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ABSTRACT

Stochastic gradient descent (SGD) forms the core optimization method for deep
neural networks. While some theoretical progress has been made, it still remains
unclear why SGD leads the learning dynamics in overparameterized networks to
solutions that generalize well. Here we show that for overparameterized networks
with a degenerate valley in their loss landscape, SGD on average decreases the
trace of the Hessian of the loss. We also generalize this result to other noise
structures and show that isotropic noise in the non-degenerate subspace of the
Hessian decreases its determinant. In addition to explaining SGDs role in sculpting
the Hessian spectrum, this opens the door to new optimization approaches that may
confer better generalization performance. We test our results with experiments on
toy models and deep neural networks.

1 INTRODUCTION

Deep neural networks have achieved remarkable success in the past decade on tasks that were out
of reach prior to the era of deep learning. Yet fundamental questions remain regarding the strong
performance of over-parameterized models and optimization schemes that typically involve only
first-order information, such as stochastic gradient descent (SGD) and its variants.

Regarding generalization, it has been noted that flat minima with small curvature tend to generalize
better than sharp minima (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017). This has been
argued by nonvacuous PAC-Bayes bounds (Dziugaite & Roy, 2017) and Bayesian evidence (Smith
& Le, 2018). But why does SGD bias learning towards flat minima? One possible explanation was
proposed by Zhang et al. (2018) in terms of energy-entropy competition. Jastrzbski et al. (2018)
also suggests that isotropic noise in SGD helps networks escape sharp minima with large Hessian
determinant. However, previous theoretical analyses assume that minima are isolated and non-singular.
In contrast, Sagun et al. (2017b) finds that most of the eigenvalues of the Hessian of the loss function
at a minimum are close to zero, indicating highly degenerate minima. The degeneracy is further
supported by results on mode connectedness (Garipov et al., 2018; Draxler et al., 2018). Furthermore,
it is shown that minima found from different initializations and the same optimization scheme are
connected with essentially no barriers between them. Nguyen (2019) also shows theoretically that for
a class of deep overparameterized neural nets with piecewise linear activation functions, all of the
global minima are connected within a unique and potentially very large global valley.

In this paper, we prove that for models whose loss has a ”minimal valley” structure, defined below,
optimization via SGD decreases the trace of Hessian of the loss, by utilizing recent fluctuation-
dissipation relations (Yaida, 2019). Furthermore, we derive the noise covariance matrix that would
result in the reduction of other potentially desired quantities such as the Hessian determinant, leading
towards the design of new optimization algorithms. We present experiments on toy models and deep
neural networks to confirm our predictions.

2 MAIN THEOREM

In this section, we present our main theorem - how noise during optimization affects the Hessian of the
loss function when the loss landscape locally takes the shape of a degenerate valley. More specifically,
let N and n be the dimension of the total parameter space and non-degenerate space, respectively, and
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consider a general loss function L(w) wherew ∈ RN are the model parameters.1 Since the curvature
around the minima can vary, we approximate the loss function in such a valley around a degenerate
minimum with a modified quadratic form L(w) = L∗ + 1

2 (w − P(w))TH(P(w))(w − P(w))
where P is a function that projects a point w in parameter space to the nearest minimum, and H is
the Hessian, a function of the location of the projected minimum. We have the following lemma:

Lemma 1. For an arbitrary point w and its neighborhood in the valley, there exists an orthogonal
transformation Q and a translation vector v such that the loss function in the new coordinate system
θ = Qw − v has the following form,

L(θ) = L∗ +
1

2

n∑
i=1

θ2i λi(θn+1, ..., θN ) , (1)

where λis are the positive eigenvalues of the loss function Hessian for the non-degenerate space
and depend on the position in the degenerate space. Also, note that the gradient descent equation is
invariant under this transformation.

A detailed, constructive proof of this lemma can be found in Appendix A.1. In the rest of this
section, we denote the nondegenerate and degenerate subspaces by θ̄ = (θ1, ..., θn)T and θ̂ =

(θn+1, ..., θN )T, respectively. Similarly, the gradients of θ̄ and θ̂ are denoted by ∇̄ and ∇̂, respectively.
Notice that at a minimum where θ̄ = 0, the λis are the only nonzero Hessian eigenvalues.

