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Abstract

Lifelong machine learning focuses on adapting to novel tasks without for-
getting the old tasks, whereas few-shot learning strives to learn a single
task given a small amount of data. These two different research areas
are crucial for artificial general intelligence, however, their existing studies
have somehow assumed some impractical settings when training the mod-
els. For lifelong learning, the nature (or the quantity) of incoming tasks
during inference time is assumed to be known at training time. As for
few-shot learning, it is commonly assumed that a large number of tasks is
available during training. Humans, on the other hand, can perform these
learning tasks without regard to the aforementioned assumptions. Inspired
by how the human brain works, we propose a novel model, called the Slow
Thinking to Learn (STL), that makes sophisticated (and slightly slower)
predictions by iteratively considering interactions between current and pre-
viously seen tasks at runtime. Having conducted experiments, the results
empirically demonstrate the effectiveness of STL for more realistic lifelong
and few-shot learning settings.

1 Introduction

Deep Learning has been successful in various applications. However, it still has a lot of areas
to improve on to reach human’s lifelong learning ability. As one of its drawbacks, neural
networks (NNs) need to be trained on large datasets before giving satisfactory performance.
Additionally, they usually suffer from the problem of catastrophic forgetting (McCloskey &
Cohen (1989); French (1999))—a neural network performs poorly on old tasks after learning
a novel task. In contrast, humans are able to incorporate new knowledge even from few
examples, and continually throughout much of their lifetime. To bridge this gap between
machine and human abilities, effort has been made to study few-shot learning (Fei-Fei et al.
(2006); Lake et al. (2011); Santoro et al. (2016); Vinyals et al. (2016); Snell et al. (2017);
Ravi & Larochelle (2017b); Finn et al. (2017); Sung et al. (2018); Garcia & Bruna (2018); Qi
et al. (2018)), lifelong learning (Gepperth & Karaoguz (2016); Rusu et al. (2016); Kirkpatrick
et al. (2017); Yoon et al. (2018); Kemker & Kanan (2018); Kemker et al. (2018); SerrÃ et al.
(2018); Schwarz et al. (2018); Sprechmann et al. (2018); Riemer et al. (2019)), and both
(Kaiser et al. (2017)).

The learning tasks performed by humans are, however, more complicated than the settings
used by existing lifelong and few-shot learning works. Task uncertainty: currently, lifelong
learning models are usually trained with hyperparameters (e.g., number of model weights)
optimized for a sequence of tasks arriving at test time. The knowledge about future tasks
(even their quantity) may be a too strong assumption in many real-world applications, yet
without this knowledge, it is hard to decide the appropriate model architecture and capacity
when training the models. Sequential few-shot tasks: existing few-shot learning models
are usually (meta-)trained using a large collection of tasks.1 Unfortunately, this collection
is not available in the lifelong learning scenarios where tasks come in sequentially. Without

1In Finn et al. (2017); Kaiser et al. (2017), the number of available tasks during a few-shot
training can be as large as P 1200

5 ≈ 2e12 given the Omniglot dataset, 1200 training characters, and
5-way classification.
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seeing many tasks at training time, it is hard for an existing few-shot model to learn the
shared knowledge behind the tasks and use the knowledge to speed up the learning of a
novel task at test time.

Humans, on the other hand, are capable of learning well despite having only limited in-
formation and/or even when not purposely preparing for a particular set of future tasks.
Comparing how humans learn and think to how the current machine learning models are
trained to learn and make predictions, we observe that the key difference lies on the part
of thinking, which is the decision-making counterpart of models when making predictions.
While most NN-based supervised learning models use a single forward pass to predict, hu-
mans make careful and less error-prone decisions in a more sophisticated manner. Studies
in biology, psychology, and economics (Parisi et al. (2019); Kahneman & Egan (2011)) have
shown that, while humans make fast predictions (like machines) when dealing with daily
familiar tasks, they tend to rely on a slow-thinking system that deliberately and iteratively
considers interactions between current and previously learned knowledge in order to make
correct decisions when facing unfamiliar or uncertain tasks. We hypothesize that this slow,
effortful, and less error-prone decision-making process can help bridge the gap of learning
abilities between humans and machines.

We propose a novel brain-inspired model, called the Slow Thinking to Learn (STL), for task-
uncertain lifelong and sequential few-shot machine learning tasks. STL has two specialized
but dependent modules, the cross-task Slow Predictor (SP) and per-task Fast Learners
(FLs), that output lifelong and few-shot predictions, respectively. We show that, by mak-
ing the prediction process of SP more sophisticated (and slightly slower) at runtime, the
learning process of all modules can be made easy at training time, eliminating the need to
fulfill the aforementioned impractical settings. Note that the techniques for slow predictions
(Finn et al. (2017); Ravi & Larochelle (2017b); Nichol & Schulman (2018); Sprechmann
et al. (2018)) and fast learning (McClelland et al. (1995); Kumaran et al. (2016); Kaiser
et al. (2017)) have already been proposed in the literature. Our contributions lie in that we
1) explicitly model and study the interactions between these two techniques, and 2) demon-
strate, for the first time, how such interactions can greatly improve machine capability to
solve the joint lifelong and few-shot learning problems encountered by humans everyday.

