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ABSTRACT

Adversarial training provides a principled approach for training robust neural net-
works. From an optimization perspective, the adversarial training is essentially
solving a minimax robust optimization problem. The outer minimization is try-
ing to learn a robust classifier, while the inner maximization is trying to generate
adversarial samples. Unfortunately, such a minimax problem is very difficult to
solve due to the lack of convex-concave structure. This work proposes a new ad-
versarial training method based on a generic learning-to-learn (L2L) framework.
Specifically, instead of applying the existing hand-designed algorithms for the in-
ner problem, we learn an optimizer, which is parametrized as a convolutional neu-
ral network. At the same time, a robust classifier is learned to defense the adver-
sarial attack generated by the learned optimizer. Our experiments over CIFAR-10
and CIFAR-100 datasets demonstrate that the L2L outperforms existing adversar-
ial training methods in both classification accuracy and computational efficiency.
Moreover, our L2L framework can be extended to the generative adversarial imi-
tation learning and stabilize the training.

1 INTRODUCTION

This decade has witnessed great breakthroughs in deep learning in a variety of applications, such
as computer vision (Taigman et al., 2014; Girshick et al., 2014; He et al., 2016; Liu et al., 2017).
Recent studies (Szegedy et al., 2013), however, show that most of these deep learning models are
very vulnerable to adversarial attacks. Specifically, by injecting a small perturbation to a normal
sample, one can obtain an adversarial example. Although the adversarial example is semantically
indistinguishable from the normal one, it can fool deep learning models and undermine the security
of deep learning, causing reliability problems in autonomous driving, biometric authentication, etc.

Researchers have devoted many efforts to studying efficient adversarial attack and defense (Szegedy
et al., 2013; Goodfellow et al., 2014b; Nguyen et al., 2015; Zheng et al., 2016; Madry et al., 2017;
Carlini and Wagner, 2017). There is a growing body of work on generating adversarial exam-
ples, e.g., fast gradient sign method (FGSM, Goodfellow et al. (2014b)), projected gradient method
(PGM, Kurakin et al. (2016)), Carlini-Wagner (CW, Paszke et al. (2017)) etc. As for defense, Good-
fellow et al. (2014b) propose to robustify the network by adversarial training, which trains over the
adversarial examples and still requires the network to output the correct label. Further, Madry et al.
(2017) formalize the adversarial training as the following minimax optimization problem:

minθ
1
n

∑n
i=1

[
maxδi∈B `(f(xi + δi;θ), yi)

]
, (1)

where {(xi, yi)}ni=1 ⊂ Rd × Y are n pairs of input feature and the corresponding label, ` denotes a
loss function, f(·;θ) denotes the neural network with parameter θ, and δi ∈ B denotes the perturba-
tion for xi in constraint B. The existing literature on the optimization also refers to θ as the primal
variable and δi’s as the dual variables. Different from the well-studied convex-concave problem1,
problem (1) is very challenging since ` is nonconvex in θ and nonconcave in δ. As a result, they
may be many equilibria, and majority of them are unstable. In the existing optimization literature,
there is no algorithm to converge to a stable equilibrium with theoretical guarantees. Empirically,
the existing primal-dual algorithms perform poorly for solving (1).

Minimax formulation (1) naturally provides us with a unified perspective on prior works of adversar-
ial training. Such a minimax problem consists of two optimization problems, an inner maximization
problem and an outer minimization problem: The inner problem targets on finding an optimal attack

1Loss function `(θ; δ) is convex in primal variable θ and concave in dual variable δ.
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for a given data point (x, y) that maximizes the loss, which essentially is the adversarial attack; The
outer problem aims to find a θ so that the loss given by the inner problem is minimized.

For solving (1), Goodfellow et al. (2014b) propose to use FGSM to solve the inner problem. Kurakin
et al. (2016) then find that FGSM with true label suffers from a “label leaking” effect, which can
ruin the adversarial training. Madry et al. (2017) further suggest to solve the inner problem by
PGM and obtain a better result than FGSM, since FGSM essentially is one iteration PGM. However,
adversarial training needs to find a δi for each (xi, yi), thus the dimension of the overall search
space for all data is substantial, which makes the computation expensive.

Instead, we propose a new learning-to-learn (L2L) framework that provides a more principled and
efficient way for adversarial training. Specifically, we parameterize the optimizer of the inner max-
imization problem by a neural network denoted by g(A(x, y,θ);φ), where A(x, y,θ) denotes the
input of the optimizer g. We also call the optimizer as the attacker network. Since the neural net-
work is very powerful in function approximation, our parameterization ensures that g is able to yield
strong adversarial perturbations. Under our framework, instead of directly solving δi, we update the
parameter φ of g. Our training procedure becomes updating the parameters of two neural networks,
which is very similar to Generative Adversarial Network (GAN, Goodfellow et al. (2014a)). The
proposed L2L is a generic framework and can be applied to other minimax optimization problems,
e.g., generative adversarial imitation learning, which is studied in Section 4.