Next we provide a quick review of the relevant fluctuation-dissipation relation formalism for stochastic
gradient descent (Yaida, 2019). We denote the loss for a random batchB of training sample as LB(θ).
Clearly we have

[[∇LB(θ)]]m.b. = ∇L(θ) , (2)

where [[•]]m.b. represents the average over all mini-batch realizations. If there exists a stationary state
for θ̄, pss(θ̄) and the stationary-average is defined as 〈O(θ̄)〉 ≡

∫
dθ̄pss(θ̄)O(θ̄) where O(θ̄) is any

observable of θ̄, we have the following master equation

〈O(θ̄)〉 = 〈[[O[θ̄ − η∇̄LB(θ)]]]m.b.〉 . (3)

We denote the two-point noise matrix as C̃i,j(θ) ≡ [[∂θiL
B(θ)∂θjL

B(θ)]]m.b. and the noise covari-
ance matrix Ci,j(θ) ≡ C̃i,j(θ)− ∂θiL(θ)∂θjL(θ).

Now we present our main theorem:

Theorem 1. When the loss can be locally approximated as in Equation 1, assuming that the non-
degenerate space θ̄ is in a stationary state at time t and that the noise covariance matrix is aligned
with the Hessian, we have

〈[[Tt+1 − Tt]]m.b.〉 ≤ 0 ,

where T =
∑n
i=1 λi is the trace of the Hessian and Tt represents the trace at training step t. Equality

holds when∇LB(θ) = ∇L(θ) or ∇̂T (θ̂) = 0.

Theorem 1 indicates that the change of the Hessian trace during SGD optimization is non-positive
on average. A trivial condition for equality is optimization with gradient descent (GD) instead of
its stochastic variant because the stationary state for noiseless optimization is a constant state with
vanishing gradient. An alternate condition for equality is that the trace function of θ̄ reaches a
minimum or saddle point.

Before proving Theorem 1, we will first analyze the assumptions made.

2.1 EVIDENCE FOR THE ASSUMPTIONS MADE

In this subsection, we will analyze the assumptions in Theorem 1 and present some experiments that
support their validity.

1Here the non-degenerate space corresponds to the subspace of the Hessian with non-zero eigenvalues. Note
that we do not require any specific relationship between n and N , e.g. n � N .
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2.1.1 MINIMAL VALLEY

Our theory relies on the existence of a degenerate valley in the loss function defined previously via
Equation 1. In addition to degeneracy, we furthermore assume that there exists a region of connected
degenerate minima in the landscape of the loss function, in particular for overparameterized models.
SGD or its variants then selects one of the degenerate solutions. Such degeneracy has been observed
empirically where most of the eigenvalues of the loss Hessian from various models and tasks are
zero or close to zero (Sagun et al., 2017a;b). Furthermore, the connectedness is further supported by
results of mode connectedness (Garipov et al., 2018; Draxler et al., 2018). Nguyen (2019) also shows
theoretically that for a class of deep overparameterized neural nets with piecewise linear activation
functions, all of the global minima are connected within a unique and potentially very large global
valley.

Here we present additional experiments to support the existence of such minimal valleys, i.e. basins
of attraction of connected, degenerate minima that can be locally described by Equation 1. These
experiments will be also used to analyze and confirm our theory later. We consider classification
of CIFAR10 with label-smoothing cross entropy (Szegedy et al., 2016)2, constant learning rate of
0.1, momentum 0.9, batch size 500 and total training epochs 150. The network architectures are
Preact-ResNet18 (He et al., 2016) and VGG16 (Simonyan & Zisserman, 2015). The training and
validation loss are shown in Figure 1 (inset). After 150 training epochs, the networks fluctuates with
small training loss, and the minimal training loss for both case is ∼ 0.005.

In order to confirm the existence of minimal valleys, we would like to project each point along the
training path to the corresponding closest minimum 3 and check whether the projected path crosses
any barriers. To determine whether two minima can be connected by a line segment in a minimal
valley implying no barriers in between, we use line interpolation to connect these two minima and
measure the training loss along the interpolating line. In practice, we call it line connectedness if
we sample evenly 10 points in the line segment between consecutive minima and the training loss is
smaller than a threshold for all 10 points.

