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ABSTRACT

Unpaired image-to-image translation among category domains has achieved re-
markable success in past decades. Recent studies mainly focus on two chal-
lenges. For one thing, such translation is inherently multimodal due to variations
of domain-specific information (e.g., the domain of house cat has multiple fine-
grained subcategories). For another, existing multimodal approaches have limita-
tions in handling more than two domains, i.e. they have to independently build
one model for every pair of domains. To address these problems, we propose
the Hierarchical Image-to-image Translation (HIT) method which jointly formu-
lates the multimodal and multi-domain problem in a semantic hierarchy structure,
and can further control the uncertainty of multimodal. Specifically, we regard the
domain-specific variations as the result of multi-granularity property of domains,
and one can control the granularity of the multimodal translation by dividing a
domain with large variations into multiple subdomains which capture local and
fine-grained variations. With the assumption of Gaussian prior, variations of do-
mains are modeled in a common space such that translations can further be done
among multiple domains within one model. To learn such complicated space, we
propose to leverage the inclusion relation among domains to constrain distribu-
tions of parent and children to be nested. Experiments on several datasets validate
the promising results and competitive performance against state-of-the-arts.

1 INTRODUCTION

Image-to-image translation is the process of mapping images from one domain to another, during
which changing the domain-specific aspect and preserving the domain-irrelevant information. It
has wide applications in computer vision and computer graphics Isola et al. (2017); Ledig et al.
(2017); Zhu et al. (2017a); Liu et al. (2017); Huang et al. (2018) such as mapping photographs
to edges/segments, colorization, super-resolution, inpainting, attribute and category transfer, style
transfer, etc. In this work, we focus on the task of attribute and category transfer, i.e. a set of images
sharing the same attribute or category label is defined as a domain1.

Such task has achieved significant development and impressive results in terms of image quality in
recent years, benefiting from the improvement of generative adversarial nets (GANs) Goodfellow
et al. (2014); Mirza & Osindero (2014). Representative methods include pix2pix Isola et al. (2017),
UNIT Liu et al. (2017), CycleGAN Zhu et al. (2017a), DiscoGAN Kim et al. (2017), DualGAN Kim
et al. (2017) and DTN Taigman et al. (2017). More recently the study of this task mainly focus on
two challenges. The first is the ability of involving translation among several domains into one
model. It is quite a practical need for users. Using most methods, we have to train a separate model
for each pair of domains, which is obviously inefficient. To deal with such problem, StarGAN Choi
et al. (2018) leverages one generator to transform an image to any domain by taking both the image
and the target domain label as conditional input supervised by an auxiliary domain classifier.

Another challenge is the multimodal problem, which is early addressed by BicycleGAN Zhu et al.
(2017b). Most techniques including aforementioned StarGAN can only give a single determinate
output in target domain given an image from source domain. However, for many translation task, the
mapping is naturally multimodal. As shown in Fig.1, a cat could have many possible appearances
such as being a Husky, a Samoyed or other dogs when translated to the dog domain. To address

1Since attributes can be treated as fine-grained categories, we denote a category as a domain in the following.
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Figure 1: An illustration of a hierarchy structure and the distribution relationship in a 2D space
among categories in such hierarchy. Multi-domain translation is shown in the horizontal direction
(blue dashed arrow) while multimodal translation is indicated in the vertical direction (red dashed
arrow). Since one child category is a special case of its parent, in the distribution space it is a
conditional distribution of its parent, leading to the nested relationship between them.

this issue, recent works including BicycleGAN Zhu et al. (2017b), MUNIT Huang et al. (2018) and
DRIT Lee et al. (2018) model a continuous and multivariant distribution independently for each
domain to represent the variations of domain-specific information, and they have achieved diverse
and high-quality results for several two-domain translation tasks.

