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ABSTRACT

Neural inductive program synthesis is a task generating instructions that can pro-
duce desired outputs from given inputs. In this paper, we focus on the generation
of a chunk of assembly code that can be executed to match a state change inside the
CPU and RAM. We develop a neural program synthesis algorithm, AutoAssem-
blet, learned via self-learning reinforcement learning that explores the large code
space efficiently. Policy networks and value networks are learned to reduce the
breadth and depth of the Monte Carlo Tree Search, resulting in better synthesis
performance. We also propose an effective multi-entropy policy sampling tech-
nique to alleviate online update correlations. We apply AutoAssemblet to basic
programming tasks and show significant higher success rates compared to several
competing baselines.

1 INTRODUCTION

Program synthesis is an emerging task with various potential applications such as data wrangling,
code refactoring, and code optimization (Gulwani et al., |2017). Much progress has been made in
the field with the development of methods along the vein of neural program synthesis (Parisotto
et al.| [2016; Balog et al.l 2017; Bunel et al.l 2018} [Hayati et al 2018} [Desai et al.l 2016} Yin &
Neubig, 2017; Kant, 2018). Neural program synthesis models build on the top of neural network
architectures to synthesize human-readable programs that match desired executions. Notice that
neural program synthesis is different from neural program induction approaches in which neural
architectures are learned to replicate the behavior of the desired program (Graves et al.,2014; Joulin
& Mikolov, 2015; [Kurach et al., 2015; |Graves et al., 2016; Reed & De Freitas, 2015 [Kaiser &
Sutskever, [2015)).

The program synthesis task consists of two main challenges: 1). intractability of the program space
and 2). diversity of the user intent (Gulwani et al.l 2017)). Additional difficulties arise from general-
purpose program synthesis including data scalability and language suitability. We will briefly de-
scribe these challenges below.

Program Space. The program synthesis process consists of sequences of code with combinatorial
possibilities. The number of possible programs can grow exponentially with the increase of the
depth of the search and the breath of hypothesis space.

User Intent. To interpret and encode user’s intention precisely is essential to the success of pro-
gram synthesis. While writing formal logical definition is usually as hard as defining the program
itself, natural language descriptions nevertheless introduce human bias and ambiguity into the pro-
cess. Our work here focuses on Inductive Program Synthesis approach where input-output pairs are
demonstrated as a program task specification.

Scale of Data. The success of recent neural-network-based methods is often built on the top of large-
scale-labeled data. Collecting non-trivial human-written programs/code with task specifications can
be expensive, especially a large degree of diversity in the code is demanded. An alternative is to
exhaust the entire program space, but it is difficult to scale up without taking exploration priority.
We instead show an efficient data collection procedure to explore the program space.

Choice of Language. The choice of the programming language is also very important. High-level
languages like Python and C are powerful but they can be very abstract. Methods like abstract syntax
tree (AST) (Hayati et al.| 2018)) exist but a general solution is still absent. The query language has
also been chosen as a topic of study (Balog et al., 2017; |Desai et al., [2016), but it has a limited
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domain of application. Here, we focus on a subset of x86 assembly language, which is executed on
CPU with RAM access.

Our Work. We develop a neural program synthesis algorithm, AutoAssemblet, to explore the large-
scale code space efficiently via self-learning under the reinforcement learning (RL) framework.
During the RL data collection period, we re-weight the sampling probability of tasks based on
the model’s past performance. The re-weighting sampling distribution encourages the networks to
explore challenging and novel tasks. During the network training period, the deep neural networks
learn policy function to reduce the breath of the search and the value function to reduce the depth
of the search. The networks are integrated with Monte Carlo Tree Search (MCTS), resulting in
better performance (Couloml 2006; Browne et all [2012). This allows our model to solve more
complex problems with over 22° hypothesis space done in 10 steps, while the previous related
works considered searching 34 output choices finished in 5 steps (Balog et al., 2017).

