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ABSTRACT

We present the ADaptive Adversarial Imitation Learning (ADAIL) algorithm for
learning adaptive policies that can be transferred between environments of vary-
ing dynamics, by imitating a small number of demonstrations collected from a
single source domain. This problem is important in robotic learning because in
real world scenarios 1) reward functions are hard to obtain, 2) learned policies
from one domain are difficult to deploy in another due to varying source to target
domain statistics, 3) collecting expert demonstrations in multiple environments
where the dynamics are known and controlled is often infeasible. We address
these constraints by building upon recent advances in adversarial imitation learn-
ing; we condition our policy on a learned dynamics embedding and we employ
a domain-adversarial loss to learn a dynamics-invariant discriminator. The effec-
tiveness of our method is demonstrated on simulated control tasks with varying
environment dynamics and the learned adaptive agent outperforms several recent
baselines.

1 INTRODUCTION

Humans and animals can learn complex behaviors via imitation. Inspired by these learning mecha-
nisms, Imitation Learning (IL) has long been a popular method for training autonomous agents from
human-provided demonstrations. However, human and animal imitation differs markedly from com-
monly used approaches in machine learning. Firstly, humans and animals tend to imitate the goal
of the task rather than the particular motions of the demonstrator (Baker et al., 2007). Secondly,
humans and animals can easily handle imitation scenarios where there is a shift in embodiment and
dynamics between themselves and a demonstrator. The first feature of human IL can be represented
within the framework of Inverse Reinforcement Learning (IRL) (Ng et al., 2000; Abbeel & Ng,
2004; Ziebart et al., 2008), which at a high level casts the problem of imitation as one of matching
outcomes rather than actions. Recent work in adversarial imitation learning (Ho & Ermon, 2016;
Finn et al., 2016) has accomplished this by using a discriminator to judge whether a given behavior
is from an expert or imitator, and then a policy is trained using the discriminator expert likelihood as
a reward. While successful in multiple problem domains, this approach makes it difficult to accom-
modate the second feature of human learning: imitation across shifts in embodiment and dynamics.
This is because, in the presence of such shifts, the discriminator may either simply use the embod-
iment or dynamics to infer whether it is evaluating expert behavior, and as a consequence fail to
provide a meaningful reward signal.

In this paper, we are concerned with the problem of learning adaptive policies that can be transferred
to environments with varying dynamics for achieving similar goals, by imitating a small number of
expert demonstrations collected from a single source domain. This problem is important in robotic
learning because it is better aligned with real world constraints: 1) reward functions are hard to
obtain, 2) learned policies from one domain are hard to deploy to different domains due to vary-
ing source to target domain statistics, and 3) the target domain dynamics oftentimes changes while
executing the learned policy. As such, in this work we assume ground truth rewards are not avail-
able, and furthermore we assume that expert demonstrations come from only a single domain (i.e.
an instance of an environment where dynamics cannot be exactly replicated by the policy at train-
ing time). To the best of our knowledge, this is the first work to tackle this challenging problem
formulation.

Our proposed method solves the above problem by building upon the GAIL (Ho & Ermon, 2016;
Finn et al., 2016) framework, by firstly conditioning the policy on a learned dynamics embedding.
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We propose two embedding approaches on which the policy is conditioned, namely, a direct su-
pervised learning approach and a variational autoencoder (VAE) (Kingma & Welling, 2013) based
unsupervised approach. Secondly, to prevent the discriminator from inferring whether it is eval-
uating the expert behavior or imitator behavior purely through the dynamics, we propose using a
Gradient Reversal Layer (GRL) to learn a dynamics-invariant discriminator. We demonstrate the
effectiveness of the proposed algorithm on benchmark Mujoco simulated control tasks.

The main contributions of our work include: 1) present a general and novel problem formulation that
is well aligned with real world scenarios in comparison to recent literature 2) devise a conceptually
simple architecture that is capable of learning an adaptive policy from a small number of expert
demonstrations (order of 10s) collected from only one source environment, 3) design an adversarial
loss for addressing the covariate shift issue in discriminator learning.

2 RELATED WORK

Historically, two main avenues have been heavily studied for imitation learning: 1) Behavioral
Cloning (BC) and 2) Inverse Reinforcement Learning (IRL). Through conceptually simple, BC
suffers from compound errors caused by covariate shift, and subsequently, often requires a large
quantity of demonstrations (Pomerleau, 1989), or access to the expert policy (Ross et al., 2011) in
order to recover a stable policy. Recent advancements in imitation learning (Ho & Ermon, 2016;
Finn et al., 2016) have adopted an adversarial formation that interleaves between 1) discriminating
the generated policy against the expert demonstrations and 2) a policy improvement step where the
policy aims to fool the learned discriminator.