2 Slow Thinking to Learn (STL)
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Figure 1: The Slow Thinking to Learn (STL)
model. To model the interactions between the
shared SP f and per-task FLs {(g(t),M(t))}t,
we feed the output of FLs into the SP while
simultaneously letting the FLs learn from the
feedback given by SP.

We focus on a practical lifelong and few-
shot learning set-up:

Problem 1. Given tasks T (1), T (2), · · · ar-
riving in sequence and the labeled exam-
ples D(t) = (X (t),Y(t)) = {(x(t,i),y(t,i))}t
in each task T (t) also coming in se-
quence, the goal is to design a model
such that it can be properly trained by
data D(1),D(2), · · · ,D(s) collected up to any
given time point s, and then make cor-
rect predictions for unlabeled data X ′(t) =
{x′(t,i)}i in any of the seen tasks, t ≤ s.

Note that, at training time s, the future
tasks T (s+1), T (s+2), · · · are unknown, and
the training set D(s) of the last task T (s)

may consist of only few examples. The
model should not assume any knowledge
from T (s+1), T (s+2), · · · and should learn
from few shots in D(s) even when s is small.

To solve Problem 1, we propose the Slow
Thinking to Learn (STL) model, whose ar-
chitecture is shown in Figure 1. The STL
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is a cascade where the shared Slow Predictor (SP) network f parameterized by θ takes the
output of multiple task-specific Fast Learners (FLs) {(g(t),M(t))}t, t ≤ s, as input. An FL
for task T (t) consists of an embedding network g(t)2 parameterized by φ(t) and augmented
with an external, episodic, non-parametric memoryM(t) = (K(t),V(t)) = {(h(t,j),v(t,j))}j .
Here, we use the Memory Module (Kaiser et al. (2017)) as the external memory which saves
the clusters of seen examples {(x(t,i),y(t,i))}i to achieve better storage efficiency—the h(t,j)

of an entry (h(t,j),v(t,j)) denotes the embedding of a cluster of x(t,i)’s with the same label
while the v(t,j) denotes the shared label.

We use the FL (g(t),M(t)) and SP f to make few-shot and lifelong predictions for task
T (t), respectively. We let the number of FLs grow with the number of seen tasks in order
to ensure that the entire STL model will have enough complexity to learn from possibly
endless tasks in lifelong. This does not imply that the SP will consume unbounded memory
space to make predictions at runtime, as the FL for a specific task can be stored on a hard
disk and loaded into the main memory only when necessary.

g(t)x'(t) h'(t) '(t)

Find KNN M(t) Average Label

y ̂ 

(a)

g(t)x'(t) h'(t) '(t)y ̂ fBatches
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Runtime
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(b)

Figure 2: The prediction processes of (a) an
FL, and (b) the SP at runtime.

Slow Predictions. The FL predicts the
label of a test instance x′ using a single feed-
forward pass just like most existing machine
learning models. As shown in Figure 2(a),
the FL for task T (t) first embed the instance
to get h′ = g(t)(x′) and then predicts the la-
bel ŷ′FL of x′ by averaging the cluster labels
v(t,j)’s stored inM(t) whose corresponding
representations h(t,j)’s are most similar to
h′. Specifically, let

M̂(t)
h′ = {(h,v) ∈M(t) : h ∈ KNN(h′)},

where KNN(h′) is the set of K nearest
neighboring embeddings of h′. We have

ŷ′FL =
∑

(h,v)∈M̂(t)

h′
〈h,h′〉v,

where 〈h,h′〉 denotes the cosine similarity between h(t,j) and h′. On the other hand, the SP
predicts the label of x′ with a slower, iterative process, which is shown in Figure 2(b). The
SP first adapts (i.e., fine-tunes) its weights θ to KNN(h′) and their corresponding values
stored inM(t) to get θ̃′ by solving

θ̃′ = argθ̃ min
∑

(h,v)∈M̂(t)

h′
loss(f(h; θ̃),v) subject to ‖θ̃ − θ‖ ≤ R, (1)

where loss(·) denotes a loss function. Then, the SP makes a prediction by ŷ′SP = f(h′; θ̃′).
The adapted network fθ̃′ is discarded after making the prediction.

The slower decision-making process of SP may seem unnecessary and wasteful of computing
resources at first glance. Next, we explain why it is actually a good bargain.

Life-Long Learning with Task Uncertainty. Since the SP makes predictions after
runtime adaptation, we define the training objective of θ for task T (s) such that it minimizes
the losses after being adapted for each seen task T (1), T (2), · · · , T (s):

argθ min
∑
t:t≤s LSP(θ; g(t),M(t)), where

LSP(θ; g(t),M(t)) =
∑

(x,y)∈M(t) loss(f(x; θ̃∗),y).
(2)

The term loss(f(h; θ̃∗),v) denotes the empirical slow-prediction loss of the adapted SP on
an example (x,y) inM(t), where θ̃∗ denotes the weights of the adapted SP for x following
Eq. (1): θ̃∗ = argθ̃ min

∑
(h,v)∈M̂(t)

x
loss(f(h; θ̃),v) subject to ‖θ̃ − θ‖ ≤ R. Solving Eq. (2)

2In practice, different FLs can have either their own embedding networks g(t)’s or a shared one,
depending on whether the corresponding tasks are coming from distinct domains or not.
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requires recursively solving θ̃∗ for each (x,y) remembered by the FLs. We use an efficient
gradient-based approach proposed by Finn et al. (2017)) to solve Eq. (2). Please refer to
Section 2.1 of the Appendix for more details. Since the SP learns from the output of FLs,
the θ̃∗ in Eq. (2) approximates a hypothesis used by an FL to predict the label of x. The θ,
after being trained, will be close to every θ̃∗ and can be fine-tuned to become a hypothesis,
meaning that θ encodes the invariant principles3 underlying the hypotheses for different
tasks.