Different from the hand-designed methods that compute the adversarial perturbation for each indi-
vidual sample using gradients from backpropagation, our methods generate the perturbations for all
samples through the shared attacker g. This enables g to learn potential common structures of the
perturbations. Therefore, our method is capable of yielding strong perturbations and accelerating
the training process. Furthermore, L2L framework is very flexible: we can either choose different
inputA(x, y,θ), or use different attacker architectures. For example, we can include gradient infor-
mation in A(x, y,θ) and use a recurrent neural network (RNN) to mimic multi-step gradient-type
methods. Instead of simply computing the high order information with finite difference approxi-
mation or multiple gradients, by parameterizing the algorithm as a neural network, our proposed
methods can capture this information in a much smarter way (Finn et al., 2017). Our experiments
demonstrate that our proposed methods not only outperform existing adversarial training methods,
e.g., PGM training, but also enjoy the computational efficiency over CIFAR-10 and CIFAR-100
datasets (Krizhevsky and Hinton, 2009).

The research on L2L has a long history (Schmidhuber, 1987; 1992; 1993; Younger et al., 2001;
Hochreiter et al., 2001; Andrychowicz et al., 2016). The basic idea is that one first models the
updating formula of complicated optimization algorithms in a parametric form, and then uses some
simple algorithms, e.g., stochastic gradient algorithm to learn the parameter of the optimizer. Among
existing works, Hochreiter et al. (2001) propose a system allowing the output of backpropagation
from one network to feed into an additional learning network, with both networks trained jointly;
Based on this, Andrychowicz et al. (2016) further show that the design of an optimization algorithm
can be cast as a learning problem. Specifically, they use long short-term memory RNNs to model
the algorithm and allow the RNNs to exploit structure in the problems of interest in an automatic
way, which is undoubtedly one of the most popular methods for learning-to-learn.

However, there are two major drawbacks of the existing L2L methods: (1) It requires a large amount
of datasets (or a large number of tasks in multi-task learning) to guarantee the learned optimizer
to generalize, which significantly limits their applicability (most of the related works only consider
the image encoding as the motivating application); (2) The number of layers/iterations in RNN for
modeling algorithms cannot be large to avoid significant computational burden in backpropagation.

Our contribution is that we fill the blank of the learning-to-learn framework in solving minimax
problem, and our proposed methods do not suffer from the aforementioned drawbacks: (1) The
attacker network g with a different φ essentially generates a different task/dataset. Therefore, for
adversarial training, we have sufficiently many tasks for learning-to-learn; (2) The inner problem
does not need a large scale RNN, and we use a convolutional neural network (CNN) or a length-two
RNN (sequence of length 2) as our attacker network, which eases the computation.

Our work is also related to GAN and dual-embedding (Goodfellow et al., 2014a; Dai et al., 2016).
All solve minimax problems and share some common ground. We discuss these works in Section 5.
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Notations. Given a ∈ R, denote (a)+ as max(a, 0). Given x,y ∈ Rd, denote xi as the i-th element
of x, ||x||∞ = maxi |xi| as `∞-norm of x, and x◦y = [x1y1, · · · , xdyd]> as element-wise product.

2 METHOD

Figure 1: Illustration for the hardness of prob-
lem (1). A wrong descent direction leads to a
limiting cycle and algorithms fail to converge.

This paper focuses on `∞-norm attack. We define
the `∞-ball with center 0 and radius ε by B(ε) =
{δ ∈ Rd : ||δ||∞ ≤ ε} and the corresponding
projection as follows:

ΠB(ε)(δ) = sign(δ) ◦max(|δ|, ε),

where sign and max are element-wise operators.

2.1 ADVERSARIAL TRAINING

The goal of adversarial training is to robustify
neural networks. Recall that from a robust optimization perspective, given n samples {(xi, yi)}ni=1,
where xi is the i-th feature vector and yi is the corresponding label, adversarial training is reformu-
lated as the following optimization problem (1):

minθ
1
n

∑n
i=1

[
maxδi∈B `(f(xi + δi;θ), yi)

]
,

where f denotes the network with parameter θ, ` denotes a loss function, and ε is maximum pertur-
bation magnitude.

We first demonstrate the hardness of solving problem (1). Ideally, we want to obtain the optimal
solution for the inner problem

δ∗i := argmaxδi∈B `(f(xi + δi;θ), yi).

However, note that the loss function `(f(xi + δi;θ), yi) is highly nonconcave in δi. Therefore, in
reality the δi we obtained is very unlikely to be the optimum δ∗i . This then often leads to a highly
unreliable or even completely wrong search direction, e.g.,

〈∇θ`(f(xi + δi;θ), yi),∇θ`(f(xi + δ∗i ;θ), yi)〉 < 0,

which may further results in a limiting cycle shown in Figure 1. This becomes even worse when
sample noises exist.

Algorithm 1 Standard pipeline of adversarial training
Input: {(xi, yi)}ni=1: clean data, α: learning rate, N :
number of epochs, ε: maximum perturbation magnitude.
for t← 1 to N do

Sample a minibatchMt

for i inMt do
δi ← argmaxδi∈B(ε) `(f(xi + δi;θ), yi)

Generate adversarial perturbation for (xi, yi)

θ ← θ − α 1
|Mt|

∑
i∈Mt

∇θ`(f(xi + δi;θ), yi)

Update θ over adversarial data {(xi + δi, yi)}i∈Mt

In the existing literature, the standard
pipeline of adversarial training is shown
in Algorithm 1. Since the step of gen-
erating adversarial perturbation δi in Al-
gorithm 1 is intractable, most adversar-
ial training methods adopt hand-designed
algorithms. For example, Kurakin et al.
(2016) propose to solve the inner prob-
lem approximately by first order methods
such as PGM. Specifically, PGM itera-
tively updates the adversarial perturbation
by projected sign gradient ascent method
for each sample: Given one sample (xi, yi), at the t-th iteration, PGM takes