In this paper , we aim at involving the abilities of both multi-domain and multimodal translation into
one model. As shown in Fig.1, it is noted that categories have the natural hierarchical relationships.
For instance, the cat, dog and bird are three special children of the animal category since they share
some common visual attributes. Furthermore, in the dog domain, some samples are named as husky
and some of them are called samoyed due to the appearance variations of being the dog. Of course,
one can continue to divide the husky to be finer-grained categories based on the variations of certain
visual attributes. Such hierarchical relationships widely exist among categories in real world since
it is a natural way for our human to understand objects according to our needs in that time.

We go back to the image translation task, the multi-domain and multimodal issues can be understood
from horizontal and vertical views respectively. From the horizontal view as the blue dashed arrow
indicates, multi-domain translation is the transformation in a flat level among categories. From the
vertical view as the red dashed arrow indicates, multimodal translation further considers variations
within target category, i.e. the multimodal issue is actually due to the multi-granularity property of
categories. In the extreme case, every instance is a variation mode of the domain-specific informa-
tion. Inspired by these observations, we propose a Hierarchical Image-to-image Translation (HIT)
method which translates object images among both multiple category domains in a same hierarchy
level and their children domains. To this end, our method models the variations of all domains in
forms of multiple continuous and multivariant Gaussian distributions in a common space. This is
different from previous methods which model the same Gaussian distribution for two domains in
independent spaces and thus can not work with only one generator. Due to the hierarchical rela-
tionships among domains, distribution of a child domain is the conditional one of its parent domain.
Take such principle into consideration, distributions of domains should be nested between a par-
ent and its children, as a 2D illustration shown in Fig.1. To effectively supervise the learning of
such distributions space, we further improve the traditional conditional GAN framework to possess
the hierarchical discriminability via a hierarchical classifier. Experiments on several categories and
attributes datasets validate the competitive performance of HIT against state-of-the-arts.

2 RELATED WORKS

Conditional Generative Adversarial Networks. GAN Goodfellow et al. (2014) is probably one of
the most creative frameworks recently for the deep learning community. It contains a generator and a
discriminator. The generator is trained to fool the discriminator, while the discriminator in turn tries
to distinguish the real and generated data. Various GANs have been proposed to improve the training
stability, including better network architectures Radford et al. (2016); Denton et al. (2015); Zhang
et al. (2017); Karras et al. (2017); Brock et al. (2019), more reasonable distribution metrics Mao
et al. (2017); Arjovsky et al. (2017); Gulrajani et al. (2017) and normalization schemes Miyato
et al. (2018); Karras et al. (2018). With these improvements, GANs have been applied to many
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conditional tasks Mirza & Osindero (2014), such as image generation given class labels Odena et al.
(2017), super resolution Ledig et al. (2017), text2image Reed et al. (2016), 3D reconstruction from
2D input Wu et al. (2016) and image-to-image translation introduced in the following.

Image-to-image Translation. Pix2pix Isola et al. (2017) is the first unified framework for the
task of image-to-image translation based on conditional GANs, which combines the adversarial
loss with a pixel-level L1 loss and thus requires the pairwise supervision information between two
domains. To address this issue, unpaired methods are proposed including UNIT Liu et al. (2017),
DiscoGAN Kim et al. (2017), DualGAN Yi et al. (2017) and CycleGAN Zhu et al. (2017a). UNIT
combines the varitional auto-encoder and GAN framework, and proposes to share partial network
weights of two domains to learn a common latent space such that corresponding images in two
domains can be matched in this space. DiscoGAN, DualGAN and CycleGAN leverage a cycle
consistency loss which enforces that we can re-translate the target image back to the original image.

More recently, works in this area mainly focus on the problems of multi-domain and multimodal.
To deal with translation among several domains in one generator, StarGAN Choi et al. (2018) takes
target label and input image as conditions, and uses an auxiliary classifier to classify translated image
into its belonged domain. As for the multimodal issue, BicycleGAN Zhu et al. (2017b) proposes
to model continuous and multivariant distributions. However, BicycleGAN requires input-output
paired annotations. To overcome this problem, MUNIT Huang et al. (2018) and DRIT Lee et al.
(2018) adopt a disentangled representation for learning diverse translation results from unpaired
training data. Chen et al. (2019) propose to interpolate the latent codes between input and referred
image to realize generation of diverse images. Different from all aforementioned works, we aim at
realizing both multi-domain and multimodal translation in one model using the natural hierarchical
relationships among domains defined by category or attribute.