(a) (b) (c)

Figure 3: The relative positions between the
invariant representations θ and the approx-
imate hypotheses θ̃(t)’s of FLs for different
tasks T (t)’s on the loss surface defined by FLs
after seeing the (a) first, (b) second, and (c)
third task. Since ‖θ−θ̃(t)‖ ≤ R for any t in Eq.
(2), the effective capacity of SP (at runtime) is
the union of the capacity of all possible points
within the dashed R-circle centered at θ. Fur-
thermore, after being sequentially trained by
two tasks using Eq. (3), the θ will easily get
stuck in the middle of θ̃(1) and θ̃(2). To solve
the third task, the third FL needs to change
its embedding function (and therefore the loss
surface) such that θ̃(3) falls into the R-circle
centered at θ.

Recall that in Problem 1, the nature of tasks
arriving after a training process is unknown,
thus, it is hard to decide the right model
capacity at training time. A solution to
this problem is to use an expandable net-
work (Rusu et al. (2016); Yoon et al. (2018))
and expand the network when training it
for a new task, but the number of units
to add during each expansion remains un-
clear. Our STL walks around this problem
by not letting the SP learn the tasks directly
but making it learn the invariant principles
behind the tasks. Assuming that the un-
derlying principles of the learned hypothe-
ses for different tasks are universal and rel-
atively simple,4 one only needs to choose
a model architecture with capacity that is
enough to learn the shared principles in life-
long manner. Note that limiting the capac-
ity of SP at training time does not imply un-
derfitting. As shown in Figure 3, the post-
adaptation capacity of SP at runtime can
be much larger than the capacity decided
during training.

Sequential Few-Shot Learning. Al-
though each FL is augmented with an ex-
ternal memory that has been shown to im-
prove learning efficiency by the theory of complementary learning systems (McClelland et al.
(1995); Kumaran et al. (2016)), it is not sufficient for FLs to perform few-shot predictions.
Normally, these models need to be trained on many existing few-shot tasks in order to obtain
good performance at test time. Without assuming s in Problem 1 to be a large number, the
STL takes a different approach that fast stabilizes θ and then let the FL for a new incoming
task learn a good hypothesis by extrapolating from θ. We define the training objective of
g(s), which is parameterized by φ(s) and augmented with memoryM(s), for the current task
T (s) as follows:

argφ(s) minLFL(φ(s);D(s),M(s)) + λΩ(φ(s); θ,D(s),M(s)), (3)

where LFL(φ(s);D(s),M(s)) is the empirical loss term whose specific form depends on the
type of external memory used (see Section 2.2 of the Appendix for more details), and
Ω(φ(s); θ,D(s),M(s)) is a regularization term, which we call the feedback term, whose in-
verse value denotes the usefulness of the FL in helping SP (f parameterized by θ) adapt.
Specifically, it is written as

Ω(φ(s); θ,D(s),M(s)) =
∑

(x,y)∈D(s) loss(f(x; θ̃∗),y), where
θ̃∗ = argθ̃ min

∑
(h,v)∈M̂(s)

g(s)(x;φ(s))

loss(f(h; θ̃),v) subject to ‖θ̃ − θ‖ ≤ R.

The feedback term encourages each FL to learn unique and salient features for the respective
task so the SP will not be confused by two tasks having similar embeddings. As shown in

3The word “invariant” does not imply causal invariance in the field of causal learning.
4For example, in Physics, the principles behind many complex systems are usually governed by

few basic and fundamental physical laws.
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Figure 3(b), the relative position of θ gets “stuck” easily after seeing a few of previous tasks.
To solve the current task, g(s) needs to change the loss surface for θ such that θ̃(s) falls
into the R-circle centered at θ (Figure 3(c)). This makes θ an efficient guide (through the
feedback term) to finding g(s) when there are only few examples and also few previous tasks.

We use an alternate training procedure to train the SP and FLs. Please see Section 2.3 of
the Appendix for more details. Note that when sequentially training STL for task T (s) in
lifelong, we can safely discard the data D(1),D(2), · · · ,D(s−1) in the previous tasks because
the FLs are task-specific (see Eq. (3)) and the SP does not require raw examples to train
(see Eq. (2)).

3 Further Related Work

In this section, we discuss related works that are not mentioned in Sections 1 and 2. For a
complete discussion, please refer to Section 1 of the Appendix.

