
Under review as a conference paper at ICLR 2020

RIDGE REGRESSION: STRUCTURE, CROSS-VALIDATION,
AND SKETCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the following three fundamental problems about ridge regression: (1) what is
the structure of the estimator? (2) how to correctly use cross-validation to choose the reg-
ularization parameter? and (3) how to accelerate computation without losing too much
accuracy? We consider the three problems in a unified large-data linear model. We give a
precise representation of ridge regression as a covariance matrix-dependent linear combi-
nation of the true parameter and the noise. We study the bias ofK-fold cross-validation for
choosing the regularization parameter, and propose a simple bias-correction. We analyze
the accuracy of primal and dual sketching for ridge regression, showing they are surpris-
ingly accurate. Our results are illustrated by simulations and by analyzing empirical data.

1 INTRODUCTION

Ridge or `2-regularized regression is a widely used method for prediction and estimation when the data
dimension p is large compared to the number of datapoints n. This is especially so in problems with many
good features, where sparsity assumptions may not be justified. A great deal is known about ridge regres-
sion. It is Bayes optimal for any quadratic loss in a Bayesian linear model where the parameters and noise
are Gaussian. The asymptotic properties of ridge have been widely studied (e.g., Tulino & Verdú, 2004;
Serdobolskii, 2007; Couillet & Debbah, 2011; Dicker, 2016; Dobriban & Wager, 2018, etc). For choosing
the regularization parameter in practice, cross-validation (CV) is widely used. In addition, there is an exact
shortcut (e.g., Hastie et al., 2009), which has good consistency properties (Hastie et al., 2019). There is
also a lot of work on fast approximate algorithms for ridge, e.g., using sketching methods (e.g., el Alaoui &
Mahoney, 2015; Chen et al., 2015; Wang et al., 2018; Chowdhury et al., 2018, among others).

Here we seek to develop a deeper understanding of ridge regression, going beyond existing work in mul-
tiple aspects. We work in linear models under a popular asymptotic regime where n, p → ∞ at the same
rate (Marchenko & Pastur, 1967; Serdobolskii, 2007; Couillet & Debbah, 2011; Yao et al., 2015). In this
framework, we develop a fundamental representation for ridge regression, which shows that it is well ap-
proximated by a linear scaling of the true parameters perturbed by noise. The scaling matrices are functions
of the population-level covariance of the features. As a consequence, we derive formulas for the training
error and bias-variance tradeoff of ridge.

Second, we study commonly used methods for choosing the regularization parameter. Inspired by the ob-
servation that CV has a bias for estimating the error rate (e.g., Hastie et al., 2009, p. 243), we study the
bias of CV for selecting the regularization parameter. We discover a surprisingly simple form for the bias,
and propose a downward scaling bias correction procedure. Third, we study the accuracy loss of a class of
randomized sketching algorithms for ridge regression. These algorithms approximate the sample covariance
matrix by sketching or random projection. We show they can be surprisingly accurate, e.g., they can some-
times cut computational cost in half, only incurring 5% extra error. Even more, they can sometimes improve
the MSE if a suboptimal regularization parameter is originally used.
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Our work leverages recent results from asymptotic random matrix theory and free probability theory. One
challenge in our analysis is to find the limit of the trace tr (Σ1 + Σ−1

2 )−1/p, where Σ1 and Σ2 are p × p
independent sample covariance matrices of Gaussian random vectors. The calculation requires nontrivial
aspects of freely additive convolutions (e.g., Voiculescu et al., 1992; Nica & Speicher, 2006).

Our work is connected to prior works on ridge regression in high-dimensional statistics (Serdobolskii, 2007)
and wireless communications (Tulino & Verdú, 2004; Couillet & Debbah, 2011). Among other related
works, El Karoui & Kösters (2011) discuss the implications of the geometric sensitivity of random matrix
theory for ridge regression, without considering our problems. El Karoui (2018) and Dicker (2016) study
ridge regression estimators, but focus only on the risk for identity covariance. Hastie et al. (2019) study
“ridgeless” regression, where the regularization parameter tends to zero.

Sketching is an increasingly popular research topic, see Vempala (2005); Halko et al. (2011); Mahoney
(2011); Woodruff (2014); Drineas & Mahoney (2017) and references therein. For sketched ridge regression,
Zhang et al. (2013a;b) study the dual problem in a complementary finite-sample setting, and their results are
hard to compare. Chen et al. (2015) propose an algorithm combining sparse embedding and the subsampled
randomized Hadamard transform (SRHT), proving relative approximation bounds. Wang et al. (2017) study
iterative sketching algorithms from an optimization point of view, for both the primal and the dual problems.
Dobriban & Liu (2018) study sketching using asymptotic random matrix theory, but only for unregularized
linear regression. Chowdhury et al. (2018) propose a data-dependent algorithm in light of the ridge leverage
scores. Other related works include Sarlos (2006); Ailon & Chazelle (2006); Drineas et al. (2006; 2011);
Dhillon et al. (2013); Ma et al. (2015); Raskutti & Mahoney (2016); Gonen et al. (2016); Thanei et al. (2017);
Ahfock et al. (2017); Lopes et al. (2018); Huang (2018).

The structure of the paper is as follows: We state our results on representation, risk, and bias-variance
tradeoff in Section 2. We study the bias of cross-validation for choosing the regularization parameter in
Section 3. We study the accuracy of randomized primal and dual sketching for both orthogonal and Gaussian
sketches in Section 4. We provide proofs and additional simulations in the Appendix.

2 RIDGE REGRESSION

We work in the usual linear regression model Y = Xβ + ε, where each row xi of X ∈ Rn×p is a datapoint
in p dimensions, and so there are p features. The corresponding element yi of Y ∈ Rn is its continous
response (or outcome). We assume mean zero uncorrelated noise, so Eε = 0, and Cov [ε] = σ2In. We
estimate the coefficient β ∈ Rp by ridge regression, solving the optimization problem

β̂ = arg min
β∈Rp

1

n
‖Y −Xβ‖22 + λ‖β‖22,

where λ > 0 is a regularization parameter. The solution has the closed form

β̂ =
(
X>X/n+ λIp

)−1
X>Y/n. (1)

We work in a ”big data” asymptotic limit, where both the dimension p and the sample size n tend to infinity,
and their aspect ratio converges to a constant, p/n → γ ∈ (0,∞). Our results can be interpreted for any
n and p, using γ = p/n as an approximation. We recall that the empirical spectral distribution (ESD) of
a p × p symmetric matrix Σ is the distribution 1

p

∑p
i=1 δλi where λi, i = 1, . . . , p are the eigenvalues of

Σ, and δx is the point mass at x. We say that the ESD of the n × p matrix X is the ESD of X>X/n. We
will consider models for the data of the form X = UΣ1/2, where U has iid entries of zero mean and unit
variance. This means that the datapoints have the form xi = Σ1/2ui, where ui have iid entries. Then Σ is
the true covariance matrix of the features, which is typically not observed.

We start by finding a precise representation of the ridge estimator. For vectors un, vn of growing dimension,
un � vn means that for any sequence of fixed (or random and independent of un, vn) vectors wn such that
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Figure 1: Ridge regression bias-variance tradeoff. Left: γ = p/n = 0.2; right: γ = 0.8. The data matrix X
has iid Gaussian entries. The coefficient β has distribution β ∼ N (0, Ip/p), while the noise ε ∼ N (0, Ip).

‖wn‖2 <∞ almost surely, we have |w>n (un − vn)| → 0 almost surely. Thus linear combinations or un are
well approximated by those of vn. We extend scalar functions f : R→ R to matrices by functional calculus,
applying them to the eigenvalues and keeping the eigenvectors. We find the following result.

Theorem 2.1 (Representation of ridge estimator). Suppose the data matrix has the form X = UΣ1/2,
where U ∈ Rn×p has iid entries of zero mean, unit variance and finite 8 + c-th moment for some c > 0, and
Σ = Σn,p ∈ Rp×p is a deterministic positive definite matrix. Suppose that n, p → ∞ with p/n → γ > 0.
Suppose the ESD of the sequence of Σs converges in distribution to a probability measure with compact
support bounded away from the origin. Suppose that the noise is Gaussian, and that β = βn,p is an
arbitrary sequence of deterministic vectors, such that lim sup ‖β‖2 <∞.