δti ← ΠB(ε)
(
δt−1i + η · sign

(
∇x`(f(x̃ti;θ), y)

))
, (2)

where x̃ti = xi + δt−1i , η is the learning rate, T is a pre-defined total number of iterations, and
δ0i = 0, t = 1, · · · , T . Finally PGM takes δi = δTi . Note that FGSM essentially is one-iteration
PGM. Besides, some works adopt other optimization methods, such as momentum gradient method
(Dong et al., 2018), and L-BFGS (Tabacof and Valle, 2016). However, except for FGSM, all require
numerous queries for gradients through backpropagation, which is computationally expensive.
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2.2 LEARNING TO DEFENSE BY LEARNING TO ATTACK (L2L)

Since the objective function is nonconvex-nonconcave, there is no guarantee for hand-designed
methods to perform well. Instead, we propose to learn an optimizer for the inner problem. Specif-
ically, we parameterize the attacker by a Neural Network g(A(x, y,θ);φ), where A(x, y,θ), the
input of the network g, summaries the information of data and neural network f(·;θ). We then
convert problem (1) to

minθ
1
n

∑n
i=1

[
`(f(xi + g(A(xi, yi,θ);φ∗);θ), yi)

]
, (3)

where φ∗ is defined as the solution to the following optimization problem:

φ∗ ∈ argmax
φ

1

n

n∑
i=1

`(f(xi + g(A(xi, yi,θ);φ);θ), yi) subject to g(A(x, y,θ);φ) ∈ B(ε).

Solving problem (3) naturally consists of two stages. In the first stage, the classifier f aims to fit
over all perturbed data; While in the second stage, given a certain f obtained in the first stage, the
attacker network g targets on generating optimal perturbations under constraints δi’s ∈ B(ε).

Since δi = g(A(xi, yi;θ);φ), constraints can be simply handled by a tanh activation function in
the last layer of g. Specifically, because the magnitude of tanh output is bounded by 1, after we
rescale the output by ε, the output of g automatically satisfies the constraints.
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Figure 2: An illustration of L2L. We learn a neu-
ral network to model the algorithm for generating
adversarial attack.

This framework is very flexible. We can choose
A(x, y,θ) as the input and mimic multi-step
gradient algorithms shown in Figure 2. Here
we provide the following three examples:

Naive Attacker Network. This is the simplest
example among our methods, taking the origi-
nal image xi as the input, i.e.,

A(xi, yi,θ) = xi and δi = g(xi;φ).

Under this setting, L2L training is similar to GAN training. The major difference is that the generator
in GAN yields synthetic data by transforming random noises, while the naive attacker network
generates perturbations by transforming training samples.

Original 
Input

Classifier f

Gradient
w.r.t. Clean Loss

Perturbation

Perturbed
Input

Clean Loss

Adv. Loss

+

Backprop

Concatenate

Attacker g

1st pass
2nd pass
3rd pass

Figure 3: The architecture of L2L adversar-
ial training with gradient attacker network.

Gradient Attacker Network. Motivated by hand-
designed methods, e.g., FGSM, we design an at-
tacker which takes the gradient information into
computation. Specifically, we concatenate image xi
and gradient ∇x`(f(xi;θ), yi) from backpropaga-
tion as the input of g, i.e.,

A(xi, yi,θ) =
[
xi,∇x`(f(xi;θ), yi)

]
and δi = g

(
xi,∇x`(f(xi;θ), yi);φ

)
.

Since more information is provided, we expect the
attacker network to be more efficient to learn and
yield more powerful perturbations.

Multi-Step Gradient Attacker Network. We adapt
the RNN to mimic a multi-step gradient update.
Specifically, we use the gradient attacker network as
the cell of RNN sharing the same parameter φ. As
we mentioned earlier, the number of layers/iterations
in the RNN for modeling algorithms cannot be very
large so as to avoid significant computational burden
in backpropagation. In this paper, we focus on a length-two RNN to mimic a two-step gradient
update. The corresponding perturbation becomes:

δi = ΠB(ε)
(
δ
(0)
i + g

(
x̃i,∇x`(f(x̃i, yi;θ);φ

))
,

where x̃i = xi + δ
(0)
i and δ(0)i = g

(
xi,∇x`(f(xi, yi;θ);φ

)
.
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Algorithm 2 Learning-to-learn-based adversarial training
with gradient attacker network
Input: {(xi, yi)}ni=1: clean data, α1, α2: learning rates, N :
number of epochs, ε: maximum perturbation magnitude.
for t← 1 to N do

Sample a minibatchMt

for i inMt do
ui ← ∇x`(f(xi;θ), yi)
δi ← g(xi,ui;φ)
Generate perturbation by g

θ ← θ − α1
1
|Mt|

∑
i∈Mt

∇θ`(f(xi + δi;θ), yi)

Update θ over adversarial data {(xi + δi, yi)}i∈Mt

φ← φ+ α2
1
|Mt|

∑
i∈Mt

∇φ`(f(xi + δiθ), yi)

Update φ over adversarial data {(xi + δi, yi)}i∈Mt

Taking gradient attacker network as an
example, Figure 3 illustrates how L2L
works and jointly trains two networks:
The first forward pass is used to obtain
gradient of the classification loss over
clean data; The second forward pass
is used to generate perturbation δi by
attacker g; The third forward pass is
used to calculate the adversarial loss `
in (3). Since our gradient attacker net-
work only needs one backpropagation
to query gradient, it amortizes the ad-
versarial training cost, which leads to
better computational efficiency. More-
over, L2L may adapt to the underlying
optimization problem and yield better
solution for the inner problem. The
corresponding procedure of L2L is shown in Algorithm 2.