Runtime Adaptation. Our idea of adapting SP at runtime is similar to that of MbPA
(Sprechmann et al. (2018)), which is a method proposed for lifelong learning only. In MbPA,
the embedder and output networks are trained together, in a traditional approach, as one
network for the current task. Its output network adapts to examples stored in an external
memory for a previous task before making lifelong predictions. Nevertheless, there is no
discussion of how the runtime adaptation could improve the learning ability of a model,
which is the main focus of this paper. Meta-Learning. The idea of learning the invariant
representations in SP is similar to meta-learning (Finn et al. (2017); Ravi & Larochelle
(2017b); Nichol & Schulman (2018)), where a model (meta-)learns good initial weights that
can speed up the training of the model for a new task using possibly only few shots of
data. To learn the initial weights (which correspond to the invariant representations in our
work), existing studies usually assume that the model can sample tasks, including training
data, following the task distribution of the ground truth. However, the Problem 1 studied
in this paper does not provide such a luxury. Memory-Augmented Networks. An FL
is equipped with an external episodic memory module, which is shown to have fast-learning
capability (McClelland et al. (1995); Kumaran et al. (2016)) due to its nonparametric nature.
Although we use the Memory Module (Kaiser et al. (2017)) in this work, our model can
integrate with other types of external memory modules, such as Gepperth & Karaoguz
(2016); Pritzel et al. (2017); Santoro et al. (2016). This is left as our future work. Few-
Shot Learning without Forgetting. Recently, Gidaris & Komodakis (2018) proposed a
new few-shot learning approach that does not forget previous tasks when trained on a new
one. However, it still needs to be trained on a large number of existing tasks in order to
make few-shot predictions and therefore cannot be applied to Problem 1.

4 Experimental Evaluation

In this section, we evaluate our model in different aspects.

4.1 Task-Uncertain Lifelong Learning

We implement STL and the following baselines using TensorFlow (Abadi et al. (2016)):
Vanilla NN. A neural network without any technique for preventing catastrophic forgetting
or preparation for few-shot tasks. EWC. A regularization technique (Kirkpatrick et al.
(2017)) protecting the weights that are important to previous tasks in order to mitigate
catastrophic forgetting. Memory Module. An external memory module (Kaiser et al.
(2017)) that can make predictions (using KNNs) by itself. It learns to cluster rows to
improve prediction accuracy and space efficiency. MbPA+. A memory-augmented model
(Sprechmann et al. (2018)) that performs runtime adaptation like our SP before making
lifelong predictions. The original MbPA uses a FIFO memory, which we replace with the
Memory Module for better performance because of its clustering technique. Separate-
MAML. A cascade model with the same architecture as STL, except that there is no
feedback term in Eq. (3). Without the feedback term, the FLs and SP can be separately
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Figure 4: Average all-task performance after seeing different number of sequential tasks
on the permuted MNIST dataset. For memory-augmented networks, we store at most (a)
1000 raw examples, (b) 1000 embedded examples, and (c) 10 embedded examples in their
external memory.
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Figure 5: Average all-task performance after seeing different number of sequential (a)
CIFAR-100 Normal tasks and (b) CIFAR-100 Hard tasks. The size of external memory
is set to 100 embedded examples. Colors follow Figure 4. (c) Performance of SP with
different memory sizes. Dashed lines show the average performance of FLs.

trained (FLs first, and then SP), and we use MAML (Finn et al. (2017)) to solve Eq.
(2) when training the SP. Separate-MbPA. This is similar to Separate-MAML, except
that the SP is not trained to prepare for run-time adaptation, but it still applies run-time
adaptation at test time.

Next, we evaluate the abilities of the models to fight against catastrophic forgetting using
the permuted MNIST (LeCun et al. (1998)) and CIFAR-100 (Krizhevsky & Hinton (2009))
datasets. Then, we investigate the impact of task-uncertainty on model performance.

Permuted MNIST. We create a sequence of 10 tasks, where each task contains MNIST
images whose pixels are randomly permuted using the same seed. The seeds are different
across tasks. We train models for one task at a time, and test their performance on all
tasks seen so far. We first use a setting where all memory-augmented models can save raw
examples in their external memory. This eliminates the need for an embedding network, and,
following the settings in Kirkpatrick et al. (2017), we use a 2-layer MLP with 400 units for all
models. We trained all models using the Adam optimizer for 10,000 iterations per task, with
their best-tuned hyperparameters. Figure 4(a) shows the average performance of models for
all tasks seen so far. The memory-augmented models outperform the Vanilla NN and EWC
and do not suffer from forgetting. This is consistent with previous findings (Sprechmann
et al. (2018); Kaiser et al. (2017)). However, saving raw examples for a potentially infinite
number of tasks may be infeasible as it consumes a lot of space. We therefore use another
setting where memory-augmented models save only the embedded examples. This time, we
let both the embedder and the output network (in STL, it is SP) consist of 1-layer MLP with
400 units. Figure 4(b) shows that the memory-augmented models do not forget even when
saving the embeddings. The only exception is MbPA+, because it uses the same embedder
network for all tasks, the embedder network is prone to forgetting.
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CIFAR-100. Here, we design more difficult lifelong learning tasks using the CIFAR-100
dataset. The CIFAR-100 dataset consists of 100 classes. Each class belongs to a superclass,
and each superclass has 5 classes. We create a sequence of tasks, called CIFAR-100 Normal,
where the class labels in one task belong to different superclasses, but the labels across
different tasks are from the same superclass. This ensures that there is transferable knowl-
edge between tasks in the ground truth. We also create another sequence of tasks, called
CIFAR-100 Hard, where the class labels in one task belong to the same superclasses, while
the labels across different tasks are from different superclass. The tasks in CIFAR-100 Hard
share less information, making the lifelong learning more difficult. For CIFAR-100 tasks,
we let the memory-augmented models store embeddings in external memory. The embed-
ding networks of all models consist of 4 convolutional layers followed by one fully connected
layer, and all output networks (SP in STL) are a 2-layer MLP with 400 units. We search
for the best hyperparameters for each model but limit the memory size to 100 embeddings,
apply early stopping during training, and use Adam as the optimizer. As shown in Figures
5(a)(b), our SP clearly outperforms the baseline models for both the Normal and Hard tasks.
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(a) Latest Task (b) Previous Tasks