Hierarchy-regularized Learning. Hierarchical learning is a natural learning manner for human
beings and we often describe objects in the world from abstract to detailed according to our needs
of the time. For machine learning and computer vision, such semantic hierarchies have been widely
explored in object classification for accelerating recognition Griffin & Perona (2008); Marszalek
& Schmid (2008), obtaining multiple granularities of predictions Deng et al. (2012); Ordonez et al.
(2013), making use of category relation graphs Deng et al. (2014); Ding et al. (2015), and improving
recognition performance as additional supervision Zhao et al. (2011); Srivastava & Salakhutdinov
(2013); Hwang & Sigal (2014); Yan et al. (2015); Goo et al. (2016); Ahmed et al. (2016). Apart from
these discriminative tasks, Xie et al. (2017); Zhao et al. (2017) propose to use generative models to
disentangle the factors from low-level representations to high-level ones that can construct a specific
object. Singh et al. (2019) uses an unsupervised generative framework to hierarchically disentangle
the background, object shape and appearance from an image. In natural language processing, Athi-
waratkun & Wilson (2018) propose a probabilistic word embedding method to capture the semantics
described by the WordNet hierarchy. Our method first introduces such semantic hierarchy to learn a
both multi-domain and multimodal translation model.

3 APPROACH
3.1 PROBLEM FORMULATION

Let xi ∈ Xi be an image from domain i. Our goal is to estimate the conditional probability p(xj |xi)
by learning an image-to-image translation model p(xi→j |xi), where xi→j is a sample produced by
translating xi to domain Xj . Generally speaking, p(xj |xi) are multimodal due to the intra-domain
variations. To deal with the multimodal problem, similar to Huang et al. (2018), we assume that
xi is disentangled by an encoder E into the content part c ∈ C that is shared by all domains (i.e.
domain-irrelevant) and the style part si ∈ Si that is specific to domain Xi (i.e. domain-specific).
By modeling Sj as a continuous distribution such as a Gaussian Nj , xi can be simply translated
to domain Xj by G(c, sj) where sj is randomly sampled from Nj and G is a decoder. We further
assume G and E are deterministic and mutually inverse, i.e. E = G−1 and G = E−1. Besides,
we assume that c is a high-dimensional feature map while si is a low-dimensional vector such that
the complex spatial structure of objects can be preserved and the style parts could focus more on the
relatively small scale but discriminative domain-specific information.

Different from Huang et al. (2018), we aim to translate not only between two domains but among
multiple ones. To this end, we need to model Gaussians of styles for all domains in a common space
(not independently in two spaces like Huang et al. (2018)) such that the single decoder G could
generate target image based on which Gaussian is sampled. In the multi-domain and multimodal
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Figure 2: Overview of the whole framework of the proposed method, which mainly consists of five
modules: an encoder, a domain distributions modeling module, a decoder, a discriminator and a hi-
erarchical classifier. Given images from different categories, the encoder extracts domain-irrelevant
and domain-specific features respectively from the content and style branches. Then the decoder
takes them as input to reconstruct the inputs supervised by the reconstruction losses. To realize
the multimodal and multi-domain translation, domain distributions are modeled in a common s-
pace based on the semantic hierarchy structure and elaborately designed nested loss. Combining
the domain-irrelevant features and sampled styles from any distribution, the decoder could translate
them to the target domain, guided by the adversarial loss and hierarchical classification loss.

settings, it is noted that categories have the hierarchical relationships. As we introduced in Fig.1,
multi-domain translation is in the horizontal direction among categories in a particular hierarchy
level, and multimodal translation is in the vertical direction since samples can be further divided
into multiple child modes. Therefore, distribution of a parent domain covers several conditional
distributions, leading to the nested relationship. In this paper, we model all category domains in a
given hierarchy structure as nested Gaussian distributions in a common space, realizing Hierarchical
Image-to-image Translation (HIT) between any two domains. In such settings, N l

i denotes the
Gaussian distribution for styles Sli of domain X li in l-th level (l = 1, 2, ..., L).