Then the ridge regression estimator is asymptotically equivalent to a random vector with the following
representation:

β̂(λ) � A(Σ, λ) · β +B(Σ, λ) · σ · Z

p1/2
.

Here Z ∼ N (0, Ip) is a random vector whose distribution depends only on the noise and A,B are deter-
ministic matrix functions of all problem parameters. They are defined for scalars as

A(x, λ) = (cpx+ λ)−2(cp + c′p)x, B(x, λ) = (cpx+ λ)−1cpx.

Here cp := c(n, p,Σ, λ) is the unique positive solution of the fixed point equation

1− cp =
cp
n

tr
[
Σ(cpΣ + λI)−1

]
.

It is known that cp is well defined, and this follows by a simple monotonicity argument, see Hachem et al.
(2007); Rubio & Mestre (2011). Also c′p is the derivative of cp with respect to z := −λ and an explicit
expression is provided in the proof in Section A.1. This result gives a precise representation of the ridge
regression estimator. It is a sum of two terms: the true coefficient vector β scaled by the matrix A(Σ, λ),
and the noise vector Z scaled by the matrix B(Σ, λ). However, the coefficients are not fully explicit, as they
depend on the unknown population covariance matrix Σ, as well as on the fixed-point variable cp.

Here we discuss some implications of this representation. For uncorrelated features, Σ = Ip, A,B reduce to
multiplication by scalars. Hence, each coordinate of the ridge regression estimator is simply a scalar multiple
of the corresponding coordinate of β. One can use this to find the bias in each individual coordinate.
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One can use also use the representation to derive the training error of ridge (see Sec. A.2), in addition to its
known estimation error (Serdobolskii, 2007; Tulino & Verdú, 2004). In that setting, we work in a random-
effects model, where the p-dimensional regression parameter β is random, each coefficient has zero mean
Eβi = 0, and is normalized so that Varβi = α2/p. This ensures that the signal strength E‖β‖2 = α2 is fixed
for any p. The asymptotically optimal λ in this setting is always λ∗ = γσ2/α2 see e.g., Tulino & Verdú
(2004); Dicker (2016); Dobriban & Wager (2018). The ridge regression estimator with λ = pσ2/(nα2) is
the posterior mean of β, when β and ε are normal random variables.

As a consequence, we can also find the bias and the variance of ridge. See Figure 1 for a plot and Sec. A.4
for the details. As far as we know, this is one of the few examples of high-dimensional asymptotic problems
where the precise form of the bias and variance can be evaluated.

As a further consequence, we can find how the bias and variance change with the aspect ratio γ at the
optimal λ∗ = γσ2/α2 (see Figure 6). This can be viewed as the ”pure” effect of dimensionality on the
problem, keeping all other parameters fixed, and has intriguing properties. The variance first increases, then
decreases with γ. In the ”classical” low-dimensional case, most of the risk is due to variance, while in
the ”modern” high-dimensional case, most of it is due to bias. This is consistent with other phenomena in
proportional-limit asymptotics, e.g., that the map between population and sample eigenvalue distributions is
asymptotically deterministic (Marchenko & Pastur, 1967).

This fundamental representation may have applications to important statistical inference questions. For in-
stance, inference on the regression coefficient β and the noise variance σ2 are important and challenging
problems. Can we use our representation to develop debiasing techniques for this task? This will be inter-
esting to explore in future work.

3 CROSS-VALIDATION

How can we choose the regularization parameter? In practice, cross-validation (CV) is the most popular
approach. However, it is well known that CV has a bias for estimating the error rate, because it uses a
smaller number of samples than the full data size (e.g., Hastie et al., 2009, p. 243). Here we study related
questions, proposing a bias-correction method for the optimal regularization parameter.

Suppose we split the n datapoints (samples) intoK equal-sized subsets, each containing n0 = n/K samples.
We use the k-th subset (Xk, Yk) as the validation set and the other K − 1 subsets (X−k, Y−k), with total
sample size n1 = (K − 1)n/K as the training set. We find the ridge regression estimator β̂−k, i.e.

β̂−k(λ) =
(
X>−kX−k + n1λIp

)−1
X>−kY−k.

The expected cross-validation error is, for isotropic covariance, i.e., Σ = I ,

CV (λ) = EĈV (λ) = E

[
1

K

K∑
k=1

‖Yk −Xkβ̂−k(λ)‖22/n0

]
= σ2 + E

[
‖β̂−k − β‖22

]
.

When n, p tend to infinity so that p/n → γ > 0, and in the random effects model with Eβi = 0, Varβi =
α2/p described above, the minimizer of CV (λ) tends to λ∗k = γ̃σ2/α2, where γ̃ is the limiting aspect ratio
of X−k, i.e. γ̃ = γK/(K − 1). Since the aspect ratios of X−k and X differ, the limiting minimizer of the
cross-validation estimator of the test error is biased for the limiting minimizer of the actual test error, which
is λ∗ = γσ2/α2.

Suppose we have found λ̂∗k, the minimizer of ĈV (λ). Afterwards, we usually refit ridge regression on the
entire dataset, i.e., find

β̂(λ̂∗) = (X>X + λ̂∗nI)−1X>Y.
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Figure 2: Left: Cross-validation on the Million Song Dataset (MSD, Bertin-Mahieux et al., 2011). For the
error bar, we take n = 1000, p = 90, K = 5, and average over 90 different sub-datasets. For the test error,
we train on 1000 training datapoints and fit on 9000 test datapoints. The debiased λ reduces the test error
by 0.00024, and the minimal test error is 0.8480. Right: Cross-validation on the flights dataset Wickham
(2018). For the error bar, we take n = 300, p = 21,K = 5, and average over 180 different sub-datasets. For
the test error, we train on 300 datapoints and fit on 27000 test datapoints. The debiased λ reduces the test
error by 0.0022, and the minimal test error is 0.1353.

Based on our bias calculation, we propose to use a bias-corrected parameter

λ̂∗ := λ̂∗k
K − 1

K
.

So if we use 5 folds, we should multiply the CV-optimal λ by 0.8. We find it surprising that this theoretically
justified bias-correction does not depend on any unknown parameters, such as β, α2, σ2.While the bias of
CV is widely known, we are not aware that this bias-correction for the regularization parameter has been
proposed before.

Figure 2 shows on two empirical data examples that the debiased estimator gets closer to the optimal λ than
the original minimizer of the CV. However, in this case it does not significantly improve the test error. See
Section A.5 for similar phenomena in simulations.

The same bias-correction idea also applies to train-test validation. In addition, there is a special fast “short-
cut” for leave-one-out cross-validation in ridge regression (e.g., Hastie et al., 2009), which has the same cost
as one ridge regression. The minimizer converges to λ∗ (Hastie et al., 2019). However, we think that the
bias-correction idea is still valuable, as the idea applies beyond ridge regression: CV selects regularization
parameters that are too large. See Section A.6 for more details and experiments comparing different ways
of choosing the regularization parameter.

4 SKETCHING

The time complexity of computing ridge regression using the standard QR decomposition is O(np
min(n, p)). Sketching is a set of methods for reducing the time complexity by effectively reducing n or
p (e.g., Mahoney, 2011; Woodruff, 2014; Drineas & Mahoney, 2016). Specifically, primal sketching ap-
proximates the sample covariance matrix X>X/n by X>L>LX/n, where L is an m×n sketching matrix,
and m < n. If L is chosen as a suitable random matrix, then this can still approximate the original sample
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Figure 3: Primal sketching with n = 500, γ = 1.5, λ = 1.5, α = 3, σ = 1. Left: MSE of primal sketching
normalized by the MSE of ridge regression. The error bar is the standard deviation over 50 repetitions. Right:
Bias and variance of primal sketching normalized by the bias and variance of ridge regression, respectively.

covariance matrix. Then the primal sketched ridge regression estimator is

β̂p =
(
X>L>LX/n+ λIp

)−1
X>Y/n. (2)

Dual sketching reduces p instead. An equivalent expression for ridge regression is β̂ =
n−1X>

(
XX>/n+ λIn

)−1
Y . Dual sketched ridge regression reduces the computation cost of the Gram

matrix XX>, approximating it by XRR>X> for another sketching matrix R ∈ Rp×d (d < p), so

β̂d = X>
(
XRR>X>/n+ λIn

)−1
Y/n. (3)

The sketching matricesR and L are usually chosen as random matrices with iid entries (e.g., Gaussian ones)
or as orthogonal matrices. In this section, we study the asymptotic MSE for both orthogonal and Gaussian
sketching. We also mention full sketching, which performs ridge after projecting down both X and Y . In
section A.12, we find its MSE. However, the other two methods have better tradeoffs, and we can empirically
get better results for the same computational cost.