Figure 6: Performance for (a) the latest task
and (b) all previous tasks after seeing dif-
ferent number of sequential CIFAR-100 Nor-
mal tasks. Colors follow Figure 4. Solid and
dashed lines denote models with large and
small capacities, respectively.

Task Uncertainty and Hyperparame-
ters. To understand why the SP outper-
forms other baselines, we study how the
performance of each model changes with
model capacity. Figure 4(c) shows the per-
formance of different models on the per-
muted MNIST dataset when we deliberately
limit the size of external memory to 10 em-
beddings. Only the SP performs well in
this case. We also vary the size of exter-
nal memory used by our FLs and find out
that the performance of SP does not drasti-
cally change like the other baselines, except
when the memory size is extremely small, as
shown in Figure 5(c). The above results jus-
tify that our STL can avoid the customiza-
tion of memory size (a hyperparameter) to
be specifically catered to expected future
tasks, whose precise characteristics may not be known at training time. In addition to
memory size, we also conduct experiments with models whose architectures of the output
networks (SP in our STL) are changed based on LeNet (LeCun et al. (1998)). We con-
sider two model capacities. The larger model has 4 convolutional layers with 128, 128, 256,
and 256 filters followed by 3 fully-connected layers with 256, 256, and 128 units; whereas
the small model has 4 convolutional layers with 16, 16, 32, and 32 filters followed by 3
fully-connected layers with 64, 32, 16 units. Figure 6 compares the performance of different
parametric models for the current and previous CIFAR-100 Normal tasks. We can see that
the performance of EWC on current task is heavily affected by model capacity. EWC with
small model size can learn well at first, but struggles to fit the following tasks, which was
not a problem when it has larger model size. MbPA has good performance on current task
but forgets the previous tasks no matter how large the model is. On the other hand, STL is
able to perform well on both the previous and current tasks regardless of model size. This
proves the advantage of SP’s runtime adaptation ability, that is, it mitigates the need for a
model that is carefully sized to the incoming uncertain lifelong tasks.

4.2 Sequential Few-shot Learning

CIFAR-100. Existing few-shot learning models are usually trained using a large collection
of tasks as training batches. However, in sequential continual learning settings, collections
of these tasks are not available. Here we designed an experiment setting that simulates
an incoming few-shot task during lifelong learning. We modified the CIFAR Normal and
CIFAR Hard sequential tasks, where we trained the models with sequential tasks just like
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Figure 7: Performance for the (a) 2-nd, (b) 4-th, (c) 6-th, (d) 8-th, and (e) 10-th sequential
CIFAR-100 Normal task that has only a few shots (in number of batches) of training data.

conventional lifelong learning set-up, except that the last task is a “few-shot” task.5 In
this experiment, we assume that the input domains are the same, which means we can use
the network parameters (e.g. embedder’s weights) learned from previous tasks as initial
weights. We consider three baselines, namely the Memory Module, Separate-MAML, and
Vanilla NN. The Memory Module is the only known model designed for both lifelong and
few-shot learning. We use Separate-MAML to simulate the STL without the feedback term
in Eq (3) and the Vanilla NN to indicate “default” fine-tuning performance for each task.
Figure 7 shows the performance on the few-shot task with different number of batches of
available training data. Each batch contains 16 examples, and the memory size for each task
is 20 in all memory-augmented models. We can see that both the FLs and SP in our model
outperform other baselines. The Memory Module cannot learn well without seeing a large
collection of tasks at training time, and the Separate-MAML gives unstable performance due
to the lack of feedback from the SP (MAML). Interestingly, these two sophisticated models
perform worse than the Vanilla NN sometimes, justifying that the interactions between the
fast-leaning and slow-thinking modules are crucial to the joint lifelong and few-shot learning.
Our above observations still hold on the even more challenging dataset, CIFAR Hard. Please
refer to Section 3.3 of the Appendix for more details.

Comparing the results of FLs and SP, we can see that an FL gives better performance when
the training data is small. This justifies that the invariant representations learned by the
SP can indeed guide an FL to better learn from the few shots. Interestingly, the intersection
of the predictive ability of an FL and the SP seem to be stable across tasks and usually
falls within the range of 48 to 192 examples. In Section 3.4 of the Appendix, we visualize
the embeddings stored in the FLs and the Memory Module to understand how the feedback
from SP guide the representation learning of FLs.

