
Under review as a conference paper at ICLR 2020

MEASURE BY MEASURE: AUTOMATIC MUSIC COMPO-
SITION WITH TRADITIONAL WESTERN MUSIC NOTA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present a system that is capable of generating long polyphonic
music given number of measures, up to hundreds of measures. This is achieved
by creating a measure model that imitates the object hierarchy used in common
encodings of traditional western music notation. On top of this, we construct a
inter-measure context model that spans the entire composition.

1 INTRODUCTION

Music, largely, is a form of art with no tangible existence. Throughout the history, people have
developed several notation systems to record and formalize different types of composing practices.
Traditional Western music notation and piano roll notation (the format that MIDI uses) are two
examples. Although such notation systems were invented to facilitate music composition, performance
and analysis, the form of music notation itself has a non-negligible effect on these activities. For
example, it is more effortless for composers to stay in a certain key in a music piece when traditional
Western music notation is used: in this writing system, key-relevant concepts such as key signature,
note spellings and accidentals are built-in. As a contrast, piano roll notation does not encode such
concepts and it requires extra effort for users to infer such attributes.

In this work1, for better modeling music pieces originally written in the traditional Western music
notation system, we try to utilize the common object hierarchy (movement-measure-voice-chord-pitch,
see Sec.3.1) as notated in traditional Western music notation to simplify the problem of automatic
music composition, and also creates notations that are human-readable (we assume the piano roll
notation is hard to read by a common human musician). It is motivated by observing drawbacks of
music encoding inherent in many music generation models.

From the performance (or the realization of a composition) perspective, music can be conceptualized
as a discrete event time series: it is a sequence of note events spreading out along the time axis. For
properly encoding music for processing, most previous works either choose to represent music as a
sequence of key stroke events or other composite symbols, e.g. Jaques et al. (2017); Roberts et al.
(2017); Bretan et al. (2016); Walder (2016), or simply treat the entire piano rolls as an image by
evenly sampling the time axis into a fixed grid with two axis being time and pitch, e.g., Hadjeres et al.
(2017); Huang et al. (2017); Yan et al. (2018). The former encoding works well with monophonic
melody generation; however, it is not that intuitive when it comes to polyphonic music generation.
One can choose to merge multiple simultaneous streams of events into a single sequence, in which
case, two simultaneous notes would be represented by two events in the sequence with inter-onset
time interval 0 or equivalent, e.g. (Huang et al., 2019b). However, it would make the sequence length
much longer, and eliminate explicit composability between streams. One can also simply make a
slice by slice representation without discretizing the time axis by representing all concurrent notes
in a key frame as a k-hot vector (Walder, 2016). However, it loses dependencies between different
pitches. The latter equally sampled grid-based approach works naturally for polyphonic music, where
multiple monophonic streams of notes are aligned and coupled with each other. However, as the
rhythm becoming more complex, the combination between different voices makes the step size
prohibitively large for constructing the grid. For example, to authentically encode Mozart’s string

1See https://sites.google.com/view/pjgbjzom for generation examples

1

https://sites.google.com/view/pjgbjzom

Under review as a conference paper at ICLR 2020

quartets, one would need at least 48 steps for a single quarter note, as there are 16th note lengths in
one voice divided by a triplet in another voice.

Figure 1: From the Art of Fugue, Bach. It is clear that at the inter-measure level it is a grid.