To project a state to a closest minimum, the model is trained from that state with the same hyperpa-
rameters except using GD instead of SGD to remove noise. The stopping criterion for these auxiliary
training tasks is that the training loss is less than the minimal training loss, which is ∼ 0.005.

Ideally, we would project states after each iteration and check for line connectedness, but this involves
large unnecessary calculations. In practice, if state B is obtained from n training iterations after state
A, and A and B are not line connected, we insert C which is obtained from n/2 training iterations
after A and check for line connectedness between A and C and between C and B. This process stops
when there is no extra iteration between A and B or they are line connected. Starting from each
pair of consecutive epochs as A and B, we obtain the projected path recursively. The training and
validation losses on these two projected paths are shown in Figure 1 (main plot). The left path has
2700 projected points and the right has 4020. We see that except the first few epochs, the training loss
along the path remains close to zero (and hence minimal), which means that there exists a least one
minimal valley connected to the model state found by regular SGD. Also SGD optimization happens
within such a valley after the first few epochs. Furthermore, the validation loss varies along the valley.

More experiments can be found in Appendix A.2.

2.1.2 THE HESSIAN-NOISE COVARIANCE ALIGNMENT

Empirical observations have found that the noise covariance matrix is aligned with the Hessian
(Zhang et al., 2018; Zhu et al., 2019; Jastrzbski et al., 2018). In fact, it was shown in Hoffer et al.
(2017) that

Ci,j =
1

S

(
1− S

M

)
1

M

M∑
k=1

∂θi l(xk,θ)∂θj l(xk,θ) ,

where S is the mini-batch size and M is the total number of training samples. Considering negative
log-likelihood loss functions, which is also the loss function in our experiments for classification,

2The label-smoothing technique is used here to make a true minimum of the cost function exist. Regular
cross entropy gives similar results.

3We use minimum here but specifically we mean a point with training loss less than a threshold.
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Figure 1: CIFAR10 trained on Preact-ResNet18 (left) and VGG16 (right). Main plots show training
and validation loss of projected paths. Projected paths are obtained by projecting each model state
during optimization to a corresponding state found by GD with small training loss. Each pair of
consecutive projected states are then connected by line interpolation. The inset shows training and
validation loss of training paths.

the loss L can be written as L = − 1
M

∑M
i=k log f(xk,θ) where f is the output of the network and

l(xk,θ) = − log f(xk,θ). Notice that

∂θi∂θjL(θ) =
1

M

M∑
k=1

∂θi l(xk,θ)∂θj l(xk,θ)− 1

M

M∑
k=1

1

f(xk,θ)
∂θi∂θjf(xk,θ) , (4)

where the left-hand side is the positive Hessian matrix for i, j ≤ n and the first term on the right-
hand side is the positive matrix proportional to the noise covariance matrix. Empirically, negative
eigenvalues are exponentially small in magnitude compared to major positive ones when a model
is close to a minimum (Sagun et al., 2017b) and negative eigenvalues can only come from the
contribution of the second term on the right-hand side of equation (4). Therefore unless the second
term is extremely asymmetrical, it is safe to assume that its contribution is small compared to the first
term. We will return to this in Section 4.1 and show that eigenvalues with small magnitude arise from
higher-order curvature in the degenerate space even when the Hessian with respect to the bottom of
the valley is characterized by the positive λis for i = 1, ..., n or zero directions. Ignoring the second
term on the right hand side, Equation 4 becomes

Ci,j =
1

S

(
1− S

M

)
Hi,j . (5)

2.1.3 TIMESCALE SEPARATION

The final assumption is that the dynamics relaxes to a stationary state in the non-degenerate space θ̄
but not in the degenerate space. This assumption is because there is a timescale separation between
the dynamics of θ̄, which relax quickly and the dynamics of θ̂, which evolve much more slowly as
the minimal valley is traversed.