4.1 ORTHOGONAL SKETCHING

First we consider primal sketching with orthogonal projections. These can be implemented by subsampling,
Haar distributed matrices, or subsampled randomized Hadamard transforms. We recall that the standard
Marchenko-Pastur (MP) law is the probability distribution which is the limit of the ESD of X>X/n, when
the n × p matrix X has iid standard Gaussian entries, and n, p → ∞ so that p/n → γ > 0, which has an
explicit density (Marchenko & Pastur, 1967; Bai & Silverstein, 2010).
Theorem 4.1 (Primal orthogonal sketching). Suppose β has iid entries with Eβi = 0, Var [βi] = α2/p,
i = 1, . . . , p and β is independent of X and ε. Suppose X has iid standard normal entries.

We compute primal sketched ridge regression (2) with an m× n orthogonal matrix L (m < n, LL> = Im).
Let n, p and m tend to infinity with p/n→ γ ∈ (0,∞) and m/n→ ξ ∈ (0, 1). Then the MSE of β̂p(λ) has
the limit

M(λ) = α2

[
(λ+ ξ − 1)2 + γ(1− ξ)

]
θ2

(
γ
ξ ,

λ
ξ

)
ξ2

+ γσ2
ξθ1

(
γ
ξ ,

λ
ξ

)
− (λ+ ξ − 1)θ2

(
γ
ξ ,

λ
ξ

)
ξ2

,

where θi(γ, λ) =
∫

(x+ λ)−idFγ(x) and Fγ is the standard Marchenko-Pastur law with aspect ratio γ.
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The proof is in Section A.7, with explicit formulas in Section A.7.1. The θi are related to the resolvent of
the MP law and its derivatives. A simulation in Figure 3 shows a good match with our theory. It also shows
that sketching does not increase the MSE too much. By reducing the sample size to half the original one,
we only increase the MSE by a factor of 1.05. This shows sketching can be very effective. We also see that
variance is compromised much more than bias.

The reader may wonder how strongly this depends on the choice of the regularization parameter λ. Perhaps
ridge regression works poorly with this λ, so sketching cannot worsen it too much? What happens if we
take the optimal λ instead of a fixed one? In experiments in Section A.13 we show that the behavior is quite
robust to the choice of regularization parameter.

The next theorem states a result for dual sketching.
Theorem 4.2 (Dual orthogonal sketching). Under the conditions of Theorem 4.1, we compute the dual
sketched ridge regression with an orthogonal p× d sketching matrix R (d 6 p, R>R = Id). Let n, p and d
go to infinity with p/n→ γ ∈ (0,∞) and d/n→ ζ ∈ (0, γ). Then the MSE of β̂d(λ) has the limit

α2

γ

[
γ − 1 + (λ− γ + ζ)2θ̄2(ζ, λ) + (γ − ζ)θ̄2

1(ζ, λ)
]

+ σ2
[
θ̄1(ζ, λ)− (λ+ ζ − γ)θ̄2(ζ, λ)

]
,

where θ̄i(ζ, λ) = (1− ζ)/λi + ζ
∫

(x+ λ)−idFζ(x), and Fζ is the standard Marchenko-Pastur law.

The proof is in Section A.8. Simulation results are shown in Figure 11 from Section A.13. They are similar
to the ones before: sketching has favorable properties, and the bias increases less than the variance.

For both primal and dual sketching, the optimal regularization parameter minimizing the MSE seems analyt-
ically intractable. Instead, we use a numerical approach in our experiments, based on a binary search. Since
this is one-dimensional problem, there are no numerical issues.

4.1.1 EXTREME PROJECTION — MARGINAL REGRESSION

It is of special interest to investigate extreme projections, where the sketching dimension is much reduced
compared to the sample size, so m � n. This corresponds to ξ = 0, and the formulas simplify. This can
also be viewed as a scaled marginal regression estimator, i.e., β̂ ∝ X>Y . For dual sketching, the same case
can be recovered with ζ = 0.
Theorem 4.3 (Marginal regression). Under the same assumption as Theorem 4.1, let ξ = 0. Then the form
of the MSE is M(λ) = [α2

[
(λ− 1)2 + γ

]
+ σ2γ]/λ2. Moreover, the optimal λ∗ that minimizes this equals

γσ2/α2 + 1 + γ and the optimal MSE is M(λ∗) = α2
(
1− α2/[α2(1 + γ) + γσ2]

)
.

The proof is in Section A.9. When is the optimal MSE of marginal regression small? Compared to the MSE
of the zero estimator α2, it is small when γ(σ2/α2 + 1) + 1 is large. In Figure 4, we compare marginal and
ridge regression for different aspect ratios and SNR. When the signal to noise ratio (SNR) α2/σ2 is small
or the aspect ratio γ is large, marginal regression does not increase the MSE much. As a concrete example,
if we take α2 = σ2 = 1 and γ = 0.7, the marginal MSE is 1 − 1/2.4 ≈ 0.58. The optimal ridge MSE is
about 0.52, so their ratio is only ca. 0.58/0.52 ≈ 1.1. It seems quite surprising that a simple-minded method
like marginal regression can work so well. However, the reason is that when the SNR is small, we cannot
expect ridge regression to have good performance. Large γ can also be interpreted as small SNR, where
ridge regression works poorly and sketching does not harm performance too much.

4.2 GAUSSIAN SKETCHING

In this section, we study Gaussian sketching. The following theorem states the bias of dual Gaussian sketch-
ing. The bias is enough to characterize the performance in the high SNR regime where α/σ → ∞, and we
discuss the extension to low SNR after the proof.

7



Under review as a conference paper at ICLR 2020

Figure 4: Left: Ratio of optimal MSE of marginal regression to that of optimally tuned ridge regression, for
three values of γ = p/n, as a function of the SNR α2/σ2. Right: Gaussian dual sketch when there is no
noise. γ = 0.4, α = 1, λ = 1 (both for original and sketching). Standard error over 50 experiments.

Theorem 4.4 (Bias of dual Gaussian sketch). Suppose X is an n × p standard Gaussian random matrix.
Suppose also that R is a p × d matrix with i.i.d. N (0, 1/d) entries. Then the bias of dual sketch has the
expression MSE(β̂d) = α2 + α2/γ · [m′(z)− 2m(z)] |z=0, where m is a function described below, and
m′(z) denotes the derivative of m w.r.t. z.

The function m is characterized by its inverse function, which has the explicit formula m−1(z) = 1/[1 +

z/ζ]− [γ + 1−
√

(γ − 1)2 + 4λz]/(2z) for complex z with positive imaginary part.

The proof is in Section A.10. We use the branch of the square root with positive imaginary part. We mention
that the same result holds when the matrices involved have iid non-Gaussian entries, but the proof is more
technical. The current proof is already based on free probability theory (e.g., Voiculescu et al., 1992; Hiai
& Petz, 2006; Couillet & Debbah, 2011). The function m is the Stieltjes transform of the free additive
convolution of a standard MP law F1/ξ and a scaled inverse MP law λ/γ · F−1

1/γ (see the proof).

To evaluate the formula, we note that m−1(m(0)) = 0, so m(0) is a root of m−1. Also, dm(0)/dz equals
1/(dm−1(y)/dy|y=m(0)), the reciprocal of the derivative of m−1 evaluated at m(0). We use a simple nu-
merical binary search on the functionm to find the solution. The theoretical result agrees with the simulation
quite well, see Figure 4. This shows that increasing d will reduce the MSE.