For better handling the complexity of music composition and also creating human-readable notations,
we choose to model the traditional music notation system itself, which is different from all approaches
above-mentioned. We noticed that traditional music notation at the inter-measure level is by itself
a grid (see Fig.1), where each cell (measure) may contain a variable number of voices, and each
voice may contain a variable number of note events. The concept of measure in music notation
originates from annotating synchronization between voices, and later, recurring patterns of accents
(meter) (ran, 2004). We utilize this fact by making a structured measure encoder-decoder with a
hierarchical structure that directly corresponds to the object hierarchy in traditional music notation.
Measures in our model resembles words in natural language generation; the difference is that in our
model a measure encoder-decoder is used instead of a simple word embedding lookup and a softmax
output layer. The use of a measure encoder-decoder coincides with Bretan et al. (2016), but they
simply select measures from a predefined database to generate monophonic Jazz melody lines. In the
proposed model, everything is handled event by event within a measure, and at the inter-measure
level, this representation forms a dense grid, which significantly reduces the sequence length of a
complete movement. Also, it accepts a variety of model architectures (RNN layers, Convolution
layers, self-attentive layers, etc.).

The difficulties in designing such a structured autoencoder for measures are as follows: a) the model
should be able to count the beats so that it knows how to generate and terminate properly; b) when
it comes to music with strong polyphony (as opposed to homophony), the model should be able to
attend/align a single event with the events around the same beat positions in other staves. We solve
these two problems by introducing a set of techniques including duration normalization, within-beat
position signals, cross-beat duration splitting, to make it easy to count, and we also create a fix-sized
position-content associative memory for implicit alignment. Details of these techniques will be
presented later.

This paper is structured as follows: in section 2, we give a description on the paradigm that our
system is based on. In section 3, we present our proposed model on generating long polyphonic
music composition. In section 4, we give out details regarding our experiments.

2 BACKGROUND

In this section, we give a brief review on the generative framework our work is based on.

Conditionally specified distributions Learning and sampling using a set of conditional distribu-
tions has a long history (Hofmann, 2000; Heckerman et al., 2000; Arnold et al., 2001; Van Buuren
et al., 2006). Given a set of conditional distributions {p(xi|x−i)|∀i} that predicts a single variable xi
given all its dependencies x−i, an implicit joint distribution is uniquely specified if all conditional dis-
tributions are compatible. In practice, when using an approximator, we usually relax the requirement
of compatibility between conditional distributions.

To sample from this implicit distribution, (psedo-)Gibbs sampling is applied using this set of con-
ditional distributions: firstly initialize the entire configuration and then iterate over all variables

2

Under review as a conference paper at ICLR 2020

x1, x2, . . . , xN in a specific or random order multiple times to update one variable at a time from its
conditional distribution.

This framework has been used for music generation in Hadjeres et al. (2017), Yan et al. (2018), etc.
The advantage of this framework is that it allows more flexible conditioning, and meanwhile, this
framework learns to predict a single variable with more observations, which is often easier compared
to an auto-regressive model.

Ancestral Sampling given an arbitrary order For a given sequence of indices j0, j1 . . . jN−1
over all positions, we define a sequence of corresponding masks m0,m1, . . .mN−1, where positions
{jk|k ≥ i} are masked (= 0) in mi, i.e., values are hidden. By applying this sequence of masks to
the full configuration x = x0, x1, . . . , xN−1, we obtain a factorization of the joint distribution and
sample data accordingly:

p(x) =
∏

s=0,1,...,N−1
p(xjs |x�mjs), (1)

where � represents the masking operation. This factorization was utilized by Neural Autoregressive
Density Estimation (NADE) (Uria et al., 2016), which allows sampling the whole configuration of all
variables in a single sweep, given an sampling order.

In our work, during training, our model learns to predict arbitray masked positions with mask sampled
from a predefined distribution;for sampling, we firstly initialize the full configuration using ancestral
sampling, and then refine the result using (pseudo-)Gibbs sampling, which is similar to Huang et al.
(2019a).

3 METHOD

Our model uses a measure encoder-decoder with a structure that imitates the object hierarchy of the
Western music notation system. On top of it, we build a movement-wide inter-measure context model.
The measure encoder-decoder serve as the basic input-output layers for our system.

In sec.3.1, we give details on the measure autoencoder that imitates the object hierarchy of traditional
Western music notation. In sec.3.2 we briefly introduce the inter-measure context model used in this
work.