Fig.2 shows an overview of the proposed HIT method. Our method only contains one pair of encoder
and decoder for multi-domain X li . The encoder factorizes xi into a content code ci and a style code
si, i.e. (ci, si) = E(xi). The decoder can reconstruct them back to the image space via G(ci, si).
Image-to-image translation is performed by randomly sampling style codes slj from a domain distri-
bution N l

j and then using G to output the target image xli→j = G(ci, s
l
j). The framework is trained

with adversarial loss that ensures the translated images approximate the manifold of real images,
hierarchical cross-entropy loss that makes the generation conditioned on the sampled domain, nest-
ed loss that constrains distributions of domains to satisfy their hierarchical relationships, as well as
bidirectional reconstruction losses that ensure enough and meaningful information be encoded.

3.2 NESTED DISTRIBUTION LOSS

In math, the relation between a parent node u and a child node v in the hierarchy is called partial
order relation Vendrov et al. (2016), defined as v � u. In the application of taxonomy, for concept u
and v, v � umeans every instance of category v is also an instance of category u, but not vise versa.
We call such partial order on probability densities as the notion of nested (encapsulation called by
Athiwaratkun & Wilson (2018)). Let g and f be the densities of u and v respectively, if v � u, then
f � g, i.e. f is nested in g. Quantitatively measuring the loss violate the nested relation between f
and g is not easy. According to the definition of partial order, strictly measuring that can be done as:

{x : f(x) > η} − {x : g(x) > η} (1)

where {x : f(x) > η} is the set where f is greater than a nonnegative threshold η. Threshold η
indicates the nested degree required by us. Small value of η means high requirement for the overlap
between f and g to satisfy f � g. Eqn.(1) describes how many regions with densities greater than η
of f are not nested in those of g.
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Eqn.(1) is difficult to be computed for most distributions including Gaussians. Inspired by the work
in word embedding Athiwaratkun & Wilson (2018), we turn to use a thresholded divergence:

dα(f, g) = max(0, D(f ||g)− α) (2)
where D(·||·) is a divergence measure between densities, we use the KL divergence considering its
simple formulation for Gaussians. Such loss is a soft measure of violation of the nested relation. If
f = g, then D(f ||g) = 0. In case of f � g, D(f ||g) would be positive but smaller than a threshold
α. As for the effectiveness of using α, please make a reference to Athiwaratkun & Wilson (2018).

To learn the nested distributions for domains in the hierarchy shown in Fig.2, the penalty described
by Eqn.(2) between a positive pair of distributions (Ni � Nj) should be minimized, while that
between a negative pair (N

′

i � N
′

j) should be greater than a margin m:

Lnest =
1

P
∑

(Ni,Nj)∈P

dα(Ni, Nj) +
1

N
∑

(N
′
i ,N

′
j )∈N

max{0,m− dα(N
′

i , N
′

j)} (3)

where P and N denote the numbers of positive and negative pairs respectively.

3.3 OTHER TRANSLATION LOSS FUNCTIONS

Apart from the proposed nested loss in Eqn.(3), our HIT is equipped with an adversarial loss and a
hierarchical classification loss to distinguish which domain the generated images belong to, and two
general reconstruction losses applied on both images and features.

Adversarial loss. GAN is an effective objective to match the generated images to the real data
manifold. The discriminator D tries to classify natural images as real and distinguish generated
ones as fake, while the generator G learns to improve image quality to fool D, defined as:

LGAN (D) = Eci∼p(E(xi)),slj∼N l
j
[log(D(G(ci, s

l
j)))] + Exi∼p(x)[1− log(D(xi))]

LGAN (E,N,G) = Eci∼p(E(xi)),slj∼N l
j
[log(1−D(G(ci, s

l
j)))]

(4)

Hierarchical classification loss. Similar to StarGAN Choi et al. (2018), we introduce an auxiliary
classifier Dcls on top of D and impose the domain classification loss when optimizing G and D,
i.e. using real images to train Dcls and generated ones to optimize G with such classification loss.
Differently, our classifier is hierarchical. In general, the deeper of categories in the hierarchy, the
more difficult to distinguish. To alleviate such problem, the loss is cumulative, i.e. classification loss
of l-th level is the summation of losses of all levels above l-th with more than two categories.