Somewhat unexpectedly, the MSE of dual sketching can be below the MSE of ridge regression, see Figure 4.
This can happen when the original regularization parameter is suboptimal. As d grows, the MSE of Gaussian
dual sketching converges to that of ridge regression (see Figure 9).

We have also found the bias of primal Gaussian sketching. However, stating the result requires free probabil-
ity theory, and so we present it in the Appendix, see Theorem A.2. To further validate our results, we present
additional simulations in Sec. A.13, for both fixed and optimal regularization parameters after sketching.
A detailed study of the computational cost for sketching in Sec. A.14 concludes, as expected, that primal
sketching can reduce cost when p < n, while dual sketching can reduce it when p > n; and also provides a
more detailed analysis.
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A APPENDIX

A.1 PROOF OF THEOREM 2.1

If p/n → γ and the spectral distribution of Σ converges to H , we have by the general Marchenko-Pastur
(MP) theorem of Rubio and Mestre (Rubio & Mestre, 2011), that

(Σ̂ + λI)−1 � (cpΣ + λI)−1,

where cp := c(n, p,Σ, λ) is the unique positive solution of the fixed point equation

1− cp =
cp
n

tr
[
Σ(cpΣ + λI)−1

]
.

10

https://CRAN.R-project.org/package=nycflights13
https://CRAN.R-project.org/package=nycflights13


Under review as a conference paper at ICLR 2020

Here, using the terminology of the calculus of deterministic equivalents (Dobriban & Sheng, 2018), two
sequences of (not necessarily symmetric) n×n matrices An, Bn of growing dimensions are equivalent, and
we write

An � Bn
if limn→∞ tr [Cn(An −Bn)] = 0 almost surely, for any sequence Cn of (not necessarily symmetric) n× n
deterministic matrices with bounded trace norm, i.e., such that lim sup ‖Cn‖tr < ∞ (Dobriban & Sheng,
2018). Informally, linear combinations of the entries of An can be approximated by the entries of Bn.

We start with

β̂ =
(
X>X/n+ λIp

)−1
X>Y/n =

(
X>X/n+ λIp

)−1 X>(Xβ + ε)

n

= (Σ̂ + λIp)
−1Σ̂β + (Σ̂ + λIp)

−1X
>ε

n
.

Then, by the general MP law written in the language of the calculus of deterministic equivalents

(Σ̂ + λIp)
−1Σ̂ = Ip − λ(Σ̂ + λIp)

−1 � Ip − λ(cpΣ + λI)−1 = cpΣ(cpΣ + λI)−1.

By the definition of equivalence for vectors,

(Σ̂ + λIp)
−1Σ̂β � cpΣ(cpΣ + λI)−1β.

We note a subtle point here. The rank of the matrix M := (Σ̂ + λIp)
−1Σ̂ is at most n, and so it is not a full

rank matrix when n < p. In contrast, cpΣ(cpΣ + λI)−1 can be a full rank matrix. Therefore, for the vectors
β in the null space of Σ̂, which is also the null space of X , we certainly have that the two sides are not equal.
However, here we assumed that the matrix X is random, and so its null space is a random max(p − n, 0)
dimensional linear space. Therefore, for any fixed vector β, the random matrix M will not contain it in its
null space with high probability, and so there is no contradiction.

We should also derive an asymptotic equivalent for

(Σ̂ + λIp)
−1X

>ε

n
.

Suppose we have Gaussian noise, and let Z ∼ N (0, Ip). Then we can write

(Σ̂ + λIp)
−1X

>ε

n
=d (Σ̂ + λIp)

−1Σ̂1/2 σZ

n1/2
.

So the question reduces to finding a deterministic equivalent for h(Σ̂), where h(x) = (x+λ)−2x. Note that

h(x) = (x+ λ)−2x = (x+ λ)−2(x+ λ− λ) = (x+ λ)−1 − λ(x+ λ)−2.

By the calculus of determinstic equivalents: (Σ̂ + λ)−1 � (cpΣ + λI)−1. Moreover, fortunately the limit of
the second part was recently calculated in (Dobriban & Sheng, 2019). This used the so-called ”differentiation
rule” of the calculus of deterministic equivalents to find

(Σ̂ + λ)−2 � (cpΣ + λI)−2(I − c′pΣ).

The derivative c′p = dcp/dz has been found in Dobriban & Sheng (2019), in the proof of Theorem 3.1, part
2b. The result is (with γp = p/n, Hp the spectral distribution of Σ, and T a random variable distributed
according to Hp)

c′p =
γpEHp

cpT
(cpT−z)2

−1 + γpzEHp T
(cpT−z)2

. (4)

So, we find the final answer

(Σ̂ + λIp)
−1Σ̂1/2 � A(Σ, λ) := (cpΣ + λI)−1 − λ(cpΣ + λI)−2(I − c′pΣ).

11



Under review as a conference paper at ICLR 2020

Figure 5: Simulation for ridge regression. We take n = 1000, λ = 0.3. Also, X has iid N (0, 1) entries,
βi ∼iid N (0, α2/p), εi ∼iid N (0, σ2), with α = 3, σ = 1. The standard deviations are over 50 repetitions.
The theoretical lines are plotted according to Theorem A.1. The MSE is normalized by the norm of β.

A.2 RISK ANALYSIS

For a distribution F , we define the quantities

θi(λ) =

∫
1

(x+ λ)i
dFγ(x),

(i = 1, 2, . . .). These are the moments of the resolvent and its derivatives (up to constants). We work in
a random-effects model, where the p-dimensional regression parameter β is random, each coefficient has
zero mean Eβi = 0, and is normalized so that Varβi = α2/p. This ensures that E‖β‖2 = α2. We use the
following loss functions: mean squared estimation error: MSE(β̂) = E‖β̂ − β‖22, and residual or training
error: Res(β̂) = E [‖]Y −Xβ̂‖22.
Theorem A.1 (MSE, training error and test error of ridge regression). Suppose β has iid entries with Eβi =
0, Var [βi] = α2/p, i = 1, . . . , p and β is independent of X and ε. Suppose X is an arbitrary n× p matrix
depending on n and p, and the ESD of X converges weakly to a deterministic distribution F as n, p → ∞
and p/n→ γ. Then the asymptotic MSE, residual and test error of the ridge regression estimator β̂(λ) has
the form

lim
n→∞

M(β̂(λ)) = α2λ2θ2 + γσ2[θ1 − λθ2], (5)

lim
n→∞

R(β̂(λ)) = α2λ2[θ1 − λθ2] + σ2
[
1− γ(1 + λθ1 − λ2θ2)

]
, (6)

The proof is in Section A.3. Figure 5 shows the simulation result. We see a good match between theory and
simulation.

The asymptotically optimal λ in this setting is always λ = γσ2/α2. This follows from a Bayesian argument.
The ridge regression estimator with λ = pσ2/(nα2) can be viewed as the Bayes estimator in a Gaussian
model where β and ε are normal random variables. See Dobriban & Wager (2018).

A.3 PROOF OF THEOREM A.1

Proof. The MSE of β̂ has the form

E‖β̂ − β‖2 = bias2 + δ2,
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where

bias2 = E
[∥∥∥(X>X/n+ λIp

)−1
X>X/nβ − β

∥∥∥2

2

]
,

δ2 = σ2E
[∥∥∥(X>X/n+ λIp

)−1
n−1X>

∥∥∥2

F

]
.

We assume that X has iid entries of zero mean and unit variance, and that Eβ = 0, Var [β] = α2/pIp. As
p/n→ γ as n goes to infinity, the ESD of 1

nX
>X converges to the MP law Fγ . So we have

bias2 = E
[∥∥∥λ (X>X/n+ λIp

)−1
β
∥∥∥2

2

]
= α2λ2E

[
1

p
tr[
(
X>X/n+ λIp

)−2
]

]
→ α2λ2

∫
1

(x+ λ)2
dFγ(x),

and

δ2 =
σ2

n2
E
[
tr[
(
X>X/n+ λIp

)−2
X>X]

]
=
σ2

n
E
[
tr[
(
X>X/n+ λIp

)−1 − λ
(
X>X/n+ λIp

)−2
]
]

→ σ2γ

[∫
1

x+ λ
dFγ(x)− λ

∫
1

(x+ λ)2
dFγ(x)

]
.