The reward for the program synthesis task in RL is very sparse, where usually only very few trajec-
tories reach the target output. Empirically, we find that RL policy network training unsatisfactory
by receiving low rewards. This is the result of strong correlations of online RL updates, which lead
to non-stationary distribution of observed data (Mnih et al., 2016} [Volodymyr et al., [2013)). In this
paper, we propose a conceptually simple multi-entropy policy sampling technique that reduces the
updating correlations.

Since our algorithm can learn from its trails without human knowledge, it avoids the data scalability
problem. We test its performance on human-designed programming challenges and observe higher
success rates comparing to several baselines.

This paper makes the following contributions:

1. Adapt self-learning reinforcement learning into the neural inductive program synthesis pro-
cess to perform assembly program synthesis.

2. Devise a simple multi-entropy policy sampling strategy to reduce the update correlations.
3. Develop AutoAssemblet for generating assembly code for 32-bit x86 processors and RAM.

2 RELATED WORK

We first provide a brief overview of the Inductive Program Synthesis (IPS) literature. Then, we
discuss related works along several directions.

Inductive Program Synthesis (IPS) views the program synthesis task as a searching process to
produce a program matching the behavior with the demonstrated input-output example pairs (Ba-
log et al., [2017)). Given enough training examples, a typical IPS model first searches for potential
matching programs, followed by picking the best solution using a ranking mechanism. (Balog et al.,
2017) focuses mainly on the search part of the algorithm.

Neural IPS Recent progress has been made for neural inductive program synthesis (Menon et al.,
2013 |Parisotto et al.l 2016; Balog et al.l 2017; [Kalyan et al,, [2018). When performing the task
in this way, a network learns a probability distribution over the code space to guide the search for
matching the given input-output pairs. Despite the observation of promising results, challenges
remain in neural program synthesis for e.g. effectively exploring the code space. Usually, such a
space exploration is carried out by collecting human-labeled data or performing an enumerate search
over program space. Our main difference to the existing method is in the data generation procedures.
Menon et al.| (2013) learns from a small dataset collected by humans, which is hard to scale in
practice. While query language in Balog et al.|(2017) can potentially yield millions of programs to
train deep networks, the data generation process is done by enumerating search strategies without
learning a priority. Our model instead efficiently explores a considerably large space by using a
self-learning reinforcement learning strategy.

Representations of Program State Balog et al.| (2017); [Kalyan et al.| (2018) focuses on query
languages with high-level functions like FILTER and MAP.|Gulwani| (2011 is a practically working
application used in a string programming setting. [Hayati et al.| (2018)) synthesizes high-level source
code from natural language. Recently, Graph Neural Networks are seen as a potential solution to
encoding complex data structure for high-level languages (Allamanis et al., 2018)). In this paper,
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Figure 1: Self-Learning Reinforcement Learning in AutoAssemblet: a. Training Pipeline is composed of
self-Learning and with re-adjustment of sampling strategy b. Monte Carlo Tree Search(MCTS) searches for
best policy by utilizing policy networks and value networks.

we provide a different paradigm for Neural IPS by using a subset of x86 instruction set, which
generates a program in low-level assembly language. x86 instruction set is widely used in modern
computers (Shanley, |2010). A direct advantage is that the algorithm can synthesize program and
receive the reward in the x86 simulator environment. Another advantage is x86 operations directly
operate in CPU and RAM in a prescribed format, which is suitable for neural networks to observe
the correlation.

3 AUTOASSEMBLET

In this section, we first reformulate program synthesis task as an RL problem and introduce neces-
sary notations. Then, we describe the task sampling and multi-entropy policy sampling strategies in
the data collection process. Following that, we explain the training procedure of policy and value
networks. Finally, we illustrate how Monte Carlo Tree Search utilizes policy networks and value
networks during search stage. The full procedure is illustrated in Algorithm I

3.1 TASK SAMPLING

We train our model following a pipeline consisting of several stages. Initially, we create millions of
pilot programs ), by executing some initial policies 7,. We then construct input-output /O pairs by
running A, on x86 simulator as our initial task pool. In our setting, input I and output O represent
the actual value stored in the CPU registers and the RAM.

