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ABSTRACT

The penalized least squares (PLS) is a classic approach to inverse problems, where
a regularization term is added to stabilize the solution. Optimal transport (OT) is
another mathematical framework for computer vision tasks by providing means
to transport one measure to another at minimal cost. Cycle-consistent genera-
tive adversarial network (cycleGAN) is a recent extension of GAN to learn target
distributions with less mode collapsing behavior. Although similar in that no su-
pervised training is required, the algorithms look different, so the mathematical
relationship between these approaches is not clear. In this article, we provide an
important advance to unveil the missing link. Specifically, we reveal that a cycle-
GAN architecture can be derived as a dual formulation of the optimal transport
problem, if the PLS with a deep learning penalty is used as a transport cost be-
tween the two probability measures from measurements and unknown images.
This suggests that cycleGAN can be considered as stochastic generalization of
classical PLS approaches. Our derivation is so general that various types of cy-
cleGAN architecture can be easily derived by merely changing the transport cost.
As proofs of concept, this paper provides novel cycleGAN architecture for un-
supervised learning in accelerated MRI and deconvolution microscopy problems,
which confirm the efficacy and the flexibility of the theory.

1 INTRODUCTION

Inverse problems are ubiquitous in computer vision, biomedical imaging, scientific discovery, etc.
In inverse problems, a noisy measurement y ∈ Y from an unobserved image x ∈ X is modeled by

y = Hx+ w , (1)

where w is the measurement noise, and H : X 7→ Y is the measurement operator. In inverse
problems originated from physics, the measurement operator is usually represented by an integral
equation:

Hx(r) :=

∫
Rd

h(r, r′)x(r′)dr′, r ∈ D ⊂ Rd . (2)

for d = 2, 3, where h(r, r′;x) is an integral kernel. Then, the inverse problem is formulated as
an estimation problem of the unknown x from the measurement y. It is well-known that an inverse
problem is ill-posed. A classical strategy to mitigate the ill-posedness is the penalized least squares
(PLS) approach:

x̂ = arg min
x
c(x; y) := ‖y −Hx‖q +R(x) (3)

for q ≥ 1, where R(x) is a regularization (or penalty) function such as l1, total variation (TV), etc
(Chaudhuri et al., 2014; Sarder & Nehorai, 2006; McNally et al., 1999). In some inverse problems,
the measurement operatorH is not well defined so that both the unknown operatorH and the image
x should be estimated.

Recently, deep learning approaches with supervised training have become the main approaches to
inverse problems because of their excellent and ultra-fast reconstruction performance. For example,
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in the low-dose x-ray computed tomography (CT) denoising problems, a convolutional neural net-
work (CNN) is trained to learn the relationship between noisy image y and the matched noiseless (or
high dose) label images x (Kang et al., 2017). In the context of (3), the supervised neural network
can be understood as directly learning the operation x̂ = arg minx c(x; y). Unfortunately, in many
applications, matched label data are not available for supervised training. Therefore, unsupervised
training without matched reference data has become an important research topic.

Recently, generative adversarial network (GAN) has attracted significant attention in machine learn-
ing community by providing a way to generate target data distribution from random distribution
(Goodfellow et al., 2014). In particular, the authors in (Arjovsky et al., 2017) proposed so-called
Wasserstein GAN (W-GAN), which is closely related to the mathematical theory of optimal trans-
port (OT) (Villani, 2008; Peyré et al., 2019). In optimal transport, for given two probability measures
supported on the X and Y spaces, one pays a cost for transporting one measure to another. Then, the
minimization of the average transportation cost provides an unsupervised way of learning the trans-
port map between the two measures. Unfortunately, these GAN approaches often generate artificial
features due to the mode collapsing, so cycleGAN (Zhu et al., 2017) that imposes the one-to-one
correspondency has been extensively investigated (Kang et al., 2019; Lu et al., 2017).

Although classical PLS, optimal transport, and cycleGAN share the commonality of unsupervised
learning which does not require matched training data, there is no mathematical theory to system-
atically link these seemingly different approaches. Therefore, one of the main contributions of this
paper is to unveil the missing link between these methods. In particular, we reveal that cycleGAN
architecture can be derived as a dual formulation of the optimal transport problem when the cost
function of PLS with a deep learning penalty is used as a transport cost between the two measures.
Thus, cycleGAN can be considered as stochastic generalization of PLS. Moreover, this framework
is so general that various cycleGAN architecture can be easily obtained by changing the PLS cost.