Denoting θi(γ, λ) =
∫

1
(x+λ)i dFγ(x), then

AMSE(β̂) = α2λ2θ2 + γσ2[θ1 − λθ2]. (7)

For the standard Marchenko-Pastur law (i.e., when Σ = Ip), we have the explicit forms of θ1 and θ2.
Specifically,

θ1 =

∫
1

x+ λ
dFγ(x) = −1

2

[
2(1 + λ)

λγ
+

2
√
γλ
z2

]
where

z2 = −1

2

[
(
√
γ +

1 + λ
√
γ

) +

√
(
√
γ +

1 + λ
√
γ

)2 − 4

]
.

It is known that the limiting Stieltjes transformmFγ := mγ of Σ̂ has the explicit form (Marchenko & Pastur,
1967):

mγ(z) =
(z + γ − 1) +

√
(z + γ − 1)2 − 4zγ

−2zγ
.

As usual in the area, we use the principal branch of the square root of complex numbers. Hence θ1 =
(−λ+γ−1)+

√
(−λ+γ−1)2+4λγ

2λγ . Also
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θ2(γ, λ) =

∫
1

(x+ λ)2
dFγ(x) = −

∫
d

dλ

1

x+ λ
dFγ(x)

= − d

dλ
θ1 = − 1

γλ2
+

1
√
γ

d

dλ

z2

λ

= − 1

γλ2
+
γ + 1

2γλ2
− 1

2
√
γ

[
λ+ γ + 1

γλ
√

(
√
γ + 1+λ√

γ )2 − 4
−

√
(
√
γ + 1+λ√

γ )2 − 4

λ2
]

For the residual,

E
[

1

n
‖Y −Xβ̂‖22|X

]
= α2λ2 1

p
tr[
(
X>X/n+ λIp

)−1 − λ
(
X>X/n+ λIp

)−2
]

+ σ2 1

n
[tr(In)− 2 tr

(
X>X/n+ λIp

)−1
X>X/n+ tr

((
X>X/n+ λIp

)−1
X>X/n

)2

].

Next,

E
[

1

p
tr[
((
X>X/n+ λIp

)−1
X>X/n

)2

]

]
= E

[
1

p
tr[
(
Ip − λ

(
X>X/n+ λIp

)−1
)2

]

]
→ 1− 2λθ1 + λ2θ2.

Therefore

E
[

1

n
‖Y −Xβ̂‖22

]
→α2λ2[θ1 − λθ2] + σ2

[
1− 2γ(1− λθ1) + γ(1− 2λθ1 + λ2θ2)

]
= α2λ2[θ1 − λθ2] + σ2

[
1− γ(1 + λθ1 − λ2θ2)

]
.

A.4 BIAS-VARIANCE TRADEOFF

The limiting MSE decomposes into a limiting squared bias and variance. The specific forms of these are

bias2 = α2

∫
λ2

(x+ λ)2
dFγ(x), var = γσ2

∫
x

(x+ λ)2
dFγ(x).

See Figure 1 for a plot. We can make several observations.

1. The bias increases with λ, starting out at zero for λ = 0 (linear regression), and increasing to α2 as
λ→∞ (zero estimator).

2. The variance decreases with λ, from γσ2
∫
x−1dFγ(x) to zero.

3. In the setting plotted in the figure, when α2 and σ2 are roughly comparable, there are additional
qualitative properties we can investigate. When γ is small, the regularization parameter λ influences
the bias more strongly than the variance (i.e., the derivative of the normalized quantities in the range
plotted is generally larger for the normalized squared bias). In contrast when γ is large, the variance
is influenced more.
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Figure 6: Bias-variance tradeoff at optimal λ∗ = γσ2/α2, when α = 3, σ = 1.

Next we consider how bias and variance change with γ at the optimal λ∗ = γσ2/α2. This can be viewed
as the ”pure” effects of dimensionality on the problem, keeping all other parameters fixed. Ineed, α2/σ2

can be viewed as the signal-to-noise ratio (SNR), and is fixed. This analysis allows us to study for the best
possible estimator (ridge regression, a Bayes estimator), behaves with the dimension. We refer to Figure 6,
where we make some specific choices of α and σ.

1. Clearly the overall risk increases, as the problem becomes harder with increasing dimension. This
is in line with our intuition.

2. The classical bias-variance tradeoff can be summarized by the equation

bias2(λ) + var(λ) >M∗(α, γ),

where we made explicit the dependence of the bias and variance on λ, and where M∗(α, γ) is the
minimum MSE achievable, also known as the Bayes error, for which there are explicit formulas
available (Tulino & Verdú, 2004; Dobriban & Wager, 2018).

3. The variance first increases, then decreases with γ. This shows that in the ”classical” low-
dimensional case, most of the risk is due to variance, while in the ”modern” high-dimensional case,
most of it is due to bias. This observation is consistent with other phenomena in proportional-limit
asymptotics, for instance that the map between population and sample eigenvalue distributions is
asymptotically deterministic (Marchenko & Pastur, 1967; Bai & Silverstein, 2010).

A.5 SIMULATIONS WITH CROSS-VALIDATION

See Figure 7. It is also shown that the one-standard-error rule (e.g., Hastie et al., 2009) does not perform
well here.

A.6 CHOOSING THE REGULARIZATION PARAMETER- ADDITIONAL DETAILS

Another possible prediction method is to use the average of the ridge estimators computed during cross-
validation. Here it is also natural to use the CV-optimal regularization parameters, averaging β̂−k(λ̂∗k), i.e.

β̂avg(λ̂
∗
k) =

1

K

K∑
k=1

β̂−k(λ̂∗k).
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Figure 7: We generate a train set (n = 3000) and a test set (ntest = 5000) from the same distribution. We
split the train set into K = 5 equally sized folds and do cross-validation. The blue error bars plot the mean
and standard error of the K test errors. The red dotted lines indicates the ”one-standard-error” location. The
blue dashed line indicates the minimal λ∗CV obtained by cross-validation, while the red dashed-dotted line
indicates the debiased version K−1

K λ∗CV . The orange line plots the test error when training on the whole
train set and fit on the whole test set, and the purple dashed-dotted line indicates the minimal λ∗test. The
debiased λ reduces the test error by 0.00166. The minimal test error is 1.32332.

This has the advantage that it does not require refitting the ridge regression estimator, and also that we use
the optimal regularization parameter.

A.6.1 TRAIN-TEST VALIDATION

The same bias in the regularization parameter also applies to train-test validation. Since the number of
samples is changed when restricting to the training set, the optimal λ chosen by train-test validation is
also biased for the true regularization parameter minimizing the test error. We will later see in simulations
(Figure 8) that retraining the ridge regression estimator on the whole data will still significantly improve
the performance (this is expected based on our results on CV). For prediction, here we can also use ridge
regression on the training set. This effectively reduces sample size n → ntrain, where ntrain is the sample
size of the train set. However, if the training set grows such that n/ntrain → 1 while ntrain → ∞, the
train-test split has asymptotically optimal performance.

A.6.2 LEAVE-ONE-OUT

There is a special “short-cut” for leave-one-out in ridge regression, which saves us from burdensome com-
putation. Write loo(λ) for the leave-one-out estimator of prediction error with parameter λ. Instead of doing
ridge regression n times, we can calculate the error explicitly as

loo(λ) =
1

n

n∑
i=1

[
Yi −X>i β̂(λ)

1− Sii(λ)

]2

.

where S(λ) = X(X>X+nλI)−1X>. The minimizer of loo(λ) is asymptotically optimal, i.e., it converges
to λ∗ (Hastie et al., 2019). However, the computational cost of this shortcut is the same as that of a train-test
split. Therefore, the method described above has the same asymptotic performance.
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Figure 8: Comparing different ways of doing cross-validation. We take n = 500, p = 550, α = 20, σ = 1,
K = 5. As for train-test validation, we take 80% of samples to be training set and the rest 20% be test set.
The error bars are the mean and standard deviation over 20 repetitions.