3.1 MEASURE MODEL

Figure 2 illustrates the common object hierarchy used in most major music notation systems, e.g,
Sibelius, Finale, Musescore, and also the music score open format, Musicxml.

Voice 1:
Time

Signature

Chord 1 Chord 2 Chord 3 Chord 4

Voice 2:
Chord 1 Chord 2 Chord 3

Measure

Figure 2: The common object hierarchy for most major music notation software

Each measure has a beat unit specified by the denominator of their time signature (e.g., quarter,
eighth), and contains a variable number of voices. Each voice is a variable-length sequence where each
step is a chord-duration tuple. A chord is a set consisting of pitch-tie tuples. A pitch is represented
as a tuple of diatonic steps and accidentals. A tie indicates whether or not this note appears as a
continuation of the previous note of the same pitch in the same voice. Each pitch is allowed to have
its own tie status. In this work, a single note is also referred as a chord, as a general treatment to
reflect the fact that a single note is a chord with only one element. Rest symbol is represented by a
chord with cadinality zero, that is an empty set. The numerator of time signature can be calculated

3

Under review as a conference paper at ICLR 2020

from the beat unit and the total number of beats within the measure; therefore it is omitted from the
our model.

Figure 3 provides a concise, higher-level summary of the measure model. It contains an encoder and
a decoder following this object hierarchy in an object-oriented way. Objects modeled are duration,
chord, voice, and measure. Each object model implements an encoder [h,M] = φ(·) and a decoder
p(·|c, M̃), where M is a position-indexed memory matrix, h is the embedding vector produced by
the encoder, and c is the input to the decoder for obtaining the resulting part(staff)-wise measure.

All decoders are autoregressive models: they invoke lower level decoders for producing lower level
objects, and they invoke lower-level encoders for constructing feedback to the model on the lower
level object produced (for the lowest level, they directly use embedding lookups).

For notational convenience, we reuse the same symbol c, h for every sub-level object model. We will
talk about the detailed design for each object model in the following subsections.

� � � �˜

Integrate	along	the	time
steps	on	chord-duration
tuples	with	a	sequential
model

Produce	embedding
vectors	for	all	chord	and
duration	objects

Aggregate	all	measure
vectors	and	memory
matrices	from	all	voices

Chord Encoder Duration Encoder

Voice Encoder

Measure EncoderBeat Unit

Chord Decoder Duration Decoder

Voice Decoder

Measure Decoder
Sample	a	sequence	of
voices		until	terminationBeat Unit

Sample	a	sequence	of
chord-duration	tuples
until	termination,	Chord
is	also	conditioned	on	the
sampled	duration

Integrate sample

sample sample

Uses

Uses

Uses

Figure 3: High level description of the proposed hierarchical measure model.

3.1.1 CHORD ENCODER-DECODER

As mentioned, a chord is a set of pitch-tie tuple, one single note is represented by a chord object
with cardinality 1 and the rest symbol is represented as an empty set. As a basic building block,
We use the same factorized pitch embedding as proposed in Yan et al. (2018), which encodes
multiple aspects, i.e., octave equivalence, diatonic step, chromatic step of a single pitch. We denote
chord = {(pitchi, tiei)}i∈I , where pitch represents the pitch and tie indicates whether or not this
pitch is a continuation of the previous note with the same pitch within the same voice.