As a proof of concept, we provide novel cycleGAN architecture for unsupervised learning in two
physical inverse problems: accelerated MRI, and deconvolution microscopy. In these applications,
we show that only one single CNN generator is required, which significantly reduces the training
complexity. Experimental results confirmed that the proposed unsupervised learning approaches can
successfully provide accurate inversion results without any matched reference.

2 RELATED WORKS

2.1 OPTIMAL TRANSPORT

Optimal transport compares two measures in a Lagrangian framework (Villani, 2008; Peyré et al.,
2019). Formally, we say that T : X 7→ Y transports µ ∈ P (X ) to ν ∈ P (Y), if

ν(B) = µ
(
T−1(B)

)
, for all ν-measureable set B, (4)

which condition is often simply represented by ν = T#µ,where T# is often called the push-forward
operator. Monge’s original optimal transport problem (Villani, 2008; Peyré et al., 2019) is then to
find a transport map T that transport µ to ν at the minimum total transportation cost:

min
T

M(T ) :=

∫
X
c(x, T (x))dµ(x) (5)

subject to ν = T#µ

However, this is usually computational expensive due to the nature of combinatorial assignment.
Kantorovich relaxed the assumption to consider a probabilistic transport, which allows mass splitting
from a source toward several targets (Villani, 2008; Peyré et al., 2019). Specifically, Kantorovich
introduced a joint measure π ∈ P (X × Y) and the associated cost c(x, y), x ∈ X , y ∈ Y such that
dπ(x, y) becomes the amount of mass transferred from x to y and c(x, y)dπ(x, y) is the associated
cost. Then, the Kantorovich’s relaxation is formulated as

min
π

K(π) :=

∫
X×Y

c(x, y)dπ(x, y) (6)

subject to π(A× Y) = µ(A), π(X ×B) = ν(B)
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for all measurable set A ∈ X and B ∈ Y . Here, the last two constraints come from the observation
that the total amount of mass removed from any measurable set has to equal to the marginals (Villani,
2008; Peyré et al., 2019). Another important advantage of Kantorovich formulation is the dual
formulation as stated in the following theorem:
Theorem 1 (Kantorovich duality theorem). (Villani, 2008, Theome 5.10, p.57-p.59) Let (X , µ) and
(Y, ν) be two Polish probability spaces (separable complete metric space) and let c : X × Y → R
be a continuous cost function, such that |c(x, y)| ≤ cX (x) + cY(y) for some cX ∈ L1(µ) and
cY ∈ L1(ν), where L1(µ) denotes the set of 1-Lipschitz functions with the measure µ. Then, there
is duality:

min
πΠ(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) = max
ϕ∈L1(µ)

{∫
X
ϕ(x)dµ(x) +

∫
Y
ϕc(y)dν(y)

}
and the above maximum is taken over so-called Kantorovich potential ϕ whose c-transform ϕc(y) =
supx(c(x, y)− ϕ(x)) is properly defined.

2.2 PENALIZED LEAST SQUARE WITH DEEP LEARNING PRIOR

Recently, model-based image reconstruction frameworks using a convolution neural network (CNN)
based prior have been extensively studied (Zhang et al., 2017; Aggarwal et al., 2018) thanks to their
similarities to the classical regularization theory. The main idea is to utilize a pre-trained neural
network to stabilize the inverse solution. Specifically, the problem can be formulated as

min
x
c(x; y,Θ,H) = ‖y −Hx‖q + ‖GΘ(y)− x‖p (7)

for p ≥ 1, where GΘ(y) is a pre-trained CNN with the network parameter Θ and the input y. The
minimization problem of (7) is to find a balance between data fidelity term and the CNN output.