Simulations: Figure 8 shows simulation results comparing different cross-validation methods:

1. kf — k-fold cross-validation by taking the average of the ridge estimators at the CV-optimal regu-
larization parameter.

2. kf refit — k-fold cross-validation by refitting ridge regression on the whole dataset using the CV-
optimal regularization parameter.

3. kf bic — k-fold cross-validation by refitting ridge regression on the whole dataset using the CV-
optimal regularization parameter, with bias correction.

4. tt — train-test validation, by using the ridge estimator computed on the train data, at the validation-
optimal regularization parameter. Note: we expect this to be similar, but worse than the ”kf”
estimator.

5. tt refit — train-test validation by refitting ridge regression on the whole dataset, using the validation-
optimal regularization parameter. Note: we expect this to be similar, but slightly worse than the ”kf
refit” estimator.

6. tt bic — train-test validation by refitting ridge regression on the whole dataset using the CV-optimal
regularization parameter, with bias correction.

7. loo — leave-one-out

Figure 8 shows that the naive estimators (kf and tt) can be quite inaccurate without refitting or bias correc-
tion. However, if we either refit or bias-correct, the accuracy improves. In this case, there seems to be no
significant difference between the various methods.

A.7 PROOF OF THEOREM 4.1

Proof. Suppose m/n→ ξ as n goes to infinity. For β̂p, we have

bias2 = E
[∥∥∥(X>L>LX/n+ λIp

)−1
X>X/nβ − β

∥∥∥2

2

]
,

δ2 = σ2E
[∥∥∥(X>L>LX/n+ λIp

)−1
n−1X>

∥∥∥2

F

]
.
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Denote M =
(
X>L>LX/n+ λIp

)−1
, the resolvent of the sketched matrix. We further assume that X

has iid N (0, 1) entries and LL> = Im. Let L1 be an orthogonal complementary matrix of L, such that

L>L+ L>1 L1 = In. We also denote N =
X>L>1 L1X

n . Then

MX>X/n =M
X>L>LX +X>L>1 L1X

n
= Ip − λM +MN.

Therefore, using that Cov [β] = α2/p · Ip, we find the bias as

bias2 =
α2

p
E
[
tr(M − Ip)(M> − Ip)

]
=
α2

p

{
λ2E

[
tr[M2]

]
+ E

[
trM2 (X>L>1 L1X)2

n2

]
− 2λE

[
trM2N

]}
.

By the properties of Wishart matrices (e.g., Anderson, 2003; Muirhead, 2009), we have

E [N ] =
n−m
n

Ip,

E
[
(N)2

]
=

1

n2
E
[
Wishart(Ip, n−m)2

]
=

1

n2
[n−m+ p(n−m) + (n−m)2]Ip.

Recalling that m,n→∞ such that m/n→ ξ, and that θi(γ, λ) =
∫

(x+ λ)−idFγ(x),

bias2 =
α2

p

[
λ2 +

n−m+ p(n−m) + (n−m)2

n2
− 2λ

n−m
n

]
E
[
tr[M2]

]
→ α2[(λ+ ξ − 1)2 + γ(1− ξ)]θ2(γ, ξ, λ).

Moreover,

δ2 =
σ2

n2
E
[
tr[M2X>X]

]
=
σ2

n
·
{
E [tr[M ]]− λE

[
tr[M2]

]
+ E

[
tr[M2N ]

]}
→ γσ2[θ1(γ, ξ, λ)− λθ2(γ, ξ, λ) + (1− ξ)θ2(γ, ξ, λ)].

Here we used the additional definitions

θi(γ, ξ, λ) =

∫
1

(ξx+ λ)i
dFγ/ξ(x)

θi(γ, λ) = θi(γ, ξ = 1, λ).

Note that these can be connected to the previous definitions by

θ1(γ, ξ, λ) =
1

ξ

∫
1

x+ λ/ξ
dFγ/ξ(x) =

1

ξ
θ1

(
γ

ξ
,
λ

ξ

)
θ2(γ, ξ, λ) =

1

ξ2
θ2

(
γ

ξ
,
λ

ξ

)
.

Therefore the AMSE of β̂p is

AMSE(β̂p) = α2[(λ+ ξ − 1)2 + γ(1− ξ)]θ2(γ, ξ, λ) + γσ2[θ1(γ, ξ, λ)− (λ+ ξ − 1)θ2(γ, ξ, λ)]

= α2[(λ+ ξ − 1)2 + γ(1− ξ)] 1

ξ2
θ2

(
γ

ξ
,
λ

ξ

)
+ γσ2

[
1

ξ
θ1

(
γ

ξ
,
λ

ξ

)
− (λ+ ξ − 1)

1

ξ2
θ2

(
γ

ξ
,
λ

ξ

)]
. (8)
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A.7.1 ISOTROPIC CASE

Consider the special case where Γ = I , that is, X has iid N (0, 1) entries. Then Fγ is the standard MP law,
and we have the explicit forms for θi = θi(γ, λ) =

∫
1

(x+λ)i dFγ :

θ1(γ, λ) = −1 + λ

γλ
+

1

2
√
γλ

[
√
γ +

1 + λ
√
γ

+

√
(
√
γ +

1 + λ
√
γ

)2 − 4],

θ2(γ, λ) = − 1

γλ2
+
γ + 1

2γλ2
− 1

2
√
γ

(
λ+ 1

γ
+ 1)

1

λ
√

(
√
γ + 1+λ√

γ )2 − 4
+

1

2
√
γ

√
(
√
γ +

1 + λ
√
γ

)2 − 4
1

λ2
,

θ̄1(ζ, λ) = ζθ1(ζ, λ) +
1− ζ
λ

,

θ̄2(ζ, λ) = ζθ2(ζ, λ) +
1− ζ
λ2

,

The results are obtained by the contour integral formula∫
f(x)dFγ(x) = − 1

4πi

∮
|z|=1

f(|1 + γz|2)(1− z2)2

z2(1 +
√
γz)(z +

√
γ)
dz.

See Proposition 2.10 of Yao et al. (2015).

A.8 PROOF OF THEOREM 4.2

Proof. Suppose d/p→ ζ as n goes to infinity. For β̂d, we have

bias2 = E
[∥∥∥n−1X>

(
XRR>X>/n+ λIn

)−1
Xβ − β

∥∥∥2

2

]
,

δ2 = σ2 tr[
(
XRR>X>/n+ λIn

)−2 XX>

n2
].

Denote M =
(
XRR>X>/n+ λIn

)−1
. Note that, using that Cov [β] = α2/p · Ip

bias2 =
α2

p
E
[
tr[MXX>/n]2

]
− 2

α2

p
E
[
tr[MXX>/n]

]
+
α2

p
tr(Ip).

Moreover, letting R1 to be an orthogonal complementary matrix of R, such that RR> + R1R
>
1 = In, and

N =
XR1R

>
1 X
>

n ,

E
[

1

p
tr[MXX>/n]

]
=

1

p
tr[In − λE [tr[M ]] + E [MN ]]

→ 1

γ
− λ

γ

∫
1

x+ λ
dF̄ζ(x) +

γ − ζ
γ

∫
1

x+ λ
dF̄ζ(x),

where F̄ζ is the companion MP law, that is, F̄ζ = (1− γ)δ0 + γFζ . The third term calculated by using that
XR and XR1 are independent for a Gaussian random matrix X , so that M,N are independent, and that
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E [N ] = p−d
n In. Thus

E
[

1

p
tr[MXX>/n]

]
→ 1

γ
− λ+ ζ − γ

γ
θ̄1(ζ, λ)

=
1

γ
− λ+ ζ − γ

γ

[
1− ζ
λ

+ ζθ1(ζ, λ)

]
.

Then

E
[

1

p
tr[MXX>/n]2

]
=

1

p
E
[
tr[In + λ2M2 +MNMN − 2λM + 2MN − λM2N − λMNM

]
.

Note that
E [MNMN |M ] = M [(p− d)(M> + tr(M)In) + (p− d)2M ]/n2

=
p− d+ (p− d)2

n2
M2 +

p− d
n2

tr(M)M,

so

E
[

1

p
tr[MXX>/n]2

]
→ 1

γ
[1 + (λ2 − 2λ(γ − ζ) + (γ − ζ)2)θ̄2(ζ, λ)

+ 2(γ − ζ − λ)θ̄1(ζ, λ) + (γ − ζ)θ̄2
1(ζ, λ)].