3 EXPERIMENTS

To demonstrate the effectiveness and computational efficiency of our methods, we compare our
methods with PGM training over CIFAR-10 and CIFAR-100 datasets. All experiments are done in
PyTorch with one NVIDIA 2080 Ti GPU.

For simplicity, we denote Plain Net as the classifier network trained over clean data only, PGM Net
as the classifiers with PGM training, and Naive L2L, Grad L2L, and 2-Step L2L as classifiers using
L2L training with corresponding attacker networks.

Classifier Network. All experiments adopt a 34-layer wide residual network (WRN-34-10,
Zagoruyko and Komodakis (2016)) implemented by Zhang et al. (2019) as the classifier network.
For each method, we train the classifier network from scratch. For Plain Nets, we adapt the same
training procedure as Zagoruyko and Komodakis (2016). We use cross entropy as the loss function.

Table 1: Attacker network architecture: k, c, s, p denote
the kernel size, output channels, stride and padding pa-
rameters of convolutional layers, respectively.

Conv: [k = 3× 3, c = 64, s = 1, p = 1],
BN+ReLU

ResBlock: [k = 3× 3, c = 128, s = 1, p = 1]
ResBlock: [k = 3× 3, c = 256, s = 1, p = 1]
ResBlock: [k = 3× 3, c = 128, s = 1, p = 1]
Conv: [k = 3× 3, c = 3, s = 1, p = 1], tanh

Attacker Network. Table 1 presents
the architecture of our attacker network2.
The ResBlocks use the same structure as
the generator proposed in Miyato et al.
(2018). The detailed structure of Res-
Blocks is provided in Appendix B. Batch
normalization (BN) and activations, e.g.,
ReLU and tanh, are applied when speci-
fied. The tanh function easily makes the
output of attacker satisfy the constraints.

White-box and Black-box. We compare different methods under both white-box and black-box
settings. Under the white-box setting, attackers can access all parameters of target models and
generate adversarial examples based on the models; whereas under the black-box setting, accessing
parameters is prohibited. Therefore, we adopt the standard transfer attack method from Liu et al.
(2016). Due to the space limit, we leave results of the black-box setting in Appendix A.

Robust Evaluation. We evaluate the robustness of the networks by PGM, CW, and 2-Step L2L
attacker with the maximum perturbation magnitude ε = 0.03 (after rescaling the pixels to [0, 1])
over CIFAR-10 and CIFAR-100. For PGM attack, we use 20, 40, and 100-iteration PGM with a
perturbation step size η = 0.003. For CW attack, we adopt the implementation from Paszke et al.
(2017), and the maximum number of iterations as 100. For each method, we repeat 5 runs with
different random initial seeds and report the worst result.

L2L. To update classifier’s parameter θ, we use the SGD algorithm with Polyak’s momentum (pa-
rameter 0.9, Liu et al. (2018)) and weight decay (parameter 2× 10−4, Krogh and Hertz (1992)); To

2We provide another architecture in the Appendix B.
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update the attacker’s parameter φ, we use the Adam optimizer (parameter [0.9, 0.999], Kingma and
Ba (2014)) and weight decay (parameter 2× 10−4) so that it adaptively balances the inner and outer
optimization. In addition, we train the whole network for 100 epochs and set the initial learning rate
for SGD as 0.1, the learning rate decay parameter as 0.1 with decay schedule [30,60,90], and the
initial learning rate for Adam optimizer as 0.001 without learning rate decay.

PGM Adversarial Training. For CIFAR-10, we directly report the result from Madry et al. (2017)
as the baseline; For CIFAR-100, we train a PGM Net as a baseline. To update the parameter θ, we
use the same configuration of SGD algorithm in L2L. Moreover, we adopt the setting from Madry
et al. (2017), that is, we first use 10-iteration PGM with the perturbation step size 0.007 in (2) to
generate the adversarial samples, and then train the PGM Net over these samples.

Table 2: Results of different defense methods under white-box setting.
Defense Method Attack Dataset Clean Accuracy Robust Accuracy

Zheng et al. (2016) PGM-20 CIFAR10 94.64% 0.15%
Kurakin et al. (2016) PGM-20 CIFAR10 85.25% 45.89%
Madry et al. (2017) PGM-20 CIFAR10 87.30% 47.04%

Naive L2L PGM-20 CIFAR10 94.53% 0.01%
Grad L2L PGM-20 CIFAR10 85.84% 51.17%

2-Step L2L PGM-20 CIFAR10 85.35% 54.32%
Grad L2L PGM-100 CIFAR10 85.84% 47.72%

2-Step L2L PGM-100 CIFAR10 85.35% 52.12%
Grad L2L CW CIFAR10 85.84% 53.5%

2-Step L2L CW CIFAR10 85.35% 57.07%
PGM Net PGM-20 CIFAR100 62.68% 23.75%
Grad L2L PGM-20 CIFAR100 62.18% 28.67%

2-Step L2L PGM-20 CIFAR100 60.95% 31.03%
PGM Net PGM-100 CIFAR100 62.68% 22.06%
Grad L2L PGM-100 CIFAR100 62.18% 26.69%

2-Step L2L PGM-100 CIFAR100 60.95 29.75%
PGM Net CW CIFAR100 62.68% 25.95%
Grad L2L CW CIFAR100 62.18% 29.65%