Lcls(D) = Exi∼p(x)[

L∑
k=1

−log(Dcls(y
k
i |xi))]

Lcls(E,N,G) = Eci∼p(E(xi)),slj∼N l
j
[

l∑
k=1

−log(Dcls(y
k
j |G(ci, slj)))]

(5)

where ykj is the label of domain Xj in k-th level.

Bidirectional reconstruction loss. To ensure meaningful information encoded and inverse between
G and E, we encourage reconstruction of both images and latent features.

– Image reconstruction loss:
Lxrecon = Exi∼p(x)[||G(ci, si)− xi||1] (6)

– Feature reconstruction loss:
Lcrecon = Eci∼p(E(xi)),slj∼N l

j
[||E(G(ci, s

l
j))− ci||1]

Lsrecon = Eci∼p(E(xi)),slj∼N l
j
[||E(G(ci, s

l
j))− slj ||1]

(7)

Full objectives. To learn E, G and N l
j , we need to optimize the following terms:

L(E,G,N) =LGAN (E,N,G) + Lcls(E,N,G) + λ1Lnest
+ λ2Lxrecon + λ3(Lcrecon + Lsrecon)

(8)

where λ1, λ2 and λ3 are loss weights of different terms. D is updated with the following losses:
L(D) = LGAN (D) + Lcls(D) (9)
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Table 1: Quantitative evaluation on different datasets. For IS and LPIPS, the higher the better. For
FID, the smaller the better.

CelebA ImageNet-super ShapeNet-super
IS FID LPIPS IS FID LPIPS IS FID LPIPS

StarGAN 2.61 21.50 – 6.30 73.80 – 6.04 83.17 –
MUNIT 2.23 92.55 0.298 3.72 81.00 0.491 4.39 157.48 0.400
Our HIT 2.44 38.71 0.094 5.21 93.41 0.323 4.92 72.83 0.168

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Network architectures. HIT is implemented with Pytorch platform2. Images are resized to
128*128 resolution for all datasets. Design of the backbones follows recent proposed image gener-
ation Karras et al. (2018) and translation works Huang et al. (2018). As shown in Fig.2, we add a
distribution modeling module where a pair of mean vector and diagonal covariance matrix of Gaus-
sian for each domain is parameterized to learn. More training details are given in the Appendix.

Style adversarial loss. Eqn.(4) and Eqn.(5) match the generated images to the distribution of a
target domain. Such loss functions can also be applied on the encoded style codes, i.e. matching si
(act as fake data) of input images to domain GaussiansN l

i (act as real data) they belong to. By doing
so, it is found that the performance of style transfer between a pair of real images would become
better. However, such loss would lead to the training collapse on small scale datasets. Therefore, it
is recommended to equip it to our framework on datasets with enough training data.
4.2 DATASETS

We conduct experiments on hierarchical annotated data from CelebA Liu et al. (2015), Ima-
geNet Russakovsky et al. (2015) and ShapeNet Chang et al. (2015). Typical examples are shown
in Fig.8, Fig.9 and Fig.10 in Appendix. CelebA provides more than 200K face images with 40 at-
tribute annotations. Following the official train/test protocol and imitating the category hierarchy,
we define a hierarchy based on attribute annotations. Specifically, all faces are first clustered into
male and female and are further classified according to the age and hair color in the next two levels.

Following Huang et al. (2018), we collect images from 3 super domains including house cats, dogs
and big cats of ImageNet. Each super domain contains 4 fine-grained categories, which thus con-
struct in a three-level hierarchy (root is animal). All images split by official train/test protocol are
processed by a pre-trained faster-rcnn head detector and then cropped as the inputs for translation.