During the training process, we assume /N programming tasks are sampled from the task pool; each
consists of a set of K input-output pairs. Our goal is to learn a neural network 6 that can produce a
program Ay with a consistent behavior given one set of input-output pairs:

N(IF)=0F Vic1.N,Vkecl.K. (1)

Empirically, we find that sampling from the task pool uniformly leads RL policy networks to overfit
easy tasks by giving up difficult tasks with no positive reward, resulting in performance decreasing.
To motivate networks to learn a more diverse program distribution, we record the success rate for
each task sampled from the pool, which is used to maintain a multinomial distribution. The network
gets to sample from the tasks it fails to complete more often, and the easy tasks will not be prioritized.
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3.2 MULTI-ENTROPY POLICY SAMPLING

The first stage of RL training is the data collection process. For each sampling task, the policy
networks 6 recursively synthesize next line of code a; based on a state representation sz, 0), St
in short, at each time step t. During the process, ;1 is generated by x86 simulator by executing
a; based on previous state I;. Program terminates at time step 7" when either output O is reached
(It = O) or maximum steps have been proceeded. The terminal step will receive a reward r(sr)
such that r(sp) = 1 if the output O is reached, and r(sy) = 0 otherwise. All previous states
will receive a decayed reward r; = WT_tr(sT) accordingly. We collect (s¢, at, r¢) pairs for all N
sampled task.

During training, we observe that on-policy updates have a high correlation, which converge to a
non-stationary process. Various off-policy methods are proposed to alleviate this problem, including
storing previous data in a replay buffer and asynchronously executing multiple agents (Riedmiller,
2005} [Schulman et al.| 2015} Mnih et al., [2016). However, program synthesis can be regarded as
a meta-task where a new task is proposed to be solved at each time. Storing previous experience
done in other tasks or updating asynchronously doesn’t show clear advantage. We take an alternative
approach where temperature 7 in the softmax distribution is alternated. It allows us to synchronously
execute multiple agents with different entropy distribution in parallel. In the softmax function,
temperature 7 is set to 1 by default. A higher 7 leads to a softer probability distribution, and a
lower 7 shifts the distribution towards a one-hot-encoded like distribution (Hinton et al., 2015)).
The change of temperature reduces the correlation among samples by flexibly altering sampling
distribution, which is conceptually similar to off-policy sampling techniques discussed above.

3.3 PoLICY NETWORKS TRAINING

Imitation Learning

We first train our model to imitate programs ), generated by pilot policy m,, which is used to
construct input-output O task pairs. Different from imitation learning that collects human behavior,
Ap is not necessary as good as expert demonstrations. For examples, sub 3 following add 4 can be
optimized to add 1. Therefore, we expect the quality of A\, decreases for longer programs. However,
pilot policy 7, is useful to guide policy training and provide g with a stable initialization.

The imitation learning objective is simply obtained from cross-entropy. The networks is trained to
make predictions that can maximize the likelihood of actions a from m,(s) conditioned on given
inputs:

T
Lim(0) = —Eg, pom, Z log mg(a = mp(st)|se) (2)

t=1

Policy Gradient

While imitation learning duplicates predictions as faithful to the target output from J,, it falls into
the problem of program aliasing: maximizing the likelihood of a single program would penalize
many equivalent correct programs, which hurts long-term program synthesis performance (Bunel
et al.| [2018). Thus, we perform reinforcement learning on top of a supervised model with the policy
gradient technique to optimize outcome directly:

T T

‘CTZ(G) = _Esl;TNTFQZ’yT_tT(ST) Z log 7T9(at|5t) (3)

t=1 t=1

To take advantage of both side, we combine L;,, and £, as a hybrid objective, where A decays with
the training process:

['hybrid(e) = ‘C'rl(e) + )‘Lzm(e) (4)
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3.4 VALUE NETWORKS TRAINING

