B2

2(2πσ)−2

)
.

• By the fundamental theorem of calculus,∫∫
|w1|>B, ‖w2:k‖≥0

|Ĝσ(w)| · |w1|dw2:k dw1 =
(

2πσ2
)− k−1

2 ·
∫
|w1|>B

|Ĝσ(w1)| · |w1|dw1

=
(

2πσ2
)− k−1

2 · 2
∫
w1>B

e−2π
2σ2w2

1 · w1 dw1 =
(

2πσ2
)− k−1

2 · 2
[
− 1

4π2σ2
e−2π

2σ2w2
1

]∞
w1=B

=
1

π

(
2πσ2

)− k+1
2

exp

(
− B2

2(2πσ)−2

)
.

• By the fact that for X ∼ G, E‖X‖ ≤
√
d,∫∫

|w1|>B, ‖w2:k‖≥0
|Ĝσ(w)| · ‖w2:k‖2 dw2:k dw1

≤
(

2πσ2
)− k−1

2 · (2πσ)−1
√
k − 1 ·

∫
|w1|>B

|Ĝσ(w1)|dw1

=
√

2π(k − 1)
(

2πσ2
)− k

2 ·
∫
|w1|>B

|Ĝσ(w1)|dw1

≤
√

2π(k − 1)
(

2πσ2
)− k

2

exp

(
− B2

2(2πσ)−2

)
.

Collecting the terms, since it is assumed that B ≥ 1 and σ ≤ 1,∫
‖w‖>B

|Ĝσ(w)| · ‖w‖2 dw

≤
(

2k−1 + 22k−1 +
1

π
+
√

2π

)√
k
(

2πσ2
)− k+1

2

Bk exp

(
− B2

2(2πσ)−2

)

≤ 4k
√
k
(

2πσ2
)− k+1

2

Bk exp

(
− B2

2(2πσ)−2

)
.

2. By Jensen’s inequality and Parseval’s theorem,
∫
|f̂(w)|dw ≤ (

∫
f2(x) dx)1/2, so the

claim follows from part 1, the nonnegativity of the function |f̂ |, and the property that
|f̂σ(w)| = |f̂(w)Ĝσ(w)| = |f̂(w)| · |Ĝσ(w)|.
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Proof of Lemma 3.5. Splitting the integral into two terms, for any ‖x‖ ≤ 1,∣∣f(x)− (f ∗Gσ)(x)
∣∣ =

∣∣∣∣∫ f(x)Gσ(z) dz −
∫
f(z)Gσ(x− z) dz

∣∣∣∣
=

∣∣∣∣∫ f(x)Gσ(z) dz −
∫
f(x− z)Gσ(z) dz

∣∣∣∣
≤
∫ ∣∣∣∣f(x)−

∫
f(x− z)

∣∣∣∣Gσ(z) dz

≤
∫
‖z‖≤δ

∣∣∣∣f(x)−
∫
f(x− z)

∣∣∣∣Gσ(z) dz

+

∫
‖z‖>δ

∣∣∣∣f(x)−
∫
f(x− z)

∣∣∣∣Gσ(z) dz.

Analyzing these terms separately, the definition of ωf (δ) gives∫
‖z‖≤δ

∣∣∣∣f(x)−
∫
f(x− z)

∣∣∣∣Gσ(z) dz ≤
∫
‖z‖≤δ

ωf (δ)Gσ(z) dz = ωf (δ),

whereas Gaussian concentration gives∫
‖z‖>δ

∣∣∣∣f(x)−
∫
f(x− z)

∣∣∣∣Gσ(z) dz ≤ 2MPr[‖z‖ > δ] ≤ ωf (δ).

Proof of Lemma 3.6. By Cauchy-Schwarz,∥∥∥〈T ,Φ·〉 − 〈T≤B ,Φ·〉∥∥∥2
L2(P )

=
∥∥∥〈T − T≤B ,Φ·〉∥∥∥2

L2(P )

=

∫ (∫
T (w)Φx(w)1[‖w‖ > B] dG(w)

)2

dx

≤
∫
‖T ‖2H‖Φx1[‖w‖ ≤ B]‖2H dx.

To finish, note by Gaussian concentration that

‖Φx1[‖w‖ ≤ B]‖2H = E
‖w‖>B

xTx1[wTx ≥ 0] ≤ 1

2
Pr[‖w‖ > B] ≤ exp

(
−(B − d)2/(10d2)

)
.

Proof of Theorem 1.3. Let T0 denote the exact transport mapping and set B := supw̃ ‖T0‖2 , as
given by one of the following three lemmas:

• For f ∗Gσ has a nice Fourier transform, then Lemma 3.3 gives B = Õ(‖f‖L2
σ−d).

• If f is continuous, then the preceding combined with Lemma 3.5 gives B = Õ(‖f‖L2δ
−d)

where ε = ωf (δ).

• If ‖f‖H is small, then Lemma 3.6 gives B = ln(‖f‖H/ε).

Now let T1 be the finite-width mapping provided by Lemma 2.1. Inspecting Lemmas 2.1 and 2.3, all
upper bounds in Theorem 1.3 by plugging in the above estimates.
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