To be more precise, as we will show in Section 4.1, θ̂ are the dimensions associated with exponentially
small Hessian eigenvalues when a model state is close to but not at a minimum, which is also
observed empirically in Sagun et al. (2017b), while θ̄ correspond to the leading order eigenvalues
as we discussed previously. Considering a simplified optimization problem where the leading order
directions undergo independent Ornstein-Uhlenbeck processes as for quadratic loss with noise, the
decay to a stationary state is exponential with decay rate proportional the corresponding eigenvalues.
Since θ̄ correspond to the leading order eigenvalues, their relaxation time is exponentially shorter
than the evolution in the degenerate space. Therefore it is reasonable to assume a stationary state in
the non-degenerate space θ̄ when studying the degenerate θ̂ dynamics.
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2.2 PROOF OF THEOREM 1

Proof. The stochastic gradient descent update for θ̂ is θ̂t+1 = θ̂t − η∇̂LB(θt). If we consider the
average evolution of the eigenvalues λi for i = 1, ..., n from step t to t + 1, we have

〈[[λi,t+1 − λi,t]]m.b.〉 = 〈[[λi(θ̂t+1)− λi(θ̂t)]]m.b.〉
= 〈[[λi(θ̂t − η∇̂LB(θt))− λi(θ̂t)]]m.b.〉
= −η〈[[∇̂λi(θ̂t)T∇̂LB(θt))]]m.b.〉+O(η2)

= −η〈∇̂λi(θ̂t)T∇̂L(θt))〉+O(η2) ,

(6)

where we performed a Taylor expansion from the second to the third equality and the fourth equality
holds from equation (2).

Notice that ∇̂L(θ)) = 1
2

∑n
i=1 θ

2
i ∇̂λi(θ̂). By keeping the leading order term, we have

〈[[λi,t+1 − λi,t]]m.b.〉 ' −
η

2

n∑
j=1

〈θ2j 〉∇̂λi(θ̂t)T∇̂λj(θ̂t) . (7)

Considering the observables O(θ̄) ≡ θ2i for i = 1, ..., n, the master equation (3) becomes

〈θi∂θiL〉 =
η

2
〈C̃i,i〉 .

Notice that ∂θiL = θiλi(θ̂), we thus have

〈θ2i 〉 =
η〈C̃i,i〉
2λi(θ̂)

. (8)

By the definition of the two-point noise matrix C̃ and the noise covariance matrix C, we also have

C̃i,i = Ci,i + ∂θiL(θ)∂θiL(θ)

= Ci,i + θ2i λ
2
i (θ̂)

(9)

Based on the assumption that the noise covariance matrix is aligned with the Hessian and scales as
1
S

(
1− S

M

)
where S is the mini-batch size and M is the total number of training samples (Hoffer

et al., 2017)4, we have

Ci,i =
1

S

(
1− S

M

)
λi(θ̂) . (10)

Together with Eq. 8, 9 and 10, we have for i ≤ n,

〈θ2i 〉 =
η

S(2− ηλi)

(
1− S

M

)
=

η

2S

(
1− S

M

)
+O(η2)

(11)

Now Eq. 7 becomes

〈[[λi,t+1 − λi,t]]m.b.〉 = − η
2

2S

(
1− S

M

) n∑
j=1

∇̂λi(θ̂t)T∇̂λj(θ̂t) +O(η3)

Next we consider the evolution of the trace of the Hessian T =
∑n
i=1 λi. We have

〈[[Tt+1 − Tt]]m.b.〉 = − η
2

2S

(
1− S

M

) n∑
i,j=1

∇̂λi(θ̂t)T∇̂λj(θ̂t) +O(η3)

≈ − η
2

2S

(
1− S

M

)∥∥∥ n∑
i=1

∇̂λi(θ̂)
∥∥∥2

≤ 0 .

4Refer to Assumption 2.1.2 for details.
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Thus we have shown that the trace of Hessian decreases on average during SGD optimization. Notice
that equality holds when either one of the following conditions is satisfied: first, if S = M so that
SGD becomes full-batch GD, and second that

∑n
i=1 ∇̂λi(θ̂) = 0, which implies ∇̂T (θ̂) = 0.