3 MAIN CONTRIBUTIONS

One of the basic assumptions in the classical PLS formulation is that the measurement y is fixed
and one is interested in finding unknown x assuming some prior distribution. In this section, we
relax the assumption and consider unsupervised learning situations where both of them are random
samples from joint probability measure π(x, y). Interesting, this leads to cycleGAN architecture.
Specifically, by considering x and y in (7) as random variables, we have the following reformulation
of the cost:

c(x, y; Θ,H) = ‖y −Hx‖q + ‖GΘ(y)− x‖p (8)
where the first two terms before the semi-colon are the random vectors. Unlike (7), the network
GΘ(y) in (8) is not pretrained and needs to be learned. More specifically, Θ,H are the network
and measurement system parameters that should be estimated. These parameters can be found by
minimizing the average transport cost for all combinations of x ∈ X and y ∈ Y with respect to the
joint measure π(x, y):

T(Θ,H) := min
π

∫
X×Y

c(x, y; Θ,H)dπ(x, y) (9)

where the minimum is taken over all joint distribution whose marginal distribution with respect to
X and Y is µ and ν, respectively. Below we show that the average transportation cost in (9) has an
interesting decomposition.
Lemma 1. If the mapping GΘ : Y 7→ X is single-valued, then the average transportation cost
T(Θ,H) in (9) can be decomposed as

T(Θ,H) = `cycle(Θ,H) + `OT ′(Θ,H) (10)
where

`cycle(Θ,H) = min
π

∫
A∪B

c(x, y; Θ,H)dπ(x, y) (11)

`OT ′(Θ,H) = min
π

∫
X×Y\A∪B

c(x, y; Θ,H)dπ(x, y) (12)

and
A = {(x, y) ∈ X × Y | x = GΘ(y), y ∈ Y}, B = {(x, y) ∈ X × Y | y = Hx, x ∈ X}
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Proof. From the definition of `cycle and `OT ′ , it is straightforward to show that
T(Θ,H) ≥ `cycle(Θ,H) + `OT ′(Θ,H).

To show reversed inequality, we need the classical results on optimal transport for the restricted
measure (Villani, 2008). Specifically, Theorem 2 in Appendix informs that for some optimal trans-
portation plan π∗, the restrictions π∗|A∪B and π∗|X×Y\(A∪B) acquire optimality. Therefore,

T(Θ,H) =

∫
X×Y

c(x, y; Θ,H)dπ∗(x, y)

=

∫
A∪B

c(x, y; Θ,H)dπ∗(x, y) +

∫
X×Y\(A∪B)

c(x, y; Θ,H)dπ∗(x, y)

= `cycle(Θ,H) + `OT ′(Θ,H)

This concludes the proof.

The following proposition tells why we name the first term as `cycle. Indeed, the term `cycle(Θ,H)
in (11) is the weighted version of cycle consistency term in cycleGAN (Zhu et al., 2017), which
imposes the constraint x ' GΘ(Hx),∀x ∈ X and y ' HGΘ(y),∀y ∈ Y . However, our formu-
lation is more general, since there exists weighting factors that can balance the importance of the
cycle-consistency terms.
Proposition 1.

`cycle(Θ,H) := min
π

∫
X×Y\A∪B

c(x, y; Θ,H)dπ(x, y)

=

∫
A∪B

c(x, y; Θ,H)π∗(dx, dy)

=

∫
X
‖x−GΘ(Hx)‖pρ(x)µ(dx) +

∫
Y
‖y −HGΘ(y)‖qσ(y)ν(dy) (13)

where ρ and σ are measurable functions such that 0 ≤ ρ(x) ≤ 1 µ-a.e., and 0 ≤ σ(y) ≤ 1 ν-a.e.

Proof. By virtue of the definitions of the cost function and the sets A and B, we have
c(x, y; Θ,H) = ‖y −HGΘ(y)‖q on A,
c(x, y; Θ,H) = ‖x−GΘ(Hx)‖p on B,
c(x, y; Θ,H) = 0 on A ∩B.

Hence,∫
A∪B

c(x, y; Θ,H)dπ∗(x, y) =

∫
B

‖x−GΘ(Hx)‖pdπ∗(x, y) +

∫
A

‖y −HGΘ(y)‖qdπ∗(x, y)

Furthermore, we use disintegration theorem (Simmons, 2012) to split the joint measure π∗ as fol-
lows:

dπ∗(x, y) = π∗(dy|x)µ(dx) = π∗(dx|y)ν(dy),

where π∗(Y|x) = 1 µ-a.e. and π∗(X|y) = 1 ν-a.e. Then, we have∫
B

‖x−GΘ(Hx)‖pdπ∗(x, y) =

∫
B

‖x−GΘ(Hx)‖pπ∗(dy|x)µ(dx)

=

∫
X

∫
y=Hx

‖x−GΘ(Hx)‖pπ∗(dy|x)µ(dx)

=

∫
X
‖x−GΘ(Hx)‖p

∫
1y=Hxπ

∗(dy|x)µ(dx)

=

∫
X
‖x−GΘ(Hx)‖pρ(x)µ(dx)

where 1S denotes the indicator function for the set S and ρ(x) =
∫
1y=Hxπ

∗(dy|x). In a similar
fashion, with σ(y) =

∫
1x=GΘ(y)π

∗(dx|y), we have∫
A

c(x, y; Θ,H)dπ∗(x, y) =

∫
Y
‖y −HGΘ(y)‖qσ(y)ν(dy) .