2-Step L2L CW CIFAR100 60.95% 32.28%

Table 3: Running time for one epoch over CIFAR-10 (1st Row) and CIFAR-100 (2nd Row). (Unit: s)
Plain Net PGM Net Naive L2L Grad L2L 2-Step L2L

106.5± 1.5 1310.8± 14.2 293.7± 3.1 617.5± 6.1 805.1± 8.1
106.9± 1.4 1354.8± 14.1 310.0± 2.9 623.1± 6.3 824.7± 8.4

Figure 4: Robust accuracy against perturbation mag-
nitudes and number of iterations of PGM over CIFAR-
100. Top two figures show the absolute accuracy over
adversarial samples; the bottom two show the differ-
ence accuracy (PGM Net as baseline).

Experiment Results. Table 2 shows the
results of all methods over CIFAR-10 and
CIFAR-100 under the white-box setting.
As can be seen, without gradient informa-
tion, Naive L2L is vulnerable to the PGM
attacks. However, when the attacker uti-
lizes the gradient information, Grad L2L
and 2-Step L2L significantly outperform
the PGM Net over CIFAR-10 and CIFAR-
100, with a small loss for the clean accu-
racy. In addition, Table 3 shows the one
epoch running time of all methods over
CIFAR-10 and CIFAR-100. As can be
seen, Grad L2L and 2-Step L2L is much
faster than PGM Net. By further compar-
ing the accuracy of Grad/2-Step L2L and
PGM Net in Table 2, we find that L2L enjoys computational efficiency. In addition, Figure 4 presents
the robust accuracy against the number of iterations (fixed perturbation magnitude ε = 0.031) and
the perturbation magnitude (fixed number of iterations T = 10). As can be seen, 2-Step L2L is
much more robust than the PGM Net.

Visualization of Adversarial Examples. Figure 5 provides an illustrative example of the adversar-
ial perturbations generated by FGSM, PGM-20 and 2-Step L2L attacker for a cat over CIFAR-10.
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As can be seen, the attacks for these two networks are very different. Moreover, the perturbation
generated by the 2-Step L2L attacker is much more smooth than the FGSM and PGM. In this ex-
ample, 2-Step L2L labels all adversarial samples correctly; whereas the PGM Net is fooled by the
PGM-20 attack and misclassifies it as a dog.

Adversarial Sample 5 times Magnitude 30 times Magnitude

(a) Adversarial samples from 2-Step L2L.

Adversarial Sample 5 times Magnitude 30 times Magnitude

(b) Adversarial samples from PGM Net.

Figure 5: An illustrative examples of FGSM (Top), PGM-20 (Mid), and 2-Step L2L (Bottom) pertur-
bations for a cat under PGM Net, and 2-Step L2L with perturbation magnitude 0.031.

4 EXTENSION: GENERATIVE ADVERSARIAL IMITATION LEARNING

Our proposed L2L is a generic framework and can be applied to a broad class of minimax optimiza-
tion problems. Here, we investigate the generative adversarial imitation learning (GAIL, Ho and
Ermon (2016)). GAIL aims to learn a policy from expert’s behavior, by recovering the expert’s cost
function and extracting a policy from the recovered cost function, which can also be formulated as
a minimax optimization problem. We then show that under L2L framework, we stabilize the GAIL
training by replacing the inner optimizer with a neural network.

Original GAIL. GAIL solves the following minimax optimization problem:

min
θπ

max
θD

E(s,a)∼π(s;θπ)[log (D(s, a; θD))] + E(s̃,ã)∼πE
[log(1−D(s̃, ã; θD))]− λH(π), (4)

where π(·; θπ) is the trained policy parameterized by θπ , πE denotes the expert policy, πE,D(·, ·; θD)
is the discriminator parameterized by θD, λH(π) denotes a entropy regularizer with tuning param-
eter λ, (s, a) and (s̃, ã) denote the state-action for the trained policy and expert policy, respectively.
By optimizing 4, the discriminatorD distinguishes the state-action (s, a) generated from the learned
policy π with the sampled trajectories (s̃, ã) generated from some expert policy πE . In the original
GAIL training, for each iteration, we update the parameter of D, θD, by stochastic gradient ascend
and then update θπ by the trust region policy optimization (TRPO, Schulman et al. (2015)).

GAIL with L2L. Similar to the adversarial training with L2L, we apply our L2L framework to
GAIL by parameterizing the inner optimizer as a neural network U(; θU) with parameter θU. Its
input contains two parts: parameter θD and the gradient of loss function with respect to θD:

gD(θD, θπ) = Es,a∼π(s;θπ)[∇θD log (D(s, a; θD))] + Es̃,ã∼πE [∇θD log(1−D(s̃, ã; θD))].