3 OPTIMIZATION DYNAMICS WITH NOISE BEYOND SGD

In Section 2, we concluded that, to leading order in the learning rate η, SGD dynamics reduces the
Hessian trace. This result originates from the noise introduced by SGD with covariance given by (10).
Interestingly, other forms of noise can be introduced into gradient descent in order to decrease other
desired quantities instead of the trace. Here we present a theorem that relates the expected decrease
of certain functions of the Hessian spectrum to a corresponding noise covariance. And 〈•〉 represents
an average over the stationary state and [[•]] averages the quantity over the corresponding noise.
Theorem 2. In a minimal valley with loss approximation in Equation 1, assuming that there exists
a stationary state in the non-degenerate space θ̄, for any quantity f(λ) satisfying ∂f(λ)

∂λi
≥ 0 for

i = 1, ..., n, where λ ≡ (λ1, ..., λn)T, if the loss is optimized with gradient descent along with
external noise with diagonal covariance matrix

Ci,i = λi
∂f(λ)

∂λi
, (12)

we have
〈[[ft+1 − ft]]〉 ≤ 0 ,

where ft represents f(λ) evaluated at training step t. Equality holds when ∇̂f(λ(θ̂)) = 0.

Proof. Similar to the proof of Theorem 1, we have

〈[[ft+1 − ft]]〉 = −η
2

n∑
i=1

∂f

∂λi

n∑
j=1

〈θ2j 〉∇̂λTi ∇̂λj + +O(η2) . (13)

With the imposed noise with covariance matrix (12), the master equation (3) and the relation between
noise covariance matrix and two-point noise matrix in equation (9), we have

〈θ2i 〉 =
η

(2− ηλi)
∂f

∂λi

=
η

2

∂f

∂λi
+O(η2) .

(14)

Plugging in Equation 13 we have

〈[[ft+1 − ft]]〉 = −η
2

4

∥∥∥ n∑
i=1

∂f

∂λi
∇̂λi(θ̂)

∥∥∥2 +O(η3)

≈ −η
2

4

∥∥∥ n∑
i=1

∇̂f(λ(θ̂))
∥∥∥2

≤ 0 .

(15)

Thus we have shown that f decreases on average during optimization. Equality holds when
∇̂f(λ(θ̂)) = 0. Notice that Theorem 1 is a special case with f(λ) =

∑n
i=1 λi.

Furthermore, we have the following corollary:
Corollary 2.1 (Determinant-Decreasing Noise). With the same assumptions in Theorem 2, let
f(λ) = log

∏n
i=1 λi and Ci,i = C where C is a arbitrary positive constant, we have

〈[[Dett+1 −Dett]]〉 ≤ 0 ,

where Det ≡
∏n
i=1 λi is the non-degenerate determinant.
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Figure 2: (a) The training loss v.s. the sum of negative eigenvalues. Red is the best fit line, y = wx+b
with w = −40.07 and b = −1.22 ∗ 10−5. The data is nearly a straight line and the y-intercept is
almost zero, consistent with our prediction in Appendix A.3. (b) The trace evolution v.s. the squared
learning rate. The result shows a linear relation. Red is best fit line. (c)-(d) Change of the Hessian
trace and determinant during training using isotropic (blue) and SGD noise (red).

Corollary 2.1 indicates that the non-degenerate determinant will decrease on average during optimiza-
tion if we introduce isotropic noise in the non-degenerate space.

It is known (Smith & Le, 2018) that the Bayesian evidence, minimization of which minimizes a
PAC-Bayes generalization bound, has a contribution from the non-degenerate determinant. This
contribution is also called the Occam factor. Our result thus leads to a new algorithm where one
should introduce isotropic noise into the non-degenerate space to decrease the determinant and
potentially improve generalization.

4 EXTENDED ANALYSIS AND EXPERIMENTS

4.1 NEGATIVE EIGENVALUES OF THE HESSIAN

Empirically, small negative eigenvalues arise even with small training loss, which seems to indicate
that the model is at a saddle point instead of a minimum (Sagun et al., 2017b; Ghorbani et al.,
2019). This however is consistent with the loss in Equation 1. The loss is minimal when θi = 0
for i ≤ n. However, when we use a trained instance to estimate the eigenvalues of the Hessian, we
only guarantee that θi is close to zero (and thus nonzero training loss) for i ≤ n. Therefore, there
could exist negative eigenvalues which originate from the second derivative of θi for i > n. They are
originally zero at the minimum with θi = 0 for i ≤ n, and their magnitude is suppressed by θ2i for
i ≤ n which is related to the small training loss.