Dynamics randomization (Tobin et al., 2017; Sadeghi & Levine, 2016; Mandlekar et al., 2017; Tan
et al., 2018; Pinto et al., 2017; Peng et al., 2018; Chebotar et al., 2018; Rajeswaran et al., 2016)
has been one of the prevailing vehicles for addressing varying simulation to real-world domain
statistics. This avenue of methods typically involves perturbing the environment dynamics (often
times adversarially) in simulation in order to learn an adaptive policy that is robust enough to bridge
the “Reality Gap”. While dynamics randomization has been explored for learning robust policies in
an RL setting, it has a critical limitation in the imitation learning context: large domain shifts might
result in directional differences in dynamics, therefore, the demonstrated actions might no longer be
admissible for solving the task in the target domain. Our method (Figure 2) also involves training
in a variety of environments with different dynamics. However, we propose conditioning the policy
on an explicitly learned dynamics embedding to enable adaptive policies based on online system
ID. Yu et al. (2017) adopted a similar approach towards building adaptive policies. They learn an
online system identification model and condition the policy on the predicted model parameters in
an RL setting. In comparison to their work, we do not assume access to the ground truth reward
signals or the ground truth physics parameters at evaluation time, which makes this work’s problem
formulation a harder learning problem, but with greater potential for real-world applications. We
will compare our method with Yu et al. (2017) in the experimental section.

Third person imitation learning (Stadie et al., 2017) also employs a GRL (Ganin & Lempitsky,
2014) under a GAIL-like formulation with the goal of learning expert behaviors in a new domain. In
comparison, our method also enables learning adaptive policies by employing an online dynamics
identification component, so that the policies can be transferred to a class of domains, as oppose to
one domain. In addition, learned policies using our proposed method can handle online dynamics
perturbations.

Meta learning (Finn et al., 2017) has also been applied to address varying source to target domain
dynamics (Duan et al., 2017; Nagabandi et al., 2018). The idea behind meta learning in the context
of robotic learning is to learn a meta policy that is “initialized” for a variety of tasks in simulation,
and then fine-tune the policy in the real-world setting given a specific goal. After the meta-learning
phase, the agent requires significantly fewer environment interactions to obtain a policy that solves
the task. In comparison to meta learning based approaches, fine-tuning on the test environment is
not required in our method, with the caveat being that this is true only within the target domain
where the dynamics posterior is effective.
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2.1 BACKGROUND

In this section we will briefly review GAIL (Ho & Ermon, 2016). Inspired by to GANs, the GAIL
objective is defined as:

min
θ

max
ω

EπE [logDω(s, a)] +Eπθ [log(1−Dω(s, a))] (1)

Where πE denotes the expert policy that generated the demonstrations; πθ is the policy to imitate
the expert; D is a discriminator that learns to distinguish between πθ and πE with generated state-
action pairs. In comparison to GAN optimization, the GAIL objective is rarely differentiable since
differentiation through the environment step is often intractable. Optimization is instead achieved
via RL-based policy gradient algorithms, e.g., PPO (Schulman et al., 2017) or off policy methods,
e.g., TD3 (Kostrikov et al., 2018). Without an explicit reward function, GAIL relies on reward
signals provided by the learned discriminator, where a common reward formulation is rω(s, a) =
− log(1−Dω(s, a)).

3 ADAPTIVE ADVERSARIAL IMITATION LEARNING (ADAIL)

3.1 PROBLEM DEFINITION

Suppose we are given a classE of environments with different dynamics but similar goals, a domain
generator g(c) which takes in a code c and generates a environment ec ∈ E, and a set of expert
demonstrations {τexp} collected from one source environment eexp ∈ E. In adaptive imitation
learning, one attempts to learn an adaptive policy πθ that can generalized across environments within
E. We assume that the ground truth dynamics parameters c, which are used to generate the simulated
environments, are given (or manually sampled) during the training phase.