Chord Decoder Elements in a chord are orderless. We put these elements into an ordered sequence
chordπ with π denoting the order. We use k = 0, . . . , |I| − 1 to denote indices of this sequence.
For sequentially generating set elements, we use an autoregressive model. Here we augment the
candidate set of pitch with a special terminate symbol such that the last pitch in the sequence
pitch|I| = terminate. Therefore we have

p(chordπ|c) = p(pitch|I||pitch<|I|, tie<|I|, c)

|I|−1∏
k=0

p(pitchk, tiek|pitch<k, tie<k, c)
(2)

During training we shuffle the order of elements in a chord to take permutation invariance of a set
into account. We also consider the dependency between pitch and tie by factorizing

p(pitchk, tiek|pitch<k, tie<k, c)

=p(pitchk|pitch<k, tie<k, c)p(tiek|pitchk, pitch<k, tie<k, c).
(3)

We use a single layered GRU for this autoregressive model. The initial state of GRU is computed
by feeding the input vector c into a linear projection layer, followed by a tanh activation function.
During sampling, at step k, we firstly sample pitchk conditioned on the hidden state of GRU and
c, which is the input to this chord decoder module. If the sampled pitchk is the terminate symbol.
terminate this process; otherwise we sample tiek, the tie status, conditioned on the hidden state of

4

Under review as a conference paper at ICLR 2020

GRU, c, and the pitch embedding pitchEmbedk of the recently sampled pitchk. Both of these two
steps use two-layer feedforward neural networks before the softmax output layer. We then use the
embedding vector (noteEmbedk, see below) for this recently sampled (pitchk, tiek) tuple as the
feedback to the GRU, and then repeat this process until termination.

Note embedding We obtain the embedding vector, denoted by noteEmbed for the pitch-tie tuple
by

noteEmbed = pitchEmbed� tieEmbed (4)
where � represents element-wise multiplication. Multiplication is used here for breaking the linearity
of the sum aggregation used by the chord encoder (see below), so that a tie can be associated with a
particular pitch in a chord

Chord encoder The chord encoder is more straightforward:

h = φ(chord) = Φ(
∑

note=(pitch,tie)∈chord

noteEmbed(note)) (5)

Where Φ(·) is a linear projection, which maps the summations of note embeddings to the desired
dimension.

3.1.2 DURATION ENCODER-DECODER

Duration encoder Duration representable without a tie in traditional music notation is obtained
by recursively dividing a beat unit, e.g., a quarter length, into 2,3,5. . . equal segments. The number
of combinations allowable is huge. Therefore, for making the duration representation universal and
better preserving the information of the division level, we directly encodes a legal note duration as a
multiplication of prime exponents d = [d0, d1, . . .] such that:

duration = (2d03d1 . . .)beatUnit (6)
We assign an embedding vector for every possible digit, and it is shared for all digit positions
di, i = 0, 1, We simply choose [−4,+4] as the range for the digits. We use [2, 3, 5, 7, 11] as
the prime base in our experiment. The encoder of a duration is simply a linear projection of the
concatenation of all digit embeddings for all prime bases.

Duration decoder For the decoder, we consider the dependency between these digits. Therefore
we use a GRU to sample each digits autoregressivly.

3.1.3 SINGLE VOICE ENCODER-DECODER

As mentioned above, each voice inside a measure is a sequence with each step being a chord-duration
tuple (chordi,di), where i denotes the index within the sequence.

Preprocessing In order to make the autoregressive encoder/decoder easy to count the beats so that
it can generate sequences of correct total durations and also receive guidance for synchronizing with
simultaneous events at other parts (staffs), we do the following:

• Duration normalization: We scale all the durations in a measure such that each integer
beat corresponds to a primary division of the measure. For example, for time signature 6/8,
we transform it into a sequence with a total length of two beats using the dotted quarter
length as the beat unit, which is a conventional practice to count beats in traditional Western
music theory; durations in a measure with time signature 3/4 have the same normalized total
length as those in a 3/8 measure. By doing this, we only have measures with length 2(duple),
3(triple), or 4(quadruple) beats for all pieces in our current training corpus.
• Within-beat position signal as extra input: Since we have normalized the total duration

of all measures, we then use a sinusoidal within-beat position signal bi as an extra input to
both encoder and decoder for every step.

bi = [sin(2πδi), cos(2πδi)] (7)
where δi is the normalized onset position within a measure for the step i, whose value is
wrapped to [0, 1)

5

Under review as a conference paper at ICLR 2020

• Cross-beat note splitting: Since the within-beat position is circular, we desire every integer
beat position to appear in the sequence to avoid aliasing issue where a note crosses multiple
beats, which bypasses circles of the position signal. We add another preprocessing step:
we split all notes whenever their spans cross integer beat position into multiple tied notes.
Another benefit of doing this is that it limits range of durations. One thing worth mentioning
is that this is also a notational convention for instrumental music (see Stone (1980)) when a
note starts at a non-primarily divided position and crosses such primary position for making
human musicians easy to count.