In Appendix A.3, we also predict that the negative eigenvalues on average are proportional to the
training loss. To confirm this, we set up a simple experiment to classify MNIST data with a small
training set of 500 randomly selected samples, with a single hidden layer fully-connected network
with 6220 parameters and loss given by label-smoothed cross entropy, again to make a genuine
minimum. We first obtain a minimum with gradient descent optimization at learning rate 0.1 and
10k training epochs and use this as initialization for later. The model is then further trained from this
initialization with different batch sizes from 5 to 250 and learning rates from 0.001 to 0.1 in order
to equilibrate to various training losses. Then the negative eigenvalues are calculated and the result
is shown in Fig. 2(a). The result shows a linear relationship between training loss and the sum of
negative eigenvalues, as predicted.
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Figure 3: Hessian Trace estimation of projected paths found in Section 2 with network architecture
of Preact-ResNet18 (left) and VGG16 (right). Red bars represent the errors in trace estimation. The
decreasing trace during SGD optimization confirms our theory prediction.

4.2 THE EVOLUTION OF TRACE AND DETERMINANT WITH A TOY MODEL

In this section, we use two toy models to test our previous theoretical analysis. In Section 2, we
showed that the trace evolution rate is proportional to η2. Notice that the two factors of η have
different origins. One is from the expansion of λ and the gradient descent step as in Eq. 6. The other
contribution is the equilibrium statistics in the non-degenerate directions as in Eq. 8. Furthermore,
the coefficient of the proportionality relation also depends on ∇̂λ. Therefore to test this prediction for
how learning rate affects the trace evolution, we train a model multiple times with different ηs. When
doing this, the initialization for each run is in equilibrium in the non-degenerate space, and we choose
a loss function for which ∇̂λ is constant. We design a simple four-dimensional toy model with the
loss L(θ) = |θ3 + θ4|θ21 + |θ3 + 2θ4|θ22 to test this effect. We initialize the model to make sure that
|θ3 + θ4| and |θ3 + 2θ4| don’t change sign during a few iterations of training. For each η, we first
train for 1000 iterations with SGD noise to equilibrate the model and calculate the trace. Then the
model is trained for another 1000 iterations and we calculate the trace evolution. The result is shown
in Fig 2(b), which shows a linear relation as predicted.

Next, we measure the evolution of the Hessian trace and determinant after introducing noise with
different covariance structure. Our theory predicts that SGD noise decreases the trace while isotropic
noise in the non-degenerate subspace decreases the determinant. To test this, we design a toy
model where the behavior of these two quantities is anti-correlated. The loss can be written as
L(θ) = (4− 2e−θ

2
3−θ

2
4 )θ21 + e−(θ3−θ4)

2

θ22 . We train the model with the same initialization and with
the two different noise structures. The result is shown in Fig. 2(c)-(d), consistent with our analysis.

4.3 TRACE EVOLUTION ALONG PROJECTED PATH

In Section 2, we presented two experiments to support the existence of a minimal valley. Recall that
the projected paths follow along the bottom of the valley associated with the SGD dynamics. Our
theory predicts that the Hessian trace along the projected paths should decrease during optimization.
To confirm this, we use method in Bai et al. (1996) to estimate the Hessian trace and the results
are shown in Figure 3, in which the values and error bars are calculated by the mean and standard
deviation of 10 different initializations. As seen in the figure, the Hessian trace indeed decreases on
average in both cases, which is consistent with our theoretical prediction. Notice that test performance
does not monotonically improve during optimization. Indeed the trace continues decreasing slightly
even when validation loss goes up. This indicates that the trace itself is not sufficient to describe
generalization (Neyshabur et al., 2017).

5 CONCLUSION

In this paper, we showed that within a minimal valley, the trace of the loss function Hessian decreases
on average. We also demonstrated how to design the covariance structure of added noise during
optimization to affect other properties of the Hessian’s evolution, opening the door to new algorithms.
The analysis in this paper can be extended and generalized to models trained on much larger date sets.
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A APPENDIX

A.1 PROOF OF LEMMA 1

To study the dynamics of SGD, we investigate the model behavior starting from θt to θt+1 by
one-step training and assume that θt+1 is close to θt. In this subsection, we derive the property of the
loss function in a small neighbourhood, B(θt), of θt, which includes θt+1. We consider the model in
a minimal valley with a setM of minima and define a projection P that maps any point θ in B(θt)
to the minimum inM that is closest to θ, i.e.