3.2 ALGORITHM OVERVIEW

We allow the agent to interact with a class of similar simulated environments with varying dynamics
parameters, which we call “adaptive training”. To be able to capture high-level goals from a small
set of demonstrations, we adopt a approach similar to GAIL. To provide consistent feedback signals
during training across environments with different dynamics, the discriminator should be dynamics-
invariant. We enable this desirable feature by learning a dynamics-invariant feature layer for the
discriminator by 1) adding another head DR(c|s, a) to the discriminator to predict the dynamics pa-
rameters, and 2) inserting a GRL in-between DR and the dynamics-invariant feature layer. The new
discriminator design is illustrated in Figure 1 and is discussed in more detail in Section 3.4. In addi-
tion, to enable adaptive policies, we introduced a dynamics posterior that takes a roll-out trajectory
and outputs an embedding, on which the policy is conditioned. Intuitively, explicit dynamics learn-
ing endows the agent with the ability to identify the system and act differently against changes in
dynamics. Note that a policy can learn to infer dynamics implicitly, without the need for an external
dynamics embedding. However, we find experimentally that policies conditioned explicitly on the
environment parameters outperform those that do not. The overall architecture is illustrated in Fig-
ure 2. We call the algorithm Adaptive Adversarial Imitation Learning (ADAIL), with the following
objective (note that for brevity, we for now omit the GRL term discussed in Section 3.4):

min
θ

max
ω,φ

EπE [logDω(s, a)] +Eπθ(·|c)[log(1−Dω(s, a))] +Eτ∼πθ(·|c)[logQφ(c|τ)] (2)

Where c is a learned latent dynamics representation that is associated with the rollout environment
in each gradient step; τ is a roll-out trajectory using πθ(·|c) in the corresponding environment;
Q(c|τ) is a “dynamics posterior” for inferring the dynamics during test time; The last term in the
objective, Eτ∼πθ(·|c)[logQφ(c|τ)], is a general form of the expected log likelihood of c given τ .
One can employ various supervised and unsupervised methods towards optimizing this term. We
will explore a few methods in the following subsections.

The algorithm is outlined in Algorithm 1.
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Algorithm 1 ADAIL
1: Inputs:
2: An environment class E.
3: Initial parameters of policy θ, discriminator ω, and posterior φ.
4: A set of expert demonstrations {τexp} on one of the environment eexp ∈ E. A environment generator g(c)

that takes a code and generates an environment ec ∈ E. A prior distribution of p(c).
5: for i = 1, 2, .. do
6: Sample c ∼ p(c) and Generate environment ec ∼ g(c)
7: Sample trajectories τi ∼ πθ(·|c) in ec and τei ∼ {τexp}
8: Update the discriminator parameters ω with the gradients: Ê(s,a)∼τi [∇w log(Dw(s, a))] +

Ê(s,a)∼τei [∇w log(1−Dw(s, a)]
9: Update the discriminator parameters ω again with the following loss, such that the gradients are re-

versed when back-prop through the dynamics-invariant layer: −Ê(s,a)∼τi [log(D
R(c|s, a))]

10: Update the posterior parameters φ with gradients Êτi [∇φ logQφ(c|τi))]
11: Update policy πθ(·|c) using policy optimization method (PPO) with: Ê(s,a)∼τi [− log(1−Dω(s, a))]
12: Output: Learned policy πθ , and posterior Qφ.

(s, a)

Class label y: 
expert or not

Dynamics 
Parameters p

Gradients 
Reversal Layer

Dynamics-
invariant features f

Normal 
gradients

Reversed 
gradients

Figure 1: Discriminator with Gradients Reversal Layer (GRL). The red layer is the GRL which
reverses the gradients during backprop. The yellow layer is a dynamics-invariant layer that is shared
with the classification task.
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Figure 2: The ADAIL architecture. “Environment” is sampled from a population of environments
with varying dynamics, “Demonstrations” are collected from one environment within the environ-
ment distribution, “Posterior” is the dynamics predictor, Q(c|τ); Latent code “c” represents the
ground truth or learned dynamics parameters; The policy input is extended to include the latent
dynamics embedding c.
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3.3 ADAPTIVE TRAINING

Adaptive training is achieved through 1) allowing the agent to interact with a class of similar simu-
lated environments within class E, and 2) learning a dynamics posterior for predicting the dynamics
based on rollouts. The environment classE is defined as a set of parameterized environments with n
degrees of freedom, where n is the total number of latent dynamics parameters that we can change.
We assume that we have access to an environment generator g(c) that takes in a sample of the
dynamics parameters c and generates an environment. At each time when an on-policy rollout is
initiated, we re-sample the dynamics parameters c based on a predefined prior distribution p(c).

3.4 LEARNING A DYNAMICS-INVARIANT DISCRIMINATOR

GAIL learns from the expert demonstrations by matching an implicit state-action occupancy mea-
sure. However, this formulation might be problematic in our training setting, where on-policy
rollouts are collected from environments with varying dynamics. In non-source environments,
the discriminator can no longer provide canonical feedback signals. This motivates us to learn a
dynamics-invariant feature space, where, the behavior-oriented features are preserved but dynamics-
identifiable features are removed.