ShapeNet is constitutive of 51,300 3D models covering 55 common and 205 finer-grained categories.
12 2D images with different poses are obtained for each 3D model. A three-level hierarchy of
furniture containing different kinds of tables and sofas are defined. Ratio of train/test split is 4:1.
4.3 EVALUATION METRICS

Frankly speaking, quantitatively evaluating the quality of generated images is not easy. Recent
proposed metrics may be fooled by artifacts in some extent. In this paper, we use the Inception Score
(IS) Salimans et al. (2016) and Frchet Inception Distance (FID) Heusel et al. (2017) to evaluate the
semantics of generated images, and leverage the Learned Perceptual Image Patch Similarity Zhang
et al. (2018) (LPIPS) to measure the semantic diversity of generated visual modes.
4.4 COMPARED BASELINES

We mainly compared methods proposed for the objectives of either multi-domain or multimodal
translation. Considering the unpaired training settings, the multi-domain method StarGAN Choi
et al. (2018) and multimodal method MUNIT Huang et al. (2018) are compared in this paper. Since
MUNIT needs to train a model for each pair of domains, it is trained for domain pairs of male/female,
young/old and black/golden hair on CelebA, house cat/dog, house cat/big cat and big cat/dog on
ImageNet, and sofa/table on ShapeNet, respectively. The average of evaluations on all domain pairs
for each dataset is reported. As for StarGAN, it is trained on CelebA as done in its opened source
codes. Translations among house cat, dog and big cat domains on ImageNet, and between sofa
and table domains on ShapeNet are learned for StarGAN. As comparison, results of our HIT in
corresponding domain levels for each dataset are reported.
4.5 RESULTS

Table.1 shows the quantitative comparisons of the proposed HIT with the baselines. Fig.3 shows
qualitative results on CelebA. It is observed that StarGAN achieves outstanding image quality espe-

2The source codes will be released to the public.
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Inputs Gender Age Black Hair

StarGAN

Gender Age Black Hair Gender Age Black Hair

MUNIT HIT

Figure 3: Qualitative comparison on CelebA. The inputs are translated to their reversed value for
gender and age attributes, and to black for hair color. StarGAN learns one-to-one mapping. MUNIT
and our HIT can generate multimodal results (3 outputs for each input are randomly sampled).

Inputs
House Cat Big CatDog

Persian Siamese Husky Samoyed Cougar Lion

Figure 4: Example results of HIT on ImageNet. For each input, 3 fixed styles are sampled from
learned distribution of each category domain.

cially on the fine-grained translations among attribute domains, while the advantages of multimodal
methods are generating multiple translations with intra-domain mode variations at the cost of image
quality. The image quality of MUNIT is not satisfactory on CelebA both in quantitatively in Table.1
and in qualitatively in Fig.3. The reasons for this may be that using only the adversarial learning to
find fine-grained attribute differences between domains is not stable while multi-domain classifier is
good at such task. Besides MUNIT obtains the best diversity performance. It is reasonable as it only
involves two domains in one model and equips a triplet of backbone including encoder, decoder and
discriminator for each domain. Our method considers both multimodal and multi-domain translation
within only one triplet of such backbone, which has high requirement for capacity of networks. It
performs in trade-off between image quality and diversity. From Fig.3, artifacts accompanying the
generated faces for MUNIT may overestimate the LPIPS on CelebA.

Fig.4 and Fig.5 further shows the qualitative results of our HIT on ImageNet and ShapeNet datasets
respectively. Generally speaking, translation among such categories with large variations is much
more challenging than that for face data (several times of increase of the FID in Table.1 can be
found). Even so, our HIT achieves promising qualitative results. Besides, using the fixed styles from
a particular category distribution (same columns in Fig.4 and Fig.5), the generated images indeed
have similar styles of that category and dissimilar content appearances (e.g. pose, expression),
demonstrating good disentanglement of content and style of images.