This concludes the proof.
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Figure 1: (a) Supervised learning with matched references, (b) optimal transport with absolute con-
tinuous measures, and (c) optimal transport having measures with singularities. CycleGAN corre-
sponds to the scenario (c).

Here, care should be taken regarding the measurable functions ρ and σ. For the case of supervised
learning, there exists perfectly matched reference as shown in Fig. 1(a) so that ρ(x) = 1;µ-a.e. and
σ(y) = 1; ν-a.e. In this case, the `OT ′ = 0. On the other hand, if the joint distribution π(x, y) is
absolutely continuous as shown in Fig. 1(b), then ρ(x) = 0;µ-a.e. and σ(y) = 0; ν-a.e. In this case,
`cycle = 0. Most interesting case arises when the joint measure π(x, y) has singularities on the set
of A∪B = {y = Hx or x = GΘ(y)} (see Fig. 1(c)). In fact, the unsupervised learning cares about
such situation where once the mappings are found, significant portion of the data in X and Y can
be paired with the mappings, even though there are still remaining unpaired data. This is when the
cycle consistency terms plays the important role in unsupervised learning.

The remaining terms in (10), which corresponds to the GAN term, can be obtained as follows:
Proposition 2. For p = q = 1, the cost `OT ′(Θ,H) in (12) can be equivalently represented as

`OT ′(Θ,H) = max
ϕ

∫
X
ϕ(x)dµ(x)−

∫
Y
ϕ(GΘ(y))dν(y) (14)

+ max
ψ

∫
Y
ψ(y)dν(y)−

∫
X
ψ(Hx)dν(x) (15)

where ϕ and ψ are 1-Lipschitz Kantorovich potential functions.

Proof. This is a just simple corollary of the original Kantorovich’s duality formulation proof and
the classical results of optimal transport on the restricted measure. We start with the first term of
lOT (Θ,H) in (12). Specifically, we have∫

X×Y\(A∪B)

‖GΘ(y)− x‖pπ∗(dx, dy) = max
ϕ

∫
X
ϕ(x)µ′(dx) +

∫
Y
ϕc(GΘ(y))ν′(dy)

where µ′ and ν′ are marginals of the restriction of optimal transportation plan on the restricted set
X × Y \ (A ∪B). Now, using Proposition 3 in Appendix, we have∫

X×Y\(A∪B)

‖GΘ(y)− x‖π∗(dx, dy) = max
ϕ

∫
X
ϕ(x)µ(dx) +

∫
Y
ϕc(GΘ(y))ν(dy)

= max
ϕ∈L1(µ)

∫
X
ϕ(x)µ(dx)−

∫
Y
ϕ(GΘ(y))ν(dy)

for the non-restricted marginals µ and ν, where for the last equality we use ϕc = −ϕ for p = 1
when ϕ is 1-Lipschitz (Villani, 2008). Using the same technique, the second term in (12) can be
equivalently represented as∫

X×Y\(A∪B)

‖y −Hx‖dπ(x, y) = max
ψ∈L1(ν)

∫
Y
ψ(y)dν(y)−

∫
X
ψ(Hx)dν(x).

By collecting terms, we conclude the proof.