In practice, we use a minibatch (several sample trajectories) to estimate gD(θD, θπ), denoted as
ĝD(θD, θπ). Specifically, at the t-th iteration, we first calculate ĝtD = ĝD(θtD, θ

t
π) and then update

θt+1
D = U(θtD, ĝ

t
D; θtU). Next, we update θU by gradient ascend based on the sample estimate of

Es,a∼π(s;θtπ)[∇θU log (D(s, a;U(θtD, ĝ
t
D; θtU)))] + Es̃,ã∼πE

[∇θU log(1−D(s̃, ã;U(θtD, ĝ
t
D; θtU)))].

The detailed algorithm is presented in Appendix C.

Experiments. We compare the performance between the original GAIL and GAIL with L2L on
two simulated environments: CartPole and Mountain Car (Brockman et al., 2016). As can be seen
in Figure 6, we find that GAIL has a sudden performance drop after training for a long time. We
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conjecture that is because the discriminator overfits the expert trajectories and converges to a bad
optimum, which is not generalizable. On the other hand, GAIL with L2L is much more stable. It
is very important to real applications of GAIL, since in real-world environment the actual reward is
often not accessible. If we simply train GAIL for a long time, it may converge to the bad optima.
We, however, have no clue whether there is a sudden performance drop. With the help of L2L, we
can stabilize the training and obtain a much more reliable algorithm for real-world applications.

Mountain Car CartPole

GAIL

L2L GAIL

Figure 6: Reward vs. iteration of the trained policy using original GAIL and L2L GAIL.

5 DISCUSSIONS

We emphasize the benefits of our L2L approach and discuss several closely related works.

Benefits of our neural network approach in adversarial training: (1) Since the neural network
has been known to be powerful in function approximation, Our attacker network g can yield strong
adversarial perturbations. Since they are generated by the same attacker, the attacker g essentially
learns some common structures across all samples; (2) The attacker networks in our experiments are
actually overparametrized, which has been conjectured to ease the training of deep neural networks.
We believe that similar phenomena happen to our attacker network, and ease the adversarial training.

Closely related works:

• By leveraging the Fenchel duality and feature embedding technique, Dai et al. (2016) convert a
learning conditional distribution problem to a minimax problem , which is similar to naive attacker
network. Both approaches, however, lack the primal information. In contrast, gradient attacker
network considers the gradient information of primal variables, and achieves good results.

• Goodfellow et al. (2014a) propose the GAN, which is very similar to our L2L framework. Both
GAN and L2L contain one generator network and one classifier network, and jointly train these
two networks. There are two major difference between GAN and our framework: (1) GAN aims to
transform the random noises to the synthetic data which is similar to the training examples, while
ours targets on transforming the training examples to the adversarial examples for robustifying the
classifier; (2) Our generator network does not only take the training examples (analogous to the
random noise in GAN) as the input, but also exploits the gradient information of the objective
function, since it essentially represents an optimization algorithm. The training procedure of these
two, however, are quite similar. We adopt some tricks from GAN training to our framework to
stabilize the training process. For example, in Grad L2L training over SVHN, we adopt the two-
time scale trick (Heusel et al., 2017).

• There are some other works simply combining the GAN framework and adversarial training to-
gether. For example, Baluja and Fischer (2017) and Xiao et al. (2018) propose some ad hoc GAN-
based methods to robustify neural networks. Specifically, for generating adversarial examples, they
only take training examples as the input of the generator, which lacks the information of the outer
mimnimization problem. Instead, our proposed L2L methods (e.g., Grad L2L, 2-step L2L) connect
outer and inner problems by delivering the gradient information of the objective function to the gen-
erator. This is a very important reason for our performance gain on the benchmark datasets. As a
result, the aforementioned GAN-based methods are only robust to simple attacks, e.g., FGSM, on
simple data sets, e.g., MNIST, but fail for strong attacks, e.g., PGM and CW, on complicated data
sets, e.g. CIFAR, where our L2L methods achieve significantly better performance.

8



Under review as a conference paper at ICLR 2020

REFERENCES

ANDRYCHOWICZ, M., DENIL, M., GOMEZ, S., HOFFMAN, M. W., PFAU, D., SCHAUL, T.,
SHILLINGFORD, B. and DE FREITAS, N. (2016). Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information Processing Systems.

BALUJA, S. and FISCHER, I. (2017). Adversarial transformation networks: Learning to generate
adversarial examples. arXiv preprint arXiv:1703.09387 .

BROCKMAN, G., CHEUNG, V., PETTERSSON, L., SCHNEIDER, J., SCHULMAN, J., TANG, J. and
ZAREMBA, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540 .

CARLINI, N. and WAGNER, D. (2017). Towards evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy (SP). IEEE.

DAI, B., HE, N., PAN, Y., BOOTS, B. and SONG, L. (2016). Learning from conditional distribu-
tions via dual embeddings. arXiv preprint arXiv:1607.04579 .

DONG, Y., LIAO, F., PANG, T., SU, H., ZHU, J., HU, X. and LI, J. (2018). Boosting adversarial
attacks with momentum. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

FINN, C., ABBEEL, P. and LEVINE, S. (2017). Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400 .

GIRSHICK, R., DONAHUE, J., DARRELL, T. and MALIK, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR, S.,
COURVILLE, A. and BENGIO, Y. (2014a). Generative adversarial nets. In Advances in Neural
Information Procesing Systems.

GOODFELLOW, I. J., SHLENS, J. and SZEGEDY, C. (2014b). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 .