Thus we find the following exprssion for the limiting squared bias:

bias2 → α2

γ
[γ − 1 + (λ− γ + ζ)2θ̄2 + (γ − ζ)θ̄2

1].

With similar calculations (that we omit for brevity), we can find
δ2 → σ2(θ̄1(ζ, λ)− (λ+ ζ − γ)θ̄2(ζ, λ)).

Therefore the AMSE of β̂d is

AMSE =
α2

γ
[γ − 1 + (λ− γ + ζ)2θ̄2 + (γ − ζ)θ̄2

1] + σ2[θ̄1(ζ, λ)− (λ+ ζ − γ)θ̄2(ζ, λ)]. (9)

A.9 PROOF OF THEOREM 4.3

Proof. Recall that we have m,n → ∞, such that m/n → ξ. Then we need to take ξ → 0. However, we
find it more convenient to do the calculation directly from the finite sample results as m,n, p → ∞ with
m/n → 0, p/n → γ, It is not hard to check that computing the results in the other way (i.e., interchanging
the limits), leads to the same results. Starting from our bias formula for primal sketching, we first get

bias2 =
α2

p

[
λ2 +

n−m+ p(n−m) + (n−m)2

n2
− 2λ

n−m
n

]
E
[
tr[
(
X>L>LX/n+ λIp

)−2
]
]

→ α2[(λ− 1)2 + γ]/λ2.

The limit of the trace term is not entirely trivial, but it can be calculated by (1) observing that the m × p
sketched data matrix P = LX has iid normal entries (2) thus the operator norm of P>P/n vanishes, (3)
and so by a simple matrix perturbation argument the trace concentrates around p/λ2. This gives the rough
steps of finding the above limit. Moreover,

δ2 =
σ2

n2
E
[
tr[
(
X>L>LX/n+ λIp

)−2
X>X]

]
→ γσ2/λ2 · EFγX2 = γσ2/λ2

So the MSE is M(λ) = α2[(λ− 1)2 + γ]/λ2 + σ2 · γ/λ2. From this it is elementary to find the optimal λ
and its objective value.
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A.10 PROOF OF THEOREM 4.4

Proof. Note that the bias can be written as

bias2 =
α2

p
E

[
tr[

(
XRR>X>

nd
+ λIn

)−1
XX>

nd
]2

]

− 2
α2

p
E
[
tr[
(
XRR>X>/n+ λIn

)−1
XX>/n]

]
+ α2.

Write G = XX>. Since RR> ∼ Wp(Ip, d), we have XRR>X> ∼ Wn(G, d). So XRR>X>
d
=

G1/2WG1/2, where W ∼ Wn(In, d).

E

[
tr[

(
XRR>X>

nd
+ λIn

)−1

XX>/n]

]
= E

[
tr[(G1/2WG1/2/d+ nλIn)−1G]

]
= E

[
tr[(

W

d
+ λ(

G

n
)−1)−1]

]
.

So we need to find the law of Wd + λ
γ (Gp )−1. Suppose first that G = XX> ∼ Wn(In, p). Then W and G−1

are asymptotically freely independent. The l.s.d. of W/d is the MP law F1/ξ while the l.s.d. of G/p is the
MP law F1/γ . We need to find the additive free convolution W � Ḡ, where Ḡ = λ

γG
−1.

Recall that the R-transform of a distribution F is defined by

RF (z) = m−1
F (−z)− 1

z
,

where m−1
F (z) is the inverse function of the Stieltjes transform of F (e.g., Voiculescu et al., 1992; Hiai &

Petz, 2006; Couillet & Debbah, 2011). We can find the R-transform by solving

mF (RF (z) +
1

z
) = −z.

Note that the R-transform of W/d is

RW (z) =
1

1− z/ξ
.

The Stieltjes transform of G−1 is

mG−1(z) =

∫
1

1/x− z
dF1/γ(x) = −1

z
− 1

z2
m1/γ(

1

z
)

= −1

z
−

1− 1
γ −

1
z +

√
(1 + 1

γ + 1
z )2 − 4

γ

2 zγ

= −
1 + 1

γ −
1
z +

√
(1 + 1

γ −
1
z )2 − 4

γ

2 zγ
.

Then the R-transform of G−1 is

RG−1(z) = −1

z
+
γ + 1−

√
(γ + 1)2 − 4γ(z + 1)

2z

=
γ − 1−

√
(γ − 1)2 − 4γz

2z
.
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Since we have the property that Raµ(z) = aRµ(az),

RḠ = Rλ
γG
−1(z) =

γ − 1−
√

(γ − 1)2 − 4λz

2z
.

Hence we have

RW�Ḡ = RW +RḠ =
1

1− z/ξ
+
γ − 1−

√
(γ − 1)2 − 4λz

2z
.

Moreover, the Stieltjes transform of µ = W � Ḡ satisfies

m−1
µ (z) = m−1

W�Ḡ(z) = RF (−z)− 1

z
=

1

1 + z/ξ
+
γ − 1−

√
(γ − 1)2 + 4λz

−2z
− 1

z
.

Note that

2
α2

p
E

[
tr[

(
XRR>X>

nd
+ λIn

)−1

XX>/n]

]
→ 2

α2

γ
Eµ
[

1

x

]
= 2

α2

γ
lim
z→0

m(z),

α2

p
E

[
tr[

(
XRR>X>

nd
+ λIn

)−1
XX>

nd
]2

]
→ α2

γ
Eµ
[

1

x2

]
=
α2

γ
lim
z→0

d

dz
m(z).

So it suffices to find m(z) and d
dzm(z) evaluated at zero.

This result can characterize the performance of sketching in the high SNR regime, where α � σ. To
understand the lower SNR regime, we need to study the variance, and thus we need to calculate

var = σ2 1

n
E

[
tr[

(
XRR>X>

nd
+ λIn

)−2

XX>/n]

]
= σ2E

[
tr[(

W

d
+
λ

γ
(
G

p
)−1)−2G−1]

]
where G = XX> ∼ Wn(In, p) is a Wishart distribution, and XRR>X> =d G

1/2WG1/2, with W ∼
Wn(In, r). This seems to be quite challenging, and we leave it to future work.

A.11 RESULTS FOR PRIMAL GAUSSIAN SKETCHING

The statement requires some notions from free probability, see e.g., Voiculescu et al. (1992); Hiai & Petz
(2006); Nica & Speicher (2006); Anderson et al. (2010); Couillet & Debbah (2011) for references .

Theorem A.2 (Bias of primal Gaussian sketch). Suppose X is an n× p standard Gaussian random matrix.
Suppose also that L is a d × n matrix with i.i.d. N (0, 1/d) entries. Then the bias of primal sketch has the
expression MSE(β̂p) = α2 + α2

γ [τ((a + b)−1b(a + b)−1b−1) − 2τ((a + b)−1)], where a and b two free
random variables, that are freely independent in a non-commutative probability space, and τ is their trace.
Specifically, the law of a is the MP law F1/ξ and b = λ

γ b̃, where the law of b̃ is the MP law F1/γ .

Proof of Theorem A.2. Note that

bias2 = E
[∥∥∥(X>L>LX/(nd) + λIp

)−1
(X>X/n)β − β

∥∥∥2

2

]
,
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Figure 9: Dual Gaussian sketch improves MSE.

and
(
X>L>LX/(nd) + λIp

)−1
X> = X>(L>LXX>/(nd) + λIn)−1. Thus

bias2 = E

[∥∥∥∥X>(
L>LXX>

nd
+ λIn)−1X

n
β − β

∥∥∥∥2

2

]

= α2 +
α2

p
E[tr[(

XX>L>L

nd
+ λIn)−1XX

>

n
(
L>LXX>

nd
+ λIn)−1XX

>

n
]

− 2 tr[(
L>LXX>

nd
+ λIn)−1XX

>

n
]].