Now, the final step is implementing the Kantorovich potential using CNNs with parameters Φ and
Ξ, i.e. ϕ := ϕΦ and ψ := ψΞ. By collecting all terms in the transportation cost T(Θ,H) together,
the dual formulation results in a cycleGAN cost function:

min
Θ,H

T(Θ,H) = min
Θ,h

max
Φ,Ξ

`(Θ,H; Φ,Ξ) (16)
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where

`(Θ,H; Φ,Ξ) = `cycle(Θ,H) + `GAN (Θ,H; Φ,Ξ) (17)

where `cycle(Θ,H) denotes the cycle consistent loss in (13) and `GAN (Θ, h; Φ,Ξ) is the GAN loss
given by:

`GAN (Θ,H; Φ,Ξ) (18)

=

∫
X
ϕΦ(x)dµ(x)−

∫
Y
ϕΦ(GΘ(y))dν(y) +

∫
Y
ψΞ(y)dν(y)−

∫
X
ψΞ(Hx)dν(x)

Here, the Kantorovich 1-Lipschitz potential ϕ := ϕΦ and ψ := ψΞ corresponds to the Wasserstein
GAN discriminators. Specifically, ϕΦ tries to find the difference between the true image x and the
generated image GΘ(y), whereas ψ := ψΞ attempts to find the fake measurement data that are
generated by the synthetic measurement procedureHx. Furthermore, if ρ and σ are constant almost
everywhere, then they become simple scaling factors for the cycle-consistency terms:

`cycle(Θ,H) = ρ

∫
X
‖x−GΘ(Hx)‖pdµ(x) + σ

∫
Y
‖y −HGΘ(y)‖qdν(y) (19)

Note that our cost formulation using (17) with (18) and (19) is more general compared to the standard
cycleGAN, since a general form of measurement data generator Hx can be used. In the following
section, we will show how to chooseH depending on specific applications.

4 APPLICATIONS TO INVERSE PROBLEMS

4.1 ACCELERATED MRI

In accelerated MRI, the goal is to recover high quality MR images from sparsely sampled k-space
data to reduce the acquisition time. This problem has been extensively studied using compressed
sensing (Lustig et al., 2007), but recently deep learning approaches have been the main research
interest due to its excellent performance at significantly reduced run time complexity (Hammernik
et al., 2018; Han & Ye, 2019). A standard method for neural network training for accelerated MRI is
based on the supervised learning, where the MR images from fully sampled k-space data is used as
reference and subsampled k-space data is used as the input for the neural network. Unfortunately, in
accelerated magnetic resonance imaging (MRI), high-resolution fully sampled k-space data is very
difficult to acquire due to the long scan time. Therefore, the need for unsupervised learning without
matched reference data is increasing.

In accelerated MRI, the forward measurement model can be described as

x̂ = PΩFx+ w (20)

where F is the 2-D Fourier transform and PΩ is the projection to Ω that denotes k-space sampling
indices. To implement every step of the algorithm as the image domain processing, (20) can be
converted to the image domain forward model by applying the inverse Fourier transform:

y = F−1PΩFx+ F−1w (21)

This results in the following cost function for the PLS formulation:

c(x, y; Θ) = ‖y −F−1PΩFx‖+ ‖GΘ(y)− x‖ (22)

Usually, the sampling mask Ω is known so that the forward mapping for the inverse problem is
deterministic.

The schematic diagram of the associated cycleGAN architecture is illustrated in Fig. 2, whose gen-
erator and discriminator architecture are shown in Fig. 6 in Appendix. Note that we just need as
single generator, as the mapping from the clean to aliased images is deterministic for a given sam-
pling pattern. As for the loss function, we use (17) with the σ = ρ = 0.5 for the cycle consistency
term in (19). For GAN implementation, we use the Wasserstein GAN in (18) with Lipschitz penalty
loss (Gulrajani et al., 2017) to enforce that the Kantorovich potential become 1-Lipschitz. The de-
tailed description of the training procedure is provided in Appendix. The reconstruction results in
Fig. 3 clearly showed that the proposed unsupervised learning method using dedicated cycleGAN
successfully recovered fine details without matched references.

6



Under review as a conference paper at ICLR 2020

Figure 2: Proposed cycleGAN architecture for accelerated MRI with 1-D downsampling patterns.

4.2 DECONVOLUTION MICROSCOPY

Deconvolution microscopy is extensively used to improve the resolution of the widefield fluorescent
microscopy. Recently, CNN approaches have been extensively studied as fast and high performance
alternatives. Unfortunately, the CNN approaches usually require matched high resolution images
for supervised training. Mathematically, a blurred measurement can be described as

y = h ∗ x+ w , (23)

where h is the point spread function (PSF). If the PSF h is not known, which is often referred to
as the blind deconvolution problem, both the unknown PSF h and the image x should be estimated.
This results in the following cost function for the PLS formulation:

c(x, y; Θ, h) = ‖y − h ∗ x‖+ ‖GΘ(y)− x‖ (24)

The corresponding cycleGAN architecture is illustrated in Fig. 4. In contrast to the conventional
cycleGAN approaches that require two generators, the proposed cycleGAN approach needs only a
single generator and the blur image generation can be done using a linear convolution layer cor-
responding to PSF, which significantly improves the robustness of network training. The detailed
description of the network architecture and training are given in Appendix.