Voice encoder For encoding a single voice in a measure into a vector representation, we concatenate
embedding vectors of chord (see Sec.3.1.1), duration (see Sec.3.1.2) and within-beat position signal
for each chord-duration tuple, (chordi,di), and then feed this sequence of concatenated values into a
bidirectional GRU layer to obtain a sequence of contextual embeddings [s0, s1, . . .]. We then pass the
last hidden state of GRU through a linear projection layer to get the final embedding vector h for this
voice.

We run another bidirectional GRU layer only with the concatenation of duration embeddings and the
within-beat position signal to obtain a sequence of embeddings [t0, t1 . . .] purely from the perspective
of rhythm/position related context. We create a fix-sized position indexed memory matrix of this
voice by:

M =
∑
i

key(ti)val(si)T , (8)

where key(x) = softmax(Wkeyx) and val(x) = Wvalx. This constant-sized memory matrix makes
it easier for the inter-measure model to attend back into the sequence, and also, after summing up
memory matrices from synchronous measures, entries with similar positional/rhythmic context get
aggregated, which provides an extra reference for the decoder on the aggregated information of a
certain positional/rhythmic context, e.g, the vertical sonority.

Voice decoder The voice decoder takes as input an vector c, and a memory matrix M̃. It autore-
gressively generates a sequence of chord-duration tuple within a voice. It uses a separate termination
predictor at the end of each step. We omit this termination predictor here for simplicity.

At step i, it firstly samples a duration di and then conditions chordi on the recently sampled di:

p(chordi,di|chord<i,d<i, c, M̃) = p(chordi|chord<i,d<i,di, c, M̃)p(di|chord<i,d<i, c, M̃)
(9)

The voice decoder uses a single-layer unidirectional GRU. The decoding process can be described as
follows. Firstly, the initial state of the GRU is produced by feeding c into a linear projection layer
followed by tanh activation function. Then at step i, we calculate a query vector using the current
GRU state hi by

qi = softmax(Wqhi), (10)

and then retrieve values from the matrix memory:

ṽi = LayerNorm(qTi M̃). (11)

We then feed ĥi = [hi, c, ṽi] into a two-layer feedforward network to produce the input to the
duration decoder which implements the last term on the RHS of the equation 9. After di is sampled,
we concatenate the embedding of di with ĥi and use another two-layer feedforward network to
produce the input vector for the chord decoder which implements the first term on the RHS of the
equation 9. After chordi is sampled, we feed the concatenation of embeddings of chordi, di, together
with bi+1, the within-beat position signal for the next step, into the GRU cell to obtain hi+1. Repeat
this until termination.

3.1.4 MEASURE ENCODER-DECODER

The Measure encoder-decoder is the highest level in the measure object hierarchy.

6

Under review as a conference paper at ICLR 2020

Measure encoder The measure encoder aggregates information from embedding vectors/matrices
of all voices it contains. It then integrates information of the beat unit.

hmeasure = Wmeasure[
∑

voice∈measure

hvoice] + b

Mmeasure = [
∑

voice∈measure

Mvoice] + kvT
(12)

where b, k, v are embedding vectors assigned to the corresponding beat unit.