First we find the l.s.d. of (L
>LXX>

nd + λIn)−1XX>

n . Write W = L>L, G = XX>. Then

(
L>LXX>

nd
+ λIn)−1XX

>

n
= (

WG

nd
+ λIn)−1G

n
= G−1(

W

d
+ λ(

G

n
)−1)−1G,

which is similar to (Wd + λ(Gn )−1)−1. So it suffices to find the l.s.d. of (Wd + λ
γ (Gp )−1)−1.

By the definition, W ∼ Wn(In, d), G ∼ Wn(In, p), therefore the l.s.d. of W/d converges to the MP law
F1/ξ and the l.s.d. of G/p converges to the MP law F1/γ .

Also note that

(
XX>L>L

nd
+ λIn)−1XX

>

n
(
L>LXX>

nd
+ λIn)−1XX

>

n
= (

W

d
+ λnG−1)−1G−1(

W

d
+ λnG−1)−1G.

We write A = W
d , B = λ

γ (Gp )−1. Then it suffices to find

α2

p
E
[
tr[(A+B)−1B(A+B)−1B−1]

]
.

We will find an expression for this using free probability. For this we will need to use some series expansions.
There are two cases, depending on whether the operator norm of BA−1 is less than or greater than unity,
leading to different series expansions. We will work out below the first case, but the second case is similar
and leads to the same answer.

tr[(A+B)−1B(A+B)−1B−1] = tr[A−1(I +BA−1)−1BA−1(I +BA−1)−1B−1]
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Since the operator norm of BA−1 is less unity, we have the von Neumann series expansion

[I +BA−1]−1 =

∞∑
i=0

(−BA−1)i,

then we have
tr[(A+B)−1B(A+B)−1B−1] =

∑
i,j≥0

(−1)i+j tr[(BA−1)i+j+1B−1A−1]

=
∑
i,j≥0

(−1)i+j tr[(A−1B)i+j+1A−1B−1].

Since A and B are asymptotically freely independent in the free probability space arising in the limit
(e.g., Voiculescu et al., 1992; Hiai & Petz, 2006; Couillet & Debbah, 2011), and the polynomial
(a−1b)i+j+1a−1b−1 involves an alternating sequence of a, b, we have

1

n
tr[(A−1B)i+j+1A−1B−1]→ τ [(a−1b)i+j+1a−1b−1],

where a and the b are free random variables and τ is their law. Specifically, a is a free random variable
with the MP law F1/ξ and b is λ

γ b̃
−1, where b̃ is a free r.v. with MP law F1/γ . Moreover, they are freely

independent.

Hence, we have
1

n
tr[(A+B)−1B(A+B)−1B−1]→ τ [

∑
i≥0

(−1)i(a−1b)i+1
∑
j≥0

(−1)j(a−1b)ja−1b−1]

= τ [(a−1b)(1 + a−1b)−1(1 + a−1b)−1a−1b−1]

= τ [(a+ b)−1b(a+ b)−1b−1].

Therefore,

bias2 → α2 +
α2

γ

[
1

n
tr[(A+B)−1B(A+B)−1B−1 − 2 tr[A+B]−1]

]
= α2 +

α2

γ
[τ((a+ b)−1b(a+ b)−1b−1)− 2τ((a+ b)−1)].

A.12 RESULTS FOR FULL SKETCHING

The full sketch estimator projects down the entire data, and then does ridge regression on the sketched data.
It has the form

β̂f =
(
X>L>LX/n+ λIp

)−1 X>L>LY

n
.

We have

bias2 = α2λ2

∫
1

ξx+ λ
dFγ/ξ(x) = α2λ2 1

ξ2
θ2

(
γ

ξ
,
λ

ξ

)
var = σ2γ

[∫
1

ξx+ λ
dFγ/ξ(x)− λ

∫
1

(ξx+ λ)2
dFγ/ξ(x)

]
= σ2γ

[
1

ξ
θ1

(
γ

ξ
,
λ

ξ

)
− λ 1

ξ2
θ2

(
γ

ξ
,
λ

ξ

)]
,

24



Under review as a conference paper at ICLR 2020

Figure 10: Simulation results for full sketch, with n = 1000, γ = 0.1. The simulation results are averaged
over 30 independent experiments.

therefore

AMSE(β̂f ) = α2λ2 1

ξ2
θ2

(
γ

ξ
,
λ

ξ

)
+ σ2γ

[
1

ξ
θ1

(
γ

ξ
,
λ

ξ

)
− λ 1

ξ2
θ2

(
γ

ξ
,
λ

ξ

)]

The optimal λ for full sketch is always λ∗ = γσ2

α2 , the same as ridge regression. Some simulation results are
shown in Figure 10, and they show the expected shape (e.g., they decrease with ξ).

A.13 NUMERICAL RESULTS

A.13.1 DUAL ORTHOGONAL SKETCHING

See Figure 11 for additional simulation results for dual orthogonal sketching.

A.13.2 PERFORMANCE AT A FIXED REGULARIZATION PARAMETER

First we fix the regularization parameter at the optimal value for original ridge regression. The results are
visualized in Figure 12. On the x axis, we plot the reduction in sample size m/n for primal sketch, and the
reduction in dimension d/p for dual sketch. In this case, primal and dual sketch will increase both bias and
variance, and empirically in the current case, dual sketch increases them more. So in this particular case,
primal sketch is preferred.

A.13.3 PERFORMANCE AT THE OPTIMAL REGULARIZATION PARAMETER

We find the optimal regularization parameter λ for primal and dual orthogonal sketching.a

Then we use the optimal regularization parameter for all settings, see Figure 13. Both primal and dual sketch
increase the bias, but decrease the variance. It is interesting to note that, for equal parameters ξ and ζ, and
in our particular case, dual sketch has smaller variance, but larger bias. So primal sketch is preferred bias or
MSE is important, but dual sketch is more desired when one wants smaller variance. All in all, dual sketch
has larger MSE than primal sketch in the current setting. It can also be seen that in this specific example, the
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Figure 11: Dual orthogonal sketching with γ = 1.5, λ = 1, α = 3, σ = 1. Left: MSE of dual sketching
normalized by the MSE of ridge regression. The standard deviation is over 50 repetitions. Right: Bias and
variance of dual sketching normalized by the bias and variance of ridge regression, respectively.

Figure 12: Fixed regularization parameter λ = 0.7, optimal for original ridge, in a setting where γ = 0.7,
and α2 = σ2.

optimal λ for primal sketch is smaller than that of dual sketch. However these results are hard to interpret,
because there is no natural correspondence between the two parameters ξ and ζ.

A.14 COMPUTATIONAL COMPLEXITY

Since sketching is a method to reduce computational complexity, it is important to discuss how much com-
putational efficiency we gain. Recall our three estimators

β̂ =
(
X>X/n+ λIp

)−1
X>Y/n = n−1X>

(
XX>/n+ λIn

)−1
Y,

β̂p =
(
X>L>LX/n+ λIp

)−1
X>Y/n,

β̂d = n−1X>
(
XRR>X>/n+ λIn

)−1
Y,

Their computational complexity, when computed in the usual way, is:
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Figure 13: Primal and dual sketch at optimal λ. We take γ = 0.7 and let ξ range between 0.001 and 1, where
for primal sketch ξ = r/n while for dual sketch ξ = d/p.

• No sketch (Standard ridge): if p < n, computing X>Y and X>X requires O(np) and O(np2)

flops, then solving the linear equation (X>X/n + λIp)β̂ = X>Y/n requires O(p3) flops by the
LU decomposition. It is O(np2) flops in total.

If p > n, we use the second formula for β̂, and the total flops is O(pn2).
• Primal sketch: for the Hadamard sketch (and other sketches based on the FFT), computing LX by

FFT requiresmp log n, computing (LX)>LX requiresmp2, so the total flops isO(p3+mp(log n+
p)). So the primal sketch can reduce the computation cost only when p < n.

• Dual sketch: computingXRR>X> requires nd (log p+n) flops by FFT, solving (XRR>X>/n+
λIn)−1 Y requires O(n3) flops, the matrix-vector multiplication of X> and (XRR>X>/n +
λIn)−1Y requires O(np) flops, so the total flops is O(n3 + nd(log p + n)). Dual sketching can
reduce the computation cost only when p > n.
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