Figure 3: Unsupervised learning results for accelerated MRI using proposed cycleGAN. The values
in the corner are PSNR/SSIM values.
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Figure 4: Proposed cycleGAN architecture with a blur kernel for deconvolution microscopy. Here,
GΘ denotes the CNN-based low-resolution to high-resolution generator. The blur generator is com-
posed of a linear blur kernel h.

Fig. 5 show lateral views of deconvolution results of microtubule samples by various methods. Here,
input images are degraded by blur and noises. The supervised learning and the standard cycleGAN
with two generators showed better contrast and removed blur; however, the structural continuity
was not preserved. On the other hand, in our cycleGAN approach, blurs and noise were successfully
removed and preserved the continuity of the structure.

Figure 5: Comparison of reconstruction results by various methods: (a) Blurred image measure-
ments, (b) supervised learning, (c) the conventional cycleGAN, and (d) the proposed cycleGAN.
The ROIs (marked yellow) show the area for the enlarged parts.

5 CONCLUSIONS

In this paper, we presented a general design principle for cycleGAN architecture for various inverse
problems. Specifically, the proposed architecture was derived as a dual formulation of an optimal
transport problem that uses the penalized least squares cost as the transport cost between two mea-
sures supported on the measurement data and the images. As proofs of concept, we designed novel
cycleGAN architecture for accelerated MRI and deconvolution microscopy examples, providing ac-
curate reconstruction results without any matched reference data. Given the generality of our design
principle, we believe that our method can be an important platform for unsupervised learning for
inverse problems.
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A APPENDIX

A.1 ADDITIONAL THEOREMS AND LEMMAS

Theorem 2 (Optimality is inherited by restriction). (Villani, 2008, Theorem 4.6, p.46) Under the
same assumption of Kantorovich duality theorem, let π∗ be an optimal transport plan, and π̃ be a
nonnegative measure on X × Y , such that π̃ ≤ π∗ and π̃[X × Y] > 0. Let π′ := π̃

π̃[X×Y] , µ
′, ν′ be

the maginals of π′. Then optimality is inherited to its restriction, i.e., π′ is an optimal transference
plan between µ′ and ν′.
Theorem 3 (Restriction for the Kantorovich duality). (Villani, 2008, Theorem 5.19, p.75-p.76) Un-
der the same assumption of Kantorovich duality theorem, let π∗ be an optimal transport plan and
ϕ∗ be an optimal potential that attain the maximum, and π̃ be a measure on X × Y , such that
0 ≤ π̃ ≤ π∗ and Z := π̃[X × Y] > 0. Let π′ = π̃/Z, and µ′, ν′ be the marginals of π′. Then
there exists ϕ′ such that ϕ′ = ϕ∗ on projX (supp(π∗)), and ϕ′ solves the dual Kantorovich problem
between (X , µ′) and (Y, ν′).

We are now ready to provide our duality result for the restricted measure.
Proposition 3. Let

`OT ′ := minπ

∫
X×Y\(A∪B)

c(x, y)dπ(x, y)

`OT := minπ

∫
X×Y

c(x, y)dπ(x, y)

Then, we can replace `OT ′ with `OT in the sense that both of them share the same optimal Kan-
torovich potential. More specifically, if ϕ∗ is the optimal Kantorovich potential, which satisfies

`OT =

∫
X
ϕ∗(x)dµ(x) +

∫
Y

(ϕ∗)c(y)dν(y),

then
`OT ′ =

∫
X
ϕ∗(x)dµ′(x) +

∫
Y

(ϕ∗)c(y)dν′(y),

where µ′ and ν′ are marginals of the restriction of optimal transference plan.