Measure decoder The measure decoder decodes the input vector c and matrix M̃ into a beat unit
and arbitrary number of voices autoregressively. It firstly sample the beat unit given the input vector
c. It then generate each voice one by one using a GRU autoregressive model. The initial state is again
calculated by a linear projection followed by tanh activation function. At each step, the hidden state
is fed into a two-feedforward neural network to produce an input to the voice decoder. After a voice
is sampled, the voice encoder is invoked to obtain an voice embedding and we feed this embedding
back into the GRU to udpate the hidden state. Repeat this until termination.

3.2 INTER-MEASURE CONTEXT MODEL

After encoding the score into a grid-like representation, a plenty of neural network architectures
can fulfill the purpose of an inter-measure context model. The goal is to predict the content at the
masked positon in a music score. Our architecture is based on dilated LSTM (Chang et al., 2017)
and equivariant layers (Zaheer et al., 2017). For each stacked block, it firstly performs dilated LSTM
for each part (staff) independently; then the model attends back into the memory matrix; afterwards,
an equivariant layer, which is similar to Zaheer et al. (2017) Yan et al. (2018), is performed for
combining information from variable number of parts. We leave details of the concrete architecture
used in our experiment to Appendix A.

4 EXPERIMENT

In this section, we present further implementation details and our subjective listening test.

4.1 DATASET

We use musicxml as the input score format. We use the Mozart Quartets and Corelli Trios obtained
from KernScore (http://kern.humdrum.org) . We manually corrected all wrongly tied and
quantized notes for the Mozart Quartets. We also collected Bach’s music offerings, the Art of Fugue,
and some movements of Brandenburg Concerto online. Our dataset also includes Bach’s 371 chorales
including the chorale 150 which is often omitted as it has five parts. In total, our dataset has 893
pieces. We split our dataset into training, validation and testing with ratios of 0.9, 0.05, and 0.05,
respectively.

4.2 IMPLEMENTATION DETAILS

For the measure autoencoder, we use pitch embedding size 160, duration exponent embedding size
50, duration embedding size 100, chord embedding size 200, measure memory key size 200, value
size 60, voice encoding/decoding RNN hidden size 400, measure decoding RNN hidden size 400,
measure embedding size 200.

For the inter-measure context model, the dimension of both input and output of each block is the
same as the measure embedding size. We use 600 as the expanding projection dimension in the
context aggregation layer. We stack 7 blocks with dilations of 1,2,4,8,16,32,64.

During training, we use a dropout rate of 0.1, and each time we sample a mask from bernoulli(0.15).
We also apply transposition in the range of [−5, 5] semitones. We also apply distortion to the
input score by randomly dropping notes, perturb pitches and beat units within a measure as data
augmentation. We averaged the loss per measure for every piece. The final loss is then a average loss
of per-measure averaged loss over pieces We train the model with batch size of 16 (pieces) using the

7

http://kern.humdrum.org

Under review as a conference paper at ICLR 2020

Adam optimization method with learning rate of 2-e4 that is gradually decreased to 1e-5. We use the
model with the best validation loss for our experiment. We perform 6 sweeps of resampling on every
single position from the configuration obtained by the ancestral sampling (NADE-like) for creating
each piece.

4.3 SUBJECTIVE LISTENING TEST

For evaluating the quality of generated pieces, we conducted an online survey. We generated string
quartets with measure length 32, 64, and 128 respectively, 57 pieces in total, mixed with 15 pieces
composed by Corelli, Mozart, Prokofiev, and Satie, where the former two come from our dataset.
Each time 3 pieces are presented by picking 1 pieces with the least number of ratings and 2 uniformly.
We require participants to rate the overall quality and whether or not they like this piece. The ratings
for fluency, expressivity, novelty, and organization are optional. We used star ratings and like button
for participants to rate. We received 85 responses from 72 unique participants. The participants’
self-reported expertise in music is shown in Fig.4a. Rating results is shown in Fig.4b; also see
Appendix B.1 for means and p-values. Fig.4c and Fig.4d demonstrate the overall ratings against
participants’ expertise and lengths of pieces, respectively. Our algorithm receives a like ratio of
17.7%, while the real human composer receives a like ratio of 40.5%. It is not surprising that the
masterpieces of human composers outperform the generated pieces. For our system, participants
with Beginner, Intermediate and Experienced expertise rate higher than those with None and Expert
expertise. Short pieces receive higher average ratings than longer pieces.