HE, K., ZHANG, X., REN, S. and SUN, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

HEUSEL, M., RAMSAUER, H., UNTERTHINER, T., NESSLER, B. and HOCHREITER, S. (2017).
GANs trained by a two time-scale update ReLU converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems.

HO, J. and ERMON, S. (2016). Generative adversarial imitation learning. CoRR abs/1606.03476.
URL http://arxiv.org/abs/1606.03476

HOCHREITER, S., YOUNGER, A. S. and CONWELL, P. R. (2001). Learning to learn using gradient
descent. In International Conference on Artificial Neural Networks. Springer.

KINGMA, D. and BA, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

KRIZHEVSKY, A. and HINTON, G. (2009). Learning multiple layers of features from tiny images.
Tech. rep., Citeseer.

KROGH, A. and HERTZ, J. A. (1992). A simple weight decay can improve generalization. In
Advances in neural information processing systems.

KURAKIN, A., GOODFELLOW, I. and BENGIO, S. (2016). Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236 .

LIU, T., CHEN, Z., ZHOU, E. and ZHAO, T. (2018). Toward deeper understanding of noncon-
vex stochastic optimization with momentum using diffusion approximations. arXiv preprint
arXiv:1802.05155 .

9

http://arxiv.org/abs/1606.03476


Under review as a conference paper at ICLR 2020

LIU, W., ZHANG, Y.-M., LI, X., YU, Z., DAI, B., ZHAO, T. and SONG, L. (2017). Deep hyper-
spherical learning. In Advances in Neural Information Processing Systems.

LIU, Y., CHEN, X., LIU, C. and SONG, D. (2016). Delving into transferable adversarial examples
and black-box attacks. arXiv preprint arXiv:1611.02770 .

MADRY, A., MAKELOV, A., SCHMIDT, L., TSIPRAS, D. and VLADU, A. (2017). Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 .

MIYATO, T., KATAOKA, T., KOYAMA, M. and YOSHIDA, Y. (2018). Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations.
URL https://openreview.net/forum?id=B1QRgziT-

NGUYEN, A., YOSINSKI, J. and CLUNE, J. (2015). Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z., LIN, Z., DES-
MAISON, A., ANTIGA, L. and LERER, A. (2017). Automatic differentiation in pytorch .

SCHMIDHUBER, J. (1987). Evolutionary principles in self-referential learning, or on learning how
to learn: the meta-meta-... hook. Ph.D. thesis, Technische Universität München.

SCHMIDHUBER, J. (1992). Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation 4 131–139.

SCHMIDHUBER, J. (1993). A neural network that embeds its own meta-levels. In Neural Networks,
1993., IEEE International Conference on. IEEE.

SCHULMAN, J., LEVINE, S., ABBEEL, P., JORDAN, M. and MORITZ, P. (2015). Trust region
policy optimization. In International conference on machine learning.

SZEGEDY, C., ZAREMBA, W., SUTSKEVER, I., BRUNA, J., ERHAN, D., GOODFELLOW, I. and
FERGUS, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 .

TABACOF, P. and VALLE, E. (2016). Exploring the space of adversarial images. In 2016 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE.

TAIGMAN, Y., YANG, M., RANZATO, M. and WOLF, L. (2014). Deepface: Closing the gap
to human-level performance in face verification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

XIAO, C., LI, B., ZHU, J.-Y., HE, W., LIU, M. and SONG, D. (2018). Generating adversarial
examples with adversarial networks. arXiv preprint arXiv:1801.02610 .

YOUNGER, A. S., HOCHREITER, S. and CONWELL, P. R. (2001). Meta-learning with backprop-
agation. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on,
vol. 3. IEEE.

ZAGORUYKO, S. and KOMODAKIS, N. (2016). Wide residual networks. arXiv preprint
arXiv:1605.07146 .

ZHANG, H., YU, Y., JIAO, J., XING, E. P., GHAOUI, L. E. and JORDAN, M. I. (2019). Theo-
retically principled trade-off between robustness and accuracy. arXiv preprint arXiv:1901.08573
.

ZHENG, S., SONG, Y., LEUNG, T. and GOODFELLOW, I. (2016). Improving the robustness of
deep neural networks via stability training. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

10

https://openreview.net/forum?id=B1QRgziT-


Under review as a conference paper at ICLR 2020

Appendix

A BLACK-BOX ATTACK

Under the black-box setting, we first train a surrogate model with the same architecture of the target
model but a different random seed, and then attackers generate adversarial examples to attack the
target model by querying gradients from the surrogate model.

The black-box attack highly relies on the transferability, which is the property that the adversarial
examples of one model are likely to fool others. However, the transferred attack is very unstable,
and often has a large variation in its effectiveness. Therefore, results of the black-box setting might
not be reliable and effective. Thus we only present one result here to demonstrate the robustness of
different models.