Inputs

Sofa Table

Loveseat Leather Work table Billiards

Figure 5: Example results of HIT on ShapeNet. For each input, 3 fixed styles are sampled from
learned distribution of each category domain.

7



Under review as a conference paper at ICLR 2020

Level 1
Female

Level 2
Old female

Level3
Old black hair femaleInputs

Figure 6: Examples of hierarchical translation. For a target domain in a particular level, 5 styles are
sampled from its distribution. With level becoming deeper, translations become more specific.

Inputs Style 1 Style 2
Interpolation

(a) Style interpolation

Content

Style

(b) Style transfer
Figure 7: Translations using interpolations of sampled styles from different domain distributions (a)
and style transfer between two real images (b).

Fig.6 shows examples of translations in different hierarchy levels. In the first level, images are
divided into male and female domains. Sampling styles from female distribution, translated images
may contain the mode variations in the second and third levels (i.e. age and hair color variations).
Walking in the path towards leaf-level, translated images would have fewer variations with more
conditions being specified by the categories in high levels. In other words, distributions in low
levels are local modes of its ancestor domains in high levels, leading to the nested relationship.
Results in Fig.6 validate the learned distributions of styles in different levels are exactly nested. In
the Appendix, we give an experimental parameter-sensitiveness analysis ofm and αwhich constrain
the nested relationships among distributions.

In Fig.7(a), we further study the smoothness of learned distributions. It is observed one can conduct
smooth translation via interpolations between styles from different attribute domains. Besides, with
the help of additional style adversarial loss introduced in Sec.4.1, our method can provide users more
controlled translation as done in Huang et al. (2018), i.e. use the styles of referenced real images
instead of sampling them from distributions. Fig.7(b) shows some example results. We can find that
the semantics of gender, age and hair color are all correctly transferred to the input images.

5 DISCUSSIONS
In this paper we propose the Hierarchical Image-to-image Translation (HIT) method which incor-
porates multi-domain and multimodal translation into one model. Experiments on three datasets
especially on CelebA show that the proposed method can well achieve such granularity controlled
translation objectives, i.e. the variation modes of outputs can be specified owe to the nested dis-
tributions. However, current work has a limitation, i.e. the assumption of single Gaussian for each
category domain. On one hand, though Gaussian distribution prior is a good approximation for many
data, it may not be applicable when scale of available training data is small but variations within do-
main are large such as the used hierarchical data on ImageNet and ShapeNet in this paper. On the
other hand, the parent distributions should be mixture of Gaussians given multiple single Gaussians
of its children. This issue would lead to sparse sampling around the centers of parent distributions
and poor nested results if samples are not enough to fulfill the whole space. We have made efforts
to the idea of mixture of Gaussians and found that it is hard to compute the KL divergence between
two mixture of Gaussians which does not have an analytical solution. Besides, the re-parameterize
trick for distribution sampling during SGD optimization can not be transferred to the case of mix-
ture of Gaussians. A better assumption to realize the nested relationships among parent-children
distributions is a promising direction for our future research.
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A APPENDIX

A.1 NETWORK ARCHITECTURES AND TRAINING DETAILS

A.1.1 NETWORK ARCHITECTURES

Following the backbone designs in Huang et al. (2018) for image-to-image translation task, let c7s1-
k denotes a 7× 7 convolution block with k filters and stride 1. dk means a 4× 4 convolution block
with k filters and stride 2. Rk denotes a residual block that contains two 3 × 3 convolution blocks
with k filters. The last layer c1s1-8 in the style encoder is a 1 × 1 convolution block with 8 filters
and stride 1. Therefore, we obtain 8 dimensions of style codes. Similarly, the mean and diagonal
elements of covariance matrix for each Gaussian are also parameterized with 8 dimensions to be
optimized with generator simultaneously. uk denotes a 2× nearest-neighbor upsampling layer fol-
lowed by a 5×5 convolution block with k filters and stride 1. GAP denotes a global average pooling
layer. Instance Normalization (IN) and Adaptive Instance Normalization (AdaIN) are adopted to
the content encoder branch and decoder respectively. No normalization is used in the style encoder
branch. Use ReLU activations in the encoder-decoder and Leaky ReLU with slope 0.2 in the dis-
criminator and classifier. Multi-scale discriminators with 3 scales and objective of LSGAN Mao
et al. (2017) are used to ensure both realistic details and global structure preserved. The last layer of
the decoder is equipped with a tanh activations to normalize the values of generated images to the
range of [−1, 1]. In the following, we give detailed architectures of each module.