The final stage of the training pipeline is the state-value prediction. When performing long-term
program synthesis with Monte Carlo Tree Search (MCTS), we usually cannot reach the terminal
state when looking head due to poor policy performance and the depth limitation. To estimate the
expected state value under given policy 7y, we train a value function ¢ to directly predict discounted
outcomes would be received for given state:

(v r(sr) — Va(se))? 5)

T
£(¢) = _Es1;T~Tr9

t

3.5 SEARCHING WITH POLICY AND VALUE NETWORKS

Once trained, we combine policy networks and value networks with a Monte Carlo Tree Search
(MCTS) to provide a look-ahead search. Policy network is used to narrow down the breadth of the
search to high-probability actions, while the value network is used to reduce the depth of the search
with state value estimation.

The MCTS method is composed of 4 general steps: 1) Selection. MCTS starts from root state .S
(also as current state S.) and searches for the first available non-expanded leaf state S; unless the
terminal state S; is found. If the leaf node is found, MCTS will proceed expansion step. Otherwise,
it picks new current node S, from lists of S; based on four factors: state reward R, its visit time
N, its parent visit time P, and exploration factor .

Sy = argmax R./N. + ev/2log(P.) /N, (6)
S.€[51]

2) Expansion. After MCTS decides which state S, to be expanded, it applies policy network
mg(ac|sc) to sample one action from hypothesis distribution, and proceeds to S.y1. A good pol-
icy network can significantly boost search tree efficiency by reducing the necessary breadth of the
expansion. 3) Evaluation. We use the same policy 7y as our rollout policy to search terminal state
S; from node S, under t maximum step. If target state is not reached due to code error or maxi-
mum step is reached, we use a value function Vj;(s;) to estimate terminal state’s future outcome. 4)
Backup. The result of the rollout process is used to update reward for the nodes on the path from S,
to S,.

Algorithm 1 AutoAssemblet Training Process

1: Require: policy network mg; value network Vy; a task pool S = s1, ..., sk where si is constructed by
input state I, and output state O at time step t; a list of policy temperature 7 = 71, ..., Tas

2: Initialize the task weighting coefficients {wy } by setting wy, = 0fork =1,..., K

3: while AutoAssemblet has not converged do

4:  pr= Softmaz(wy) // Multi-Entropy Policy Sampling

5:  Sample a batch of tasks Sp = s1, ..., sn from task pool S based on {py }

6.

7

8

for ¢ in M do _
Collect (s¢, at, ) pairs based on policy network 7y
: wg <+ wi + (—1) 176 UR)#O} 1 Update weighting coefficients
9:  end for
10:  Update 7g by Eq. (4) // Policy Networks Training
11:  Update Vi by Eq. (5) // Value Networks Training
12: end while

4 EXPERIMENTS

In this section, we describe the results from two categories of experiments. In the first set of exper-
iments, we demonstrate how AutoAssemblet may improve upon the performance achieved through
only imitation learning or REINFORCE. In the second set of experiments, we demonstrate the per-
formance of AutoAssemblet on human-designed program benchmarks comparing to other baselines.
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4.1 EXPERIMENT SETUP

Action Space The action space the network searches on is a reduced syntax of the x86 assembly
language. We use 4 CPU registers (Y%oeax, %ebx, %ecx, Y%edz ), and 4 main data transfer / in-
teger instructions (addl, subl, movl, imull), 10 digit numbers, and optionally 4 RAM positions
(—0(%rbp), —4(%rbp), —8(%rbp), —12(%rbp) ).

Observation Space The observation space the networks look at is the current values in CPU register
and RAM as well as target values. The network takes in the observation as input and generates the
next line of code. During the training and searching process, the instruction is then compiled and
executed by CPU (or a simulator of CPU) to get subsequent state.