None Beginner Intermediate Experienced Expert
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(a) Participants’ self-reported expertise in music

rating fluency expressivity novelty organization
Rating Terms

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

va
lu

e

Composer
algorithm
human

(b) Rating results

None Beginner IntermediateExperienced Expert
expertise

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ra
tin

g

Composer
algorithm
human

(c) Overall ratings vs. expertise

32 64 128
measures

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

ra
tin

g

(d) Overall ratings vs. length

5 CONCLUSION AND FUTURE WORKS

In this paper, we present a system that can generate long polyphonic music. The benefit of modeling
long pieces comes from the use of a music notation inspired measure autoencoder. Future works
include collecting more clean music scores and also improve the model for more organized overall
structure.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Bar line [Fr. barre de mesure; Ger. Taktstrich; It. stranghetta; Sp. barra de compás]. In Don Michael
Randel (ed.), The Harvard Dictionary of Music. Harvard University Press, Cambridge, June 2004.
ISBN 0-674-01163-5.

Barry C Arnold, Enrique Castillo, Jose Maria Sarabia, et al. Conditionally specified distributions: an
introduction (with comments and a rejoinder by the authors). Statistical Science, 16(3):249–274,
2001.

Mason Bretan, Gil Weinberg, and Larry Heck. A unit selection methodology for music generation
using deep neural networks. arXiv preprint arXiv:1612.03789, 2016.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks.
In Advances in Neural Information Processing Systems, pp. 77–87, 2017.

Gaëtan Hadjeres, François Pachet, and Frank Nielsen. Deepbach: a steerable model for bach chorales
generation. In International Conference on Machine Learning, pp. 1362–1371, 2017.

David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, and Carl
Kadie. Dependency networks for inference, collaborative filtering, and data visualization. Journal
of Machine Learning Research, 1(Oct):49–75, 2000.

Reimar Hofmann. Inference in markov blanket networks. Technical University of Munich Technical
Report FKI-235-00, 2000.

Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, and Douglas Eck.
Counterpoint by convolution. In ISMIR, pp. 211–218, 2017.

Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron Courville, and Douglas Eck. Coun-
terpoint by convolution. arXiv preprint arXiv:1903.07227, 2019a.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. In International Conference on Learning Representations, 2019b.

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, Jose Miguel Hernandez Lobato, Richard E. Turner,
and Doug Eck. Tuning recurrent neural networks with reinforcement learning. In International
Conference on Learning Representations (ICLR), workshop track, 2017.

Adam Roberts, Jesse Engel, and Douglas Eck. Hierarchical variational autoencoders for music. In
NIPS Workshop on Machine Learning for Creativity and Design, 2017.

K. Stone. Music Notation in the Twentieth Century: A Practical Guidebook. W. W. Norton, 1980.
ISBN 9780393950533.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
autoregressive distribution estimation. The Journal of Machine Learning Research, 17(1):7184–
7220, 2016.

Stef Van Buuren, Jaap PL Brand, Catharina GM Groothuis-Oudshoorn, and Donald B Rubin. Fully
conditional specification in multivariate imputation. Journal of statistical computation and simula-
tion, 76(12):1049–1064, 2006.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Christian Walder. Modelling symbolic music: Beyond the piano roll. In Asian Conference on
Machine Learning, pp. 174–189, 2016.

Yujia Yan, Ethan Lustig, Joseph VanderStel, and Zhiyao Duan. Part-invariant model for music gener-
ation and harmonization. In Proceedings of the 19th International Society for Music Information
Retrieval Conference, ISMIR 2018, Paris, France, September 23-27, 2018, pp. 204–210, 2018.