Proof. Let π̃ = π∗|X×Y\(A∪B). Then, π̃ is nonnegative measure on X × Y . When π̃(X × Y) = 0,
`OT ′ = 0, and µ′ = 0, ν′ = 0, so the statement trivially holds. Suppose π̃(X × Y) > 0. Then by
lemma, there exists ϕ′ such that ϕ′ = ϕ∗ on projX (supp(π∗)), and ϕ′ solves the dual Kantorovich
problem between (X , µ′) and (Y, ν′).

A.2 EXPERIMENTAL DETAILS

A.2.1 ACCELERATED MRI

We use dataset for fastMRI challenge (Zbontar et al., 2018) for our experiments. This dataset is com-
posed of MR images of knees. We extracted 3500 MR images from fastMRI single coil validation
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set. Then, 3000 slices are used for training/evaluation, and 500 slices are used for test. These MR
images are fully sampled images, so we make undersampled images by a randomly subsampling
k-space lines. The acceleration factor is four, and autocalibration signal (ACS) region contains 4%
of k-space lines. Each slice is normalized by standard deviation of the magnitude of each slice. To
handle complex values of data, we concatenate real and imaginary values along the channel dimen-
sion. Each slice has different size, so we use only single batch. The images are center-cropped to
the size of 320× 320, and then the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) values are calculated.

We use U-Net generator to reconstruct fully sampled MR images from undersampled MR images as
shown in Fig. 6(a). Our generator consists of 3 × 3 convolution, Instance normalization, and leaky
ReLU operation. Also, there are skip-connection and pooling layers. At the last convolution layer,
we do not use any operation. Our discriminator is same as the discriminator of original CycleGAN.
We use PatchGAN (Isola et al., 2017), so the discriminator classifies inputs at patch scales. The
discriminator also consists of convolution layer, instance normalization, and leaky ReLU operation
as shown in Fig. 6(b). We use Adam optimizer to train our network, with momentum parameters
β1 = 0.5, β2 = 0.9, and learning rate of 0.0001. The discriminator is updated 5 times for every
generator updates. We use batch size of 1, and trained our network during 100 epochs. Our code
was implemented by TensorFlow.

(a)

(b)

Figure 6: Proposed network architecture for (a) generator and (b) discriminator.

Figure 7: A modified 3D U-net architecture for our high-resolution image generator.

A.2.2 DECONVOLUTION MICROSCOPY

The network architecture of the high resolution image generator GΘ from the low-resolution image
is a modified 3D-Unet (Çiçek et al., 2016) as shown in Fig 7. Our U-net structure consists of
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Figure 8: Multi-PatchGANs discriminator architecture.

contracting and expanding paths. The contracting path consists of the repetition of the following
blocks: 3D conv- Instance Normalization (Ulyanov et al., 2016)- ReLU. Here, the generator has
symmetric configuration so that both encoder and decoder have the same number of layers, i.e.
κ = 7. Throughout the network, the convolutional kernel dimension is 3 × 3 × 3. There exists a
pooling layer and skipped connection for every other convolution operations. To enhance the image
contrast, we add additional sigmoid layer at the end of U-Net. On the other hand, the low-resolution
image generator from high resolution input is based on a single 3D convolution layer that models
a 3D blurring kernel. The size of the 3D PSF modeling layer is chosen depending on the problem
set by considering their approximate PSF sizes. In this paper, the size of the 3D PSF layer is set to
20× 20× 20.

As for the discriminators, we follow the original CycleGAN that uses multi-PatchGANs (mPGANs)
(Isola et al., 2017), where each discriminator has input patches with different sizes used. As shown
in Fig 8, it consist of three independent discriminators. Each discriminator takes patches at different
sizes: original, and half, and quarter size patches.

A total 18 epi-fluorescent (EPF) microscopy images of tubulin with a size of 512 × 512 × 30 were
used for training, and one for validation. As for unmatched sharp image volume, we used deblurred
image generated by utilizing a commercial software AutoQuant X3 (Media Cybernetics, Rockville).
The EPF volume depth was increased to 64 using the reflection boundary condition. Due to GPU
memory limitations, the EPF volume was split into 64×64×64 size patches. For data augmentation,
rotation, flip, translation, and scale were imposed on the input patches. We normalized the patches
and set them to [0,1]. Adam optimizer (Kingma & Ba, 2014) was also used for training. The learning
rate was initially set to 0.0001, which is decreased linearly after 40 epoch, and the total number of
epoch was 200 epoch. For the optimizer, we used only a single batch.
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