Model Our policy networks mainly consist of two parts: a task encoder and a program decoder.
The task encoder consists of an embedding layer and five fully-connected (FC) layers followed by
tanh. The start state and target state pairs are concatenated and feed into the embedding layer. We
implemented an unrolled RNN as the code generator. The generator receives a context vector from
the previous FC network, which extracts information about a task. Since the code length is fixed, the
unrolled RNN can significantly increase the training speed. Our value networks mainly consist of
two parts: a task encoder and a value prediction layer. The task encoder shares the same architecture
with the policy networks, and the value prediction layer is an additional FC layer followed by a
sigmoid function. Potentially, the task encoder between policy networks and value networks can be
shared.

4.2 PERFORMANCE COMPARISON

We trained neural networks on different augmentations of the training process to demonstrate the
success of our method in different settings. The hyper-parameters we tested were the size of the
task pool, the lines of code in the training code, the size of the input-output set, and the number of
registers. For all our experiments in this category, we used the default hyper-parameters of using a
pair of instances in the input-output set, 3 lines of code, 4 registers, and 300,000 coding tasks. We
compare our results with ones learned from imitation learning and REINFORCE. The prediction
accuracy is evaluated on a hold-out validation set.
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Figure 2: Performance comparison under four experiments setting

Increase of search difficulty. In our first experiment shown in Figure 2h), we evaluated our models
on increasing task pool sizes and tested for the accuracy of the generated program. Notice, both
results from imitation learning and REINFORCE drop after task pool scales larger. This is largely
due to the policy learned by networks overfits to simple and redundant tasks. Our AutoAssemblet
model shows more robust improvements with high data efficiency.

Additionally, in Figure 2b), the search space is largely increased by the number of registers used,
which leads to the sharp decrease in accuracy, but our model has the most gentle slope.

Increase of task difficulty. As our third experiment shown in Figure 2f), we increase the task
difficulty by increasing the number of steps pilot program used to generate input-outputs. For single
step task, our model shows worse performance comparing to another two baselines, but it indicates
significant higher accuracy when task challenge increases. We hypothesize that because the MCTS is
unnecessary searching for a multi-line solution, thus not recognizing the simple single-line solution.
For tasks that generate from 5 steps, it boosts accuracy from 2% to 12% compare to imitation
learning. This is because our model does not suffer from overfitting the memorization of the exact
data pattern.
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Figure 2d) demonstrates that neural network’s performance decreases when adding more input-
output pairs to the training data. The results are more consistent after increasing to more than two
input-output pairs. We hypothesize the reason for this is that having a single input-output pair makes
the task of finding the mapping between the input and output ambiguous. For a single input-output
pair, multiple high-level abstraction could solve such mapping. However, increasing the number of
pairings to at least 2 seems to remove this ambiguity for more instances within the training data.

4.3 HUMAN-DESIGNED PROGRAMMING CHALLENGES

Previously, we trained the neural network on self-explored tasks generated by the pilot policy. In
this experiment, we designed a set of human-designed tasks to test its potentials to solve meaningful
programming tasks. As a note, we create two input-output pairs per task to ensure that the network
produces the desired program.

We divided the tasks into three categories based on their level of abstraction. Within the easy task
set, we have the tasks of addition, subtraction, multiplication of registers, and finding the minimum
and maximum values. Within the medium task set, we have the tasks of moving the value of a
register to another register location, adding and subtracting a value larger than 10, and adding a
constant to all registers. Adding or subtracting a value greater than ten may be difficult because this
is a state that neural network rarely experienced during training. Lastly, the hard task set includes
high-level abstraction, such as filtering, sorting, switching registers, and finding the two maximum
or minimum values. Respectively, there are fifty, forty, forty human-designed tasks within the easy,
medium, and hard test sets.