Content encoder: c7s1-64, d128, d256, R256, R256, R256

Style encoder: c7s1-64, d128, d256, d256, d256, GAP, c1s1-8

Decoder: R256, R256, R256, u128, u64, c7s1-3

Discriminator & Classifier: d64, d128, d256, d512
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Figure 8: Typical samples of hierarchical data on CelebA. Images within a purple rectangular box
are some instances of a leaf-level category. Categories within a green rectangular box belong to
one common super-category. The super-categories within a red rectangular box share one common
ancestor.

A.1.2 TRAINING HYPERPARAMETERS

We use the Adam optimizer with β1 = 0.5, β2 = 0.999, and initial learning rate of 0.0001. We train
HIT on all datasets for 300K iterations and half decay the learning rate every 100K iterations. We
set batch size to 16. The loss weights λ1, λ2 andλ3 in Eqn.(8) are set as 1, 10 and 1 respectively. α
and m in Eqn.(3) are empirically set as 50, 200 respectively. Random mirroring is applied during
training.

A.2 HIERARCHICAL DATA CONSTRUCTION

In this section, Fig.8, Fig.9 and Fig.10 provide leaf-level examples for better understanding the
nested relationships among categories in different hierarchy levels. Take the CelebA for example,
the root category face has two children distinguished by gender attribute. For each of the two super
categories, it includes two finer granular children which are further divided by the age attribute
(young/old). Finally, in the leaf-level, each local branch are classified according to their hair colors,
i.e. black, golden and brown hair. Within each leaf-level category, samples mainly contain intra-
class variations caused by identities, expressions, poses, etc.

A.3 PARAMETERS SENSITIVENESS ANALYSIS

The impacts of hyper-parameters in the nested distribution learning on word embedding task have
been studied in Athiwaratkun & Wilson (2018). In this section, we further make an analysis of them
in current image generation task. Fig.11 and Fig.12 show the impacts of hyper-parameters m and α
in the nested loss of Eqn.(3). It is observed that distribution margin m has larger impact than nested
threshold α. With too large settings of m, distributions which do not have nested relationship would
be pushed far away, leading to sparse space. Sampling in such space would make the learning of
generator quite difficult. In contrast, with too small settings of m, the discriminabilities of distribu-
tions may be poor. Therefore, a trade-off value 200 is set form in this paper. As for nested threshold
α, a relative small or large value performs well in terms of the image quality metric. However, in
theory, large value setting of α would relax the nested constraint too much, result in small overlap
between parent and children distributions. Therefore, we recommend to set α in the left half axis of
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Figure 9: Typical samples of hierarchical data on ImageNet. Images within a purple rectangular
box are some instances of a leaf-level category. Categories within a green rectangular box belong to
one common super-category. The super-categories within a red rectangular box share one common
ancestor.
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Figure 10: Typical samples of hierarchical data on ShapeNet. Images within a purple rectangular
box are some instances of a leaf-level category. Categories within a green rectangular box belong to
one common super-category. The super-categories within a red rectangular box share one common
ancestor.
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Figure 11: The Inception Score (IS) of translated images in leaf-level on CelebA with different
distribution margin m and fixed threshold α = 50.
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Figure 12: The Inception Score (IS) of translated images in leaf-level on CelebA with different
nested threshold α and fixed distribution margin m = 2000.

α. When α is set as 0, it means the parent and children distributions are all overlapped, which is too
strict to learn. Finally, we set α as 50, and the ratio of 1:4 between α and m is consistent with the
observation in Athiwaratkun & Wilson (2018).
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