P(θ) ≡ argmin
θ∗∈M

‖θ − θ∗‖2 . (16)

BecauseM is connected by definition of minimal valley, we assume that P is also continuous in
B(θt). We denote the dimension of whole parameter space andM be N and N − n, respectively.
We can then make a quadratic approximation to the loss function in B(θt),

L(θ) = L∗ +
1

2
(θ − P(θ))TH(P(θ))(θ − P(θ)) , (17)

where we expand the loss function at the minimum that is closest to θ and H(P(θ)) is the Hessian
depending on the position P(θ) in the valley. L∗ is a constant by definition of a minimal valley and
will be ignored in the following derivations.

We define a minimal path to be a smooth path in a minimal valley that every point on the path is a
minimum. For any path passing through a minimum θ∗, we have the tangent line of the minimal path
at θ∗ being in the null space of the Hessian at θ∗ by definition. Precisely, for an arbitrary minimal
path θ∗(µ) : [0, 1]→M, we have

H(θ∗(µ))
dθ∗(µ)

du
= 0 . (18)

Next we have the following lemma,

Lemma 2. Let J(θ) be the N ×N Jacobian matrix of function P at θ defined as Jij = dP(θ)i
dθj

. We
have

H(P(θ))J(θ) = 0 . (19)

Proof. Notice that θ∗(µ) ≡ P(θ + µ∆θ) forms a minimal path through θ where µ ∈ [0, 1] and ∆θ
is an arbitrary direction in the parameter space. We have

dθ∗(µ)

du

∣∣∣
µ=0

= J(θ)∆θ . (20)

By Eq. 18, we have
H(P(θ))J(θ)∆θ = 0 . (21)

Since ∆θ is arbitrary, we have Eq. 19.

Next we consider the diagonalization of the Hessian as

H(P(θ)) = V (P(θ))TS(P(θ))V (P(θ)) , (22)

where S(P(θ)) = diag(λ1(P(θ)), ..., λn(P(θ)), 0, ..., 0) and λi > 0 for 1 ≤ i ≤ n. As sug-
gested by Gur-Ari et al. (2018), we assume that the eigenspace change is negligible in the small
neighbourhood B(θt) and denote constant orthogonal matrix V ≡ V (P(θt)) ≈ V (P(θ)).
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We then perform the coordinate transformation

φ = V θ , (23)

and the loss function becomes

L(φ) =
1

2

n∑
i=1

(φi − P̃(φ)i)
2λi(P̃(φ)) , (24)

where P̃(φ) is the same projection map as P(θ) but in the coordinate of φ. Notice here that P̃(φ) is
the projection to the minimum with the least L-2 distance to φ, because the coordinate transformation
is orthogonal and distance preserved. We have

P̃(φ) = V P(θ) . (25)

We have the following theorem,

Proposition 3. P̃(φ)i is constant for i ≤ n.

Proof. In φ-coordinate, by Eq. 23 and 25 the Jacobian of P̃(φ), J̃(φ)ij ≡ dP̃(φ)i
dφj

, is related to J(θ)
as

J̃(φ) = V J(θ)V T . (26)
Therefore Lemma 2 becomes

S(P(θ))J̃(φ) = 0 . (27)

Notice that [S(P(θ))J̃(φ)]ij =
∑n
k=1 λkδikJ̃(φ)kj where δik is the Kronecker delta function, we

have
[S(P(θ))J̃(φ)]ij = λiJ̃(φ)ij , i ≤ n . (28)

From Eq. 27 and λi > 0, we have

J̃(φ)ij = 0 , i ≤ n . (29)

Notice that J̃(φ)ij ≡ dP̃(φ)i
dφj

= 0 for i ≤ n and all j, we have that P̃(φ)i is constant for i ≤ n.

We denote P̃(φ)i as φ∗i for i ≤ n. Therefore we can define a global translation vector φ∗ =
(φ∗1, ..., φ

∗
n, 0, ..., 0)T and consider a new set of coordinate ψ = φ− φ∗ and have

L(ψ) =
1

2

n∑
i=1

ψ2
i λi(P̄(ψ)) , (30)

where P̄(ψ) is also the projection to the minimum with the least L-2 distance to ψ.