9

Under review as a conference paper at ICLR 2020

1.Mask Positions we want to predict; during sampling
each time only one position is masked; add instrument
embedding to each position

4. Equivariant Layer

5. Feed all output vectors and matrices at the masked
position to the Measure Decoder

2. Independent dilated LSTM

stack N times

From measure encoder

Look back into the memory matrix 3. Look back Layer

Figure 5: Overview of the inter-measure context model

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp.
3391–3401, 2017.

A INTER-MEASURE CONTEXT MODEL

Overview The overview of the entire system is illustrated in Fig. 5. Given a music score, we
first encode each measure into a fixed-length vector (measure embedding) and a matrix memory,
which creates a 3D tensor with dimensions [nMeasure, nStaff,measureEmbedDim], and a 4D tensor
with dimensions [nMeasure, nStaff,memKeySize,memValSize], where nMeasure and nStaff are the
number of measures (temporal length) and the number of staffs (parts) respectively; memKeySize
and memValSize are dimensions of the memory matrix discussed in sec. 3.1.3.

We assume all input and output dimensions for all this layers are the same as the grid of measure
embedding vectors. Note that for all the following layers, we apply position-wise add and layernorm
as used in Vaswani et al. (2017).

Independent dilated LSTM layer We perform (dilated) LSTM on each staff(part) independently.
After projecting the cell state of LSTM to the original input dimension, it was added to the input
vector and then we apply layernorm. Denote the cell state of LSTM at a postion in the grid as h, the
input state vector of the grid at a position as x, then the updated grid state x̂ at a position is given by:

x̂ = LayerNorm(x + Wh) (13)

Look back into the measure memory matrix Denote the current state vector at each measure as
x, and the memory matrix for that measure as M, the new state x is obtained by:

q = softmax(Wx)

v = LayerNorm(qTM)

x̂ = LayerNorm(x + FNNlookback(concat([x,v]), dim = 2))

(14)

Context aggregation The context aggregation layer works as follows: denote the input tensor to
this layer is X which has the same shape as the grid of measure embedding vectors, then it firstly
applies position-wise projection for each vector on this grid:

H = W1X (15)

10

Under review as a conference paper at ICLR 2020

Afterwards, it does max reduction along rows and columns of the grid separately. Those pooled result
is then concatenated with the input vector and fed into a position-wise two-layer feedforward network
with the output dimension the same as the original input vector.

Y = FNN(concat([H,max(H,dim = 0),max(H,dim = 1)], dim = 2)) (16)

Here, the column-wise aggregation resembles the context aggregation used in Yan et al. (2018) for
coupling simultaneous parts; the row-wise aggregation, additionally, passes some global information
to the entire sequence.

Output We send the outputs at the masked position of the last context aggregation layer to the
measure decoder. The memory matrix is summed along the axis of staffs (columns) and sent to
the measure decoder directly in order to provide a reference for the local vertical sonority when
generating events inside a single voice.

B MORE DETAILS ON EXPERIMENTS

B.1 MEANS AND P-VALUES OF RATINGS IN THE SUBJECTIVE EVALUATION

Algorithm Human p-value
Rating 3.43 4.03 0.014
Fluency 3.56 4.15 0.003
Expressivity 3.39 3.91 0.007
Novelty 3.52 3.50 0.917
Organization 3.44 3.94 0.029

Table 1: Subjective evaluation: mean and p-value

11

	Introduction
	Background
	Method
	Measure Model
	Chord encoder-decoder
	Duration encoder-decoder
	Single Voice encoder-decoder
	Measure encoder-decoder

	Inter-measure context model

	Experiment
	Dataset
	Implementation details
	Subjective listening test

	Conclusion and future works
	Inter-measure context model
	More details on experiments
	Means and p-values of ratings in the subjective evaluation