Table 4: Results of the black-box setting over CIFAR-10. We evaluate L2L methods with slim attacker
networks.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

Plain Net 40.03 5.60 74.42 75.25 67.37 65.92
FGSM Net 79.20 85.02 89.90 80.40 64.28 63.89
PGM Net 83.80 84.73 84.33 85.29 67.05 65.54
Naive L2L 45.52 25.95 83.99 77.94 68.14 67.13
Grad L2L 86.10 86.87 87.93 88.01 71.15 69.95
2-Step L2L 85.83 87.10 86.51 87.60 70.58 69.38

Table 5: Experiments under the black-box setting over CIFAR-100. Note that here we only evaluate
L2L methods using the slim attacker network.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

Plain Net 21.04 9.04 50.57 54.06 40.06 41.30
FGSM Net 42.87 50.73 61.68 44.70 39.34 40.08
PGM Net 56.63 58.34 56.99 57.97 40.19 39.87
Naive L2L 20.97 10.47 50.36 54.07 38.63 39.91
Grad L2L 57.63 59.62 59.18 61.26 41.71 41.15
2-Step L2L 58.66 59.31 58.92 59.46 45.80 45.31

Table 6: Experiments under the black-box setting on SVHN. Note that here we only evaluate L2L
methods using the wide attacker network.

Surrogate Plain Net FGSM Net PGM Net
FGSM PGM10 FGSM PGM10 FGSM PGM10

Plain Net 21.72 6.94 41.81 33.13 56.77 49.41
FGSM Net 57.36 51.54 56.25 38.11 55.99 48.96
PGM Net 81.04 81.52 78.66 80.42 54.85 49.21
Naive L2L 73.02 42.14 78.11 59.79 85.31 61.08
Grad L2L 71.74 74.31 77.19 80.70 71.99 58.71
2-Step L2L 65.78 74.07 76.13 82.80 61.69 54.13
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B SLIM NETWORK

Table 7 presents the other architecture we used in the L2L. In this network, the second convolutional
layer uses downsampling, while the second last deconvolutional layer uses upsampling. Therefore,
this network is computationally cheap, due to the downsampling. However, it loses some informa-
tion of input. Inspired by residual learning in He et al. (2016), we use a skip layer connection to ease
the training of this network. Specifically, the last layer takes the concatenation ofA(x, y,θ) and the
output of the second last layer as input.

Table 7: Attacker Network Architecture.

Conv: [k = 3× 3, c = 128, s = 1, p = 1], BN+ReLU
ResBlocks: [channel = 256]
ResBlocks: [channel = 128], BN
DeConv: [k = 4× 4, c = 16, s = 2, p = 1], BN+ReLU
Conv: [k = 3× 3, c = 3, s = 1, p = 1], tanh

Figure 7 presents the architecture of ResBlocks. PReLU is a special type of Leaky ReLU with a
learnable slope parameter.

Input
BN

Add
PReLU Conv BN PReLU Conv

Figure 7: An illustration example for the architecture of ResBlocks.

Table 8 shows the results of L2L with the architecture shown in Table 7.

Table 8: Results of L2L with the other attacker network under white-box setting over CIFAR.
CIFAR-10 CIFAR-100

Clean FGSM PGM10 CW Clean FGSM PGM10 CW
Naive L2L 94.41 28.44 0.01 0.00 75.27 8.47 0.05 0.00
Grad L2L 85.31 57.44 53.42 42.72 60.60 26.58 27.77 23.14
2-Step L2L 75.36 60.19 46.42 40.82 60.23 25.92 20.63 22.70

C GENERATIVE ADVERSARIAL IMITATION LEARNING

C.1 ALGORITHMS

Algorithm 3 Learning-to-learn-based generative adversarial imitation learning
Input: Expert trajectories (s̃, ã ∼ πE(s̃)), initial policy, discriminator and updater parameters
θπ, θD, θU.
for t← 1 to N do

Sample trajectories (s, a ∼ π(a; θπ))
Compute gradient:
gtD ← 1

|(s,a)|
∑

(s,a)[∇θD log (D(s, a; θtD))] + 1
|(s̃,ã)|

∑
(s̃,ã)[∇θD log(1−D(s̃, ã; θtD))]

Update the discriminator parameters:
θt+1
D = U(θtD, g

t
D; θtU).

Update the updater parameters θU by minimizing:
1

|(s,a)|
∑

(s,a)[log (D(s, a;U(θtD, g
t
D; θtU)))] + 1

|(s̃,ã)|
∑

(s̃,ã)[log(1−D(s̃, ã;U(θtD, g
t
D; θtU)))].

Update the policy parameters θπ by a policy step using the TRPO rule (Ho and Ermon (2016))
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C.2 EXPERIMENT SETTING

Updater Architecture We use simple 3-layer perceptron with a skip layer as our updater. The
number hidden units are (2m→ 8m→ 4m→ m), wherem is the dimension of θD that depends on
the original task. For the first and the second layer, we use PReLu as the activation function, while
the last layer has no activation function. Finally we add the output to θD in the original input as the
updated parameter for the discriminator network.

Hyperparameter Settings For all baselines we exactly follows the setting in Ho and Ermon (2016),
except that we use a 2-layer discriminator with number of hidden units ((s, a) → 64 → 32 → 1)
using tanh as the activation. We use the same neural network architecture for π and the same
optimizer configuration. The expert trajectories are obtained by an expert trained using TRPO.
For L2L based GAIL, we also use Adam optimizer to update the θU with the same configuration as
updating θD in original GAIL.

13


	Introduction
	Method
	Adversarial Training
	Learning to Defense by Learning to Attack (L2L)

	Experiments
	Extension: Generative Adversarial Imitation Learning
	Discussions
	Black-box Attack
	Slim Network
	Generative Adversarial Imitation Learning
	Algorithms
	Experiment Setting