Clearly we have the set of minima of the loss function 30 as {ψ|ψi = 0, i ≤ n} and the closest
minimum to ψ in the L-2 distance is ψ∗ = (0, ..., 0, ψn+1, ..., ψN )T. Therefore we have

P̄(ψ) = (0, ..., 0, ψn+1, ..., ψN )T , (31)

and

L(ψ) =
1

2

n∑
i=1

ψ2
i λi(ψn+1, ..., ψN ) , (32)

Notice that the coordinate transformations from θ to ψ only involve orthogonal rotation and transla-
tion, the SGD rule is conservative. To see this, we first have

∇θ = V T∇φ = V T∇ψ . (33)

And the SGD on θ becomes
θt+1 = θt − ηV T∇ψL(ψ)

⇒ φt+1 = φt − η∇ψL(ψ)

⇒ ψt+1 = ψt − η∇ψL(ψ) .

(34)

In the main text, we replace the notation ψ with θ for symbol simplicity.
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A.2 ADDITIONAL EXPERIMENTS

To further support our assumption of connected minima, we conducted extra experiments including
DenseNet (Huang et al., 2017) on CIFAR100, and explored the landscape by introducing randomized
labels on a subset of the training data to initialize subsequent training on purely clean data (details in
Section A.2.2).

A.2.1 DENSENET ON CIFAR100

We trained a DenseNet (number of blocks = [6,12,24,16] and growth rate=12) on CIFAR100 and
followed the same pipeline as described in the main text experiments. The result is shown in Figure
4(a) which supports the connectedness assumption as well as the result of the Hessian trace decreasing
under SGD.

A.2.2 4-LAYER CONVNET ON MNIST AND RESNET18 ON CIFAR10 WITH RANDOMIZED
LABELS

The setup of these experiments is as follows: we randomly split the training set into two sets, A and B.
For MNIST and CIFAR10 we let the number of samples in A be 40000. Then we shuffle the labels in
set B. For the rest of this section, we call A the training set and B the shuffle set. The loss minimum,
Hessian trace, etc. are all with respective to the training set A.

First we will obtain minima with worse generalization than the minima found by regular SGD. To do
so, we train the model with the union of the training set A and shuffle set B until convergence. Then
we further train the model with only A using gradient descent so the model reaches a minimum. This
minimum corresponds to the left end point of the path in Figure 4 (b) and (c).

We then train the model from this minimum with training set A alone using SGD. We find that the
model starts to diffuse and validation loss becomes smaller even though it is at minimum already.
Using the same method described in main text, we project this path to minimal and the results are
shown in Figure 4 (b) and (c).

In both cases, we found that minima found by SGD are connected, and we further estimated the trace
along both paths and found that it is decreasing on average. These results support the connectedness
and degeneracy assumption and our result of SGD decreasing Hessian on average. It also illustrates
how SGD helps model explore the loss landscape and escape bad minima.

A.3 THE SUM OF NEGATIVE EIGENVALUES

In fact, if we consider an equilibrium of θi for i ≤ n, we have 〈L〉 = L∗ + C
∑n
i=1 λi and

〈∂j∂kL〉 = C
∑n
i=1 ∂j∂kλi for j, k > n from Eq. 11, where C = η

4S (1− S
M ). Thus as we change

learning rate or batch size, and hence C, 〈∂j∂kL〉 ∝ 〈L〉 −L∗ for states nearby in the minimal valley
because both are proportional to C and

∑n
i=1 λi and ∂j∂kλi are approximately constant for states

nearby in the minimal valley. Usually in deep neural networks training loss can go to nearly zero
with a large number of training iterations and small learning rate (Zhang et al., 2017; Du et al., 2019),
so we ignore L∗ and have that 〈∂j∂kL〉 ∝ 〈L〉. This result is tested and verified in Figure 2(a).
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Figure 4: (a) Experiments performed as in the main text with DenseNet on CIFAR100. (b) Ex-
periments performed as described in Section 1.2 using 4-layer ConvNet on MNIST and (c) Preact-
ResNet18 on CIFAR10.
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