Model Imitation MCTS (Prior) REINFORCE AutoAssemblet (Ours)
EASY

SUCCESS RATE 74% 74% 60% 82%

AVE STEPS 5.2 5.1 43 2.9
MEDIUM

SUCCESS RATE 40% 23% 50% 55%

AVE STEPS 9.2 10.6 6.2 8.9
HARD

SUCCESS RATE 15% 10% 13% 23%

AVE STEPS 11.0 11.3 8.2 10.8
TOTAL

SUCCESS RATE 45 % 39% 43% 62%

Table 1: Results for experiment 2

The similar performance between the model learned from imitation learning and REINFORCE re-
flects the limitations of only using a policy network for code generation, and thus suggests that im-
provement can come from the use of a value function. However, as indicated in table|l} the MCTS
(Prior) performs even more poorly even when introducing a naive value function. The MCTS (Prior)
utilizes a supervised policy network and the L2 distance heuristic as its value function. We hypothe-
size its poor performance is due to overfiting within the policy network, and the value function being
inaccurate.

Our model performs better than all baseline models with an over 20% overall improvement over the
nearest models. As seen in table[T] our model achieved a higher accuracy for test set within different
difficulty level.

5 DISCUSSION

5.1 WHAT AUTOASSEMBLET LEARNED FROM NETWORKS

In this section, we highlight a set of programs generated by AutoAssemblet to solve the human-
designed tasks we created. These examples illustrate the model’s ability to create low-level code
that is interpretable by human and to find shortcuts of the problems.
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First, the model can learn a continuous representation of number system, so it can learn simple
algebra to switch a sequence of number to another sequence. Second, for those digits not frequently
seen in training data (which only appears sparsely), the model learns to approach the value with
more efficient operation (such as multiplication), and to finetune the value by add or subtract small
value to get to the exact target. Third, the mapping between register name and value is also learned
by the model. It knows which position should be changed and put the corresponding register name
to generated instruction to achieve its goal, rather than changing digits randomly.

We also try the setting including RAM. The input is originally stored in RAM, and the target is
only about transforming the values in RAM. As a simple problem, the network learns to first load
the value to register, apply operations on it, and store it back to memory after the task is done. We
present several demo programs below:

) Input-output example: Description:
A seex gt P The task is o add 30 to the third
2ddl  §2 ! . [5, 1, 7, 8] .reglster. It tests 'the mod;l’s ab}l—
! (4, 3, 7, 0] ity to perform simple arithmetic.
Output: Instead of addition, the model
[5, 1, 37, 8] utilizes multiplication.
(4, 3, 30, 0]
MAP: Input-output example: Description:
addl $1, %ebx Input: The goal is to add 1 to each
addl $1, %edx (8, 1, 0, 7] register, which would show up
addl $1, %eax (2, 4, 5, 7] in a human-made program of
addl $2, %ecx Output: iteration.
subl $0, %ecx (9, 2, 1, 8]
subl $1, %ecx [3, 5, 6, 8]
Filter: Input-output example: Description:
subl $1, %ecx Input: Filters out the values less than 3
subl $2, %eax [1,5,0,2] and sets them to -1.
addl $4, %edx [1,8,0,2]
subl $4, %edx Output:
addl $4, %edx [-1,5,-1,-1]
[711 8/ 71/ -1]
Sort: Input-output example: Description:
addl $4, %ebx Input: Sort the variables in the list
subl $4, %eax (5,1,7,8] and return. Sorting is highly
Output: dependent on the input, therefore
[1,5,7,8] we only sort a single list of inputs.
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Load/Store Memory: Input-output example: Description:
movl -8 (%rbp), %ebx Input: Load a variable from RAM, add
subl $3, Sebx CPU: [0, 0, 0, 0] it with a number, and store it to
movl %ebx, -4 (%$rbp) RAM:[2, 8, 0, 1] RAM again.

cpU: [0, 0, 0, 0]

RAM: [6, 5, 4, 9]

Output:

CpU: [0, -3, 0, 0]

RAM: [2, -3, 0, 1]

CpU: [0, 1, 0, 0]

RAM: [6, 1, 4, 9]

5.2 LIMITATIONS AND FUTURE DIRECTIONS

However, limitations still remain. One major issue is that we prohibit the model to use control-
flow instructions. Many challenging tasks can be easily solved with a loop and if statement. Our
network decides next instruction only by observing current and target machine states. There is no
sufficient mechanism to step back to certain historical states to re-insert a branching clause into
instruction flow. Thus an advanced global planning mechanism is necessary to introduce control-
flow instructions into our setting. Besides,the abuse of if-else clauses can also hampers extraction of
general methods to solve a task, because an agent can be cheated in a simple adversarial example:
reduce any multi-instance based problem to one-instance problem by if-else clause and take trivial
steps to solve each instance separately. Such limitation contradicts the original purpose of finding
the universal method to solve all instances in the same task.