4.3 Time and Space Consumption

Inference Time. The SP makes “slow” predictions because of runtime adaptation. Here,
we study the time required by the SP to make a single prediction. We run trained models
on a machine with a commodity NVIDIA GTX-1070 GPU. The number of adaptation
steps used is 3 as in previous experiments. For an FL, SP, and a non-adaptive Vanilla NN
trained for the CIFAR-100 Normal tasks, we get 0.24 ms, 2.62 ms, and 0.79 ms per-example
inference time on average. We believe that trading delay of a few milliseconds at runtime for
a great improvement on lifelong and few-shot learning abilities is a good bargain in many
applications. Space Efficiency. The STL also has an advantage in space efficiency. Please
see Section 3 of the Appendix for more details.

5For clarity, our few-shot task is different from the settings of Finn et al. (2017); Vinyals et al.
(2016) in which they have an example for each class in a shot, however, our settings is “batch based.”
That is, we randomly sampled few batches as our training data, thus, the class distribution may
not be uniform.

8



Under review as a conference paper at ICLR 2020

5 Conclusion

Inspired by the thinking process that humans undergo when making decisions, we propose
STL, a cascade of per-task FLs and shared SP. To the best of our knowledge, this is the first
work that studies the interactions between the fast-learning and slow-prediction techniques
and shows how such interactions can greatly improve machine capability to solve the joint
lifelong and few-shot learning problems under challenging settings. For future works, we
will focus on integrating the STL with different types of external memory and studying the
performance of STL in real-world deployments.
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Appendix

1 Related Work

In this section, we give a more thorough review of the related work.

1.1 Runtime Adaptation

MbPA (Sprechmann et al. (2018)), a memory-augmented network, proposed an adaptive
manner of utilizing its memory contents. Its output network applies a run-time adapta-
tion using the stored information from its external non-parametric first-in first-out (FIFO)
memory. It was able to show that such method can help the output network to deal with
catastrophic forgetting – the problem of machine learning models when after learning a new
task, they would perform poorly on old tasks. However, MbPA did not focus on how such
a run-time adaptation can help the entire model (including the memory) to learn better,
which is the main focus of our proposed Slow Thinking to Learn (STL) model.

1.2 Meta-Learning and Few-Shot Learning

Some of the most notable Meta-Learning research for few-shot learning are the following:
meta-LSTM (Ravi & Larochelle (2017a)), MAML (Finn et al. (2017)), and Reptile (Nichol
& Schulman (2018)). Meta-LSTM proposes a meta-learner LSTM that controls the gradient
updates of another network. On the other hand, MAML and Reptile aim at learning an
easily adaptable set of weights, wherein the weights are updated using the gradient, rather
than a learned update. Our idea of learning the invariant representations across tasks is
similar to these meta-learning models. The difference is that all of the aforementioned
previous works solve the few-shot learning problem by sampling a large number of few-
shot tasks from a meta-distribution. However, this assumption of having a large amount
of few-shot training tasks, is not practical and is not available in the sequential few-shot
learning problem that our model would like to solve. Recently, Gidaris & Komodakis (2018)
studied the problem of few-shot learning without forgetting. Their idea of extracting and
transferring useful general knowledge from previous tasks to a new, unseen few-shot task
is similar to ours. However, the proposed model is still required to be trained on a large
number of previous tasks.
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1.3 Memory-Augmented Networks

Memory-Augmented Neural Network (MANN, Santoro et al. (2016)) bridged the gap of
leveraging an external memory for one-shot learning. MANN updates its external memory
by learning a content-based memory writer. The Memory Module (Kaiser et al. (2017))
learns a Matching Network (Vinyals et al. (2016)) but includes an external memory that
retains previously seen examples or their representatives (cluster of embeddings). Unlike
MANN, the Memory Module has a deterministic way of updating its memory. Memory
Module has the ability for providing ease and efficiency in grouping of incoming data and
selecting class representations. However, Memory Module encounters limitation in learning
and making precise predictions when the given memory space becomes extremely small.
Our proposed STL focuses on the interaction between the per-task memory-augmented
Fast Learners (FLs) and the Slow Predictor (SP) to optimize the data usage stored in the
memory. This interaction allows an FL to learn better representations for a better lifelong
and few-shot predictions.

1.4 Lifelong Learning

It is common for lifelong learning algorithms to store a form of knowledge from previously
learned tasks to overcome forgetting. Some remember the task specific models (Lee et al.
(2017)), while some store raw data, the hessian of the task, or the attention mask of the
network for the task (Kirkpatrick et al. (2017); Lopez-Paz & Ranzato (2017); SerrÃ et al.
(2018)). Some approaches such as Yoon et al. (2018) not only attempts to consolidate the
model but also expands the network size. Other works like Hu et al. (2019); Schwarz et al.
(2018) tried to solve the problem with fixed storage consumption. Except for Yoon et al.
(2018), the previously mentioned works need to predefine the model capacity, and lacks the
flexibility to unknown number of future tasks. Although Yoon et al. (2018) can expand its
capacity when training for a new task, the challenge of deciding how many number of units
to add during each expansion still remains.