Another challenge is variable management. Variables in high-level language are bounded to certain
stack or heap positions in assembly language. The agent needs to know which position is accessible
to avoid stack-overflow and segmentation fault, and which variable is available in current scope
to avoid getting out-dated value of it. This problem is especially important in solving tasks with
variables needs long-term usage. A variable management mechanism should also be introduced to
apply accurate operations on variables and to protect the prohibited area in RAM and registers.

6 CONCLUSION

We have presented a neural program synthesis algorithm, AutoAssemblet, for generating a segment
of assembly code to execute state change in the CPU and RAM. We overcome the limitations in
the previous program synthesis literature by designing a self-learning strategy suitable for code
generation learned via reinforcement learning. We adapt policy networks and value networks to
reduce the breadth and depth of the Monte Carlo Tree Search. Applicability for AutoAssemblet
using an effective reinforcement learning approach has been observed in our experiments, where a
sequence of assembly codes can be successfully generated to execute the stage changes within the
CPU. It points to a promising direction for program synthesis, if properly formulated, to learn to
code at scale.

REFERENCES

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018.

M Balog, AL Gaunt, M Brockschmidt, S Nowozin, and D Tarlow. Deepcoder: Learning to write
programs. In International Conference on Learning Representations (ICLR 2017). OpenReview.
net, 2017.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and Al in
games, 4(1):1-43, 2012.



Under review as a conference paper at ICLR 2020

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In International Conference
on Learning Representations, 2018.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72-83. Springer, 2006.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, Subhajit
Roy, et al. Program synthesis using natural language. In Proceedings of the 38th International
Conference on Software Engineering, pp. 345-356. ACM, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiriska, Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471, 2016.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In ACM
Sigplan Notices, volume 46, pp. 317-330. ACM, 2011.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends®) in Programming Languages, 4(1-2):1-119, 2017.

Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, Anthony Tomasic, and
Graham Neubig. Retrieval-based neural code generation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 925-930, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In Advances in neural information processing systems, pp. 190-198, 2015.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gul-
wani. Neural-guided deductive search for real-time program synthesis from examples. In Inter-
national Conference on Learning Representations, 2018.

Neel Kant. Recent advances in neural program synthesis. arXiv preprint arXiv:1802.02353, 2018.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. arXiv
preprint arXiv:1511.06392, 2015.

Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. A machine learn-
ing framework for programming by example. In International Conference on Machine Learning,
pp. 187-195, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928-1937, 2016.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. 2016.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint
arXiv:1511.06279, 2015.

Martin Riedmiller. Neural fitted q iteration—first experiences with a data efficient neural reinforce-
ment learning method. In European Conference on Machine Learning, pp. 317-328. Springer,
2005.

10



Under review as a conference paper at ICLR 2020

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889—1897, 2015.

Tom Shanley. x86 Instruction Set Architecture. MindShare press, 2010.

Mnih Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, and Ioannis Antonoglou. Playing
atari with deep reinforcement learning. In NIPS Deep Learning Workshop, 2013.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 440-450, 2017.

11



	Introduction
	Related Work
	AutoAssemblet
	Task Sampling
	Multi-Entropy Policy Sampling
	Policy Networks Training
	Value Networks Training
	Searching with Policy and Value Networks

	Experiments
	Experiment Setup
	Performance Comparison
	Human-Designed Programming Challenges

	Discussion
	What AutoAssemblet learned from networks
	Limitations and Future Directions

	Conclusion