Some of the recent models (Li & Hoiem (2016); Gepperth & Karaoguz (2016); Kirkpatrick
et al. (2017); He & Jaeger (2018); Kemker & Kanan (2018); Sprechmann et al. (2018); Zenke
et al. (2017)) in lifelong learning have taken inspiration on how the brain works (Parisi et al.
(2019)). Our proposed framework is closely related to other dual-memory systems that are
inspired by the complementary learning systems (CLS) theory, which defines the contribu-
tion of the hippocampus for quick learning and the neocortex for memory consolidation. A
version of GeppNet (Gepperth & Karaoguz (2016)) that is augmented with external mem-
ory stores some of its training data for rehearsal after each new class is trained. FearNet
(Kemker & Kanan (2018)) is composed of three networks for quick recall, memory consol-
idation, and network selection. Both GeppNet and FearNet have dedicated sleep phases
for memory replay, a mechanism to mitigate catastrophic forgetting. STL, however, does
not require a dedicated sleep or shutdown to consolidate the memory. This choice is based
on considering that there are cases wherein a dedicated sleep time is not feasible, such as
when using a machine learning model to provide a frontline service that needs to be up and
running all the time and cannot be interrupted by a regular sleep schedule.

2 Technical Details

In this section, we discuss more technical details about the design and training of STL.

2.1 Solving Eq. (2)

There are different ways to solve Eq. (2). One can use either the gradient-based MAML
(Finn et al. (2017)) or Reptile (Nichol & Schulman (2018)) to get an approximated solution
efficiently. The constraint ‖θ̃ − θ‖ ≤ R can be implemented by either adding a Lagrange
multiplier in the objective or limiting the number of gradient steps in MAML/Reptile. In
this paper, we use MAML due to its simplicity, ease of implementation, and efficiency, and
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we enforce the constraint ‖θ̃ − θ‖ ≤ R by limiting the number of adaptation steps of SP at
runtime.

2.2 Empirical Loss of FLs

An FL in STL is compatible with different types of external memory modules, such as
Santoro et al. (2016); Sprechmann et al. (2018); Vinyals et al. (2016). We choose the
Memory Module (Kaiser et al. (2017)) in this paper due to its clustering capabilities, which
increase space efficiency. For completeness, we briefly discuss how an FL based on the
Memory Module are optimized.

Let h(1),h(2), · · · ,h(K) ∈ KNN(g(s)(x)) be the sorted K nearest neighbors (from the closest
to the farthest) of the embedding of x , and v(1),v(2), · · · ,v(K) be the corresponding values
of the nearest neighbors inM(s). We write LFL(φ(s);D(s),M(s)) as∑

(x,y)∈D(s) [〈g(s)(x;φ(s)),h(b)〉 − 〈g(s)(x;φ(s)),h(p)〉+ ε]+,

where 〈 · , · 〉 denotes the cosine similarity between two vectors, and p and b are the smallest
indices such that v(p) = y and v(b) 6= y, respectively; h(p) and h(b) are the closest positive
and negative neighbors. As this loss is minimized, g(s) maximizes the similarity of embedding
of training data points to their positive neighbors, while minimizing the similarity to the
negative neighbors by a margin of ε. The Memory Module Kaiser et al. (2017) also has
deterministic update and replacement rules for records inM(s). In effect, an h represents
the embedding of a cluster of data points, and its value v denotes the shared label of points
in that group.

2.3 Training

2.3.1 Alternate training

We sequentially train the STL for tasks T (1), T (2), · · · coming in lifelong. For the current
task T (s), we train the STL using an alternate training approach. First, the weights φ(s) of
g(s) for T (t) is updated by taking some descent steps following Eq. (3) in the main paper.
Next, the θ that parametrizes f is updated following Eq. (2) in the main paper. One
alternate training iteration involves training the FL for the current task for a steps, and
then the SP for b steps. We set the alternate ratio a : b to 1:1 by default. The pseudo-code
of STL’s training procedure is shown in Algorithms 1, 2, and 3.

2.3.2 Hyperparameter R

One important hyperparameter to decide before training the STL is R, which affects the
number of adaptation steps used by SP. A larger R allows the adapted weights θ̃’s to
move farther from θ, which may lead the SP to better lifelong predictions but will result
in higher computation cost at runtime. A smaller R helps stabilize θ after the model is
trained on previous tasks and enables θ to guide the FLs for new incoming tasks sooner.
We experimented on different values of R by adjusting the number of adaptation steps of
SP, and found out that it does not need to be large to achieve good performance. Normally,
it suffices to have less than 5 adaptation steps.

3 More Experiments

3.1 Space Efficiency

The SP in STL can work with FTs having very small external memory. Figure 8(a) shows
the trade-off between the average all-task performance at the 10-th sequential task on the
permuted MNIST dataset and the size (in number of embedded examples) of external mem-
ory. While the performance of most memory-augmented models drops when the memory
size is 10, the SP can still perform well. This justifies that the invariant principles learned
by the SP can indeed guide FLs to find better representations that effectively “bring back”
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Algorithm 1 Training and prediction processes of STL
1: procedure STL_Train(T (1), T (2), · · · )
2: Initialize θ
3: for every new incoming task T (s) containing the training dataset D(s) do
4: Initialize (φ(s),M(s))
5: repeat . Alternate training process
6: Update (φ(s),M(s)) using FL_Train((φ(s),M(s)); D(s), θ)
7: Update θ using SP_Train(θ; {(φ(t),M(t))}st=1)
8: until convergence or maximum iteration is reached
9: end for
10: end procedure
11: procedure STL_Predict(x, t) . t is the task ID
12: Embed the input: h← g(t)(x)
13: ŷSP ← SP_Predict(h;M(t), θ)
14: ŷFL ← FL_Predict(h;M(t))
15: Return ŷSP, ŷFL
16: end procedure

Algorithm 2 Training algorithms for FLs and SP
1: procedure FL_Train((φ(s),M(s)); D(s), θ)
2: Sample a batch (X ,Y) from D(s)

3: Get embeddings of X from FL: H ← g(s)(X ;φ(s))

4: Get FL predictions: ŶFL ← FL_Predict(H;M(s))

5: Get SP predictions: ŶSP ← SP_Predict(H;M(s), θ)

6: Calculate total loss: L ← loss(ŶFL,Y) + λ loss(ŶSP,Y)
7: Update parameter of FL: φ(s) ← φ(s) − α∇φ(s)L
8: Update memoryM(s) by adding key-value pairs (H, ŶFL)
9: end procedure
10: procedure SP_Train(θ; {(φ(t),M(t))}st=1)
11: for all task T (t), t ≤ s, trained so far do
12: Sample a meta-batch (X (t),Y(t)) fromM(t)

13: Get SP predictions: Ŷ(t)
SP ← SP_Predict(X (t);M(t), θ)

14: end for
15: Update parameter of SP: θ ← θ − β∇θ

∑
t≤s loss(Ŷ

(t)
SP,Y(t))

16: end procedure

Algorithm 3 Prediction procedure of FLs and SP
1: procedure FL_Predict(h;M(t))
2: Retrieve top-K nearest neighbors, KNN(h), and their corresponding values, V, from
M(t)

3: Get FL prediction: ŷFL ← weighted average of the values V
4: Return ŷFL
5: end procedure
6: procedure SP_Predict(h;M(t), θ)
7: Retrieve top-K nearest neighbors, KNN(h), and their corresponding values, V, from
M(s)

8: Initial parameter to be fine-tuned: θ̃ ← θ
9: repeat . Runtime adaptation
10: Ŷ ← f(KNN(h); θ̃)

11: θ̃ ← θ̃ − α∇θloss(Ŷ,V)
12: until maximum fine-tuning step (based on R) is reached
13: Get SP prediction after fine-tuning: ŷSP ← f(h; θ̃)
14: Return ŷSP
15: end procedure
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Figure 8: (a) Trade-off between the average all-task performance at the 10-th sequential
task on the permuted MNIST dataset and the size (in number of embedded examples) of
external memory. (b) Space consumption in order to achieve at least 0.9 average all-task
accuracy. A pair [a, b] denotes a embedded examples, each with b features, in memory. (c)
Performance gain of different adaptive models after runtime adaptation.
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Figure 9: Performance for the (a) 2-nd, (b) 3-rd, (c) 4-th, and (d) 5-th sequential CIFAR-100
Hard task that has only a few shots (in number of batches) of training data.

the knowledge of SP for a particular task. Figure 8(b) shows the memory space required
by different models in order to achieve at least 0.9 average all-task accuracy. The STL
consumes less than 1% space as compared to MbPA and Memory Module.

3.2 Adaptation Efficiency

The SP also has high adaptation efficiency. Figure 8(c) shows the performance gain of dif-
ferent adaptive models after runtime adaptation. When the memory size is 1000, all models
can adapt for the current task to give improved performance. However, the adaptation effi-
ciency of the baseline models drops when the memory size is 10. The SP, on the other hand,
achieves good performance in this case even after being adapted for just one step thanks to
1) the SP is trained to be ready for adaptation and 2) the invariant principles learned by
the SP are useful by themselves and require only few examples (embeddings) to transform
to a good hypothesis.

3.3 Sequential Few-shot Learning on CIFAR Hard

Figure 9 shows the sequential few-shot learning results of different models on the CIFAR
Hard dataset. In this dataset, the labels of different tasks come from different superclasses
in the original CIFAR 100 dataset. So, it is very challenging for a model to learn from only
a few examples in a new task without being able to see a lot of previous tasks. As we can
see, our STL model still outperforms other baselines. In particular, Figure 9(a) shows that
the STL is able to perform few-shot learning after seeing just one previous task. Again, the
above demonstrates that the interactions between the FLs and SP are a key to improving
machine ability for the joint lifelong and few-shot learning.
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Dark:  STL    Light: Memory Module

Figure 10: t-SNE visualization of the embeddings of examples saved in different FLs for
the 5 CIFAR-100 Normal tasks. Different colors represent different tasks.

3.4 Visualization

In order to understand how the feedback from SP guide the representation learning of FLs,
we visualize the embeddings stored in the FLs and the Memory Module. We sample 300
testing examples per task, get their embeddings from the two models, and then project
them onto a 2D space using the t-SNE algorithm (Maaten & Hinton (2008)). The results
are shown in Figure 10. We can see that the embeddings produced by different FLs for
different tasks are more distant from each other than those output by the Memory Module.
Recall that the feedback term in Eq. (3) encourages each FL to learn features that help
the SP adapt. Therefore, each FL learns more salient features for the respective task so
the SP will not be confused by two tasks having similar embeddings. This, in turn, quickly
stabilizes SP and makes it an efficient guide (through the feedback term) to learning the FL
for a new task when there are only few examples and also few previous tasks, as Figure 3
shows.
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