We approach this problem by assuming that the behavior-oriented characteristics and dynamics-
identifiable characteristics are loosely coupled and thereby we can learn a dynamics-invariant rep-
resentation for the discriminator. In particular, we employ a technique called a Gradient Reversal
Layer (GRL) (Ganin & Lempitsky, 2014), which is widely used in image domain adaptation (Bous-
malis et al., 2016). The main idea is to add a regression (or classification in the discrete setting)
component DR to the discriminator, and then place a GRL in between the dynamics parameters re-
gression layer and the intended dynamics-invariant features layer, as illustrated in Figure 1. In GRL,
the forward pass is defined as the identity, while during backpropagation, the gradients are reversed,
i.e., ∂Lp∂θf

is effectively replaced by −∂Lp∂θf
. The dynamics-invariant features layer is shared with the

original discriminator classification head.

3.5 DIRECT SUPERVISED DYNAMICS LEARNING

Perhaps one of the best latent representations of the dynamics is the ground truth physics param-
eterization (gravity, friction, limb length, etc). In this section we explore supervised learning for
inferring dynamics. A neural network is employed to represent the dynamics posterior, which is
learned via supervised learning by regressing to the ground truth physics parameters given a replay
buffer of policy rollouts. We update the regression network using a Huber loss to match environment
dynamics labels. Details about the Huber loss can be found in appendix A.1. During training, we
condition the learned policy on the ground truth physics parameters. During evaluation, on the other
hand, the policy is conditioned on the predicted physics parameters from the posterior.

We use (state, action, next state) as the posterior’s input, i.e., Qφ(c|s, a, s′), and a 3-layer fully-
connected neural network to output the N-dimensional environment parameters. Note that one can
use a recurrent neural network and longer rollout history for modeling complex dynamic structures,
however we found that this was not necessary for the chosen evaluation environments.

3.6 VAE-BASED UNSUPERVISED DYNAMICS LEARNING

For many cases, the number of varying latent parameters of the environment is high, one might
not know the set of latent parameters that will vary in a real world laboratory setting, or the latent
parameters are oftentimes strongly correlated (e.g., gravity and friction) in terms of their effect
on environment dynamics. In this case, predicting the exact latent parameterization is hard. The
policy is mainly concerned with the end-effector of the latent parameters. This motivates us to use a
unsupervised tool to extract a latent dynamics embedding. In this section, we explore a VAE-based
unsupervised approach for learning the dynamics without ground truth labels.

With the goal of capturing the underlying dynamics, we avoid directly reconstructing the (state,
action, next state) tuple, (s, a, s′). Otherwise, the VAE would likely capture the latent structure of
the state space. Instead, the decoder is modified to take-in the state-action pair, (s, a), and a latent
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Figure 3: VAE-based unsupervised dynamics learning.

Figure 4: Vary x-component of gravity in HalfCheetah environment. The red arrows in the picture
show the gravity directions.

code, c, and outputs the next state, s′. The decoder now becomes a forward dynamics predictive
model. The unsupervised dynamics learning method is illustrated in Figure 3.

The evidence lower bound (ELBO) used is:

ELBO = EQφ(c|s,a,s′)[logPψ(s
′|s, a, c)]−KL(Qφ(c|s, a, s′)||P (c)) (3)

Where Q(c|s, a, s′) is the dynamics posterior (encoder); P (s′|s, a, c) is a forward dynamics predic-
tive model (decoder); P (c) is a Gaussian prior over the latent code c. To avoid the encoder learning
an identity mapping on s′, we add the following contrastive regularization to the loss,

Lcontrastive = KL(Qφ(s0, a0, s
′
0)||Qφ(s1, a1, s′1))−min{KL(Qφ(s2, a2, s

′
2)||Qφ(s3, a3, s′3)), D0}

Where (s0, a0, s
′
0) and (s1, a1, s

′
1) are sampled from the same roll-out trajectory; (s2, a2, s′2) and

(s3, a3, s
′
3) are sampled from different roll-out trajectories. D0 is a constant.

The overall objective for the dynamics learner is

min
φ,ψ
−ELBO+ λLcontrastive (4)

where λ is a scalar to control the relative strength of the regularization term. The learned poste-
rior (encoder) infers the latent dynamics, which is used for conditioning the policy. The modified
algorithm can be found in the appendix (Algorithm 2).

4 EXPERIMENTS

4.1 ENVIRONMENTS

To evaluate the proposed algorithm we consider 4 simulated environments: CartPole, Hopper,
HalfCheetah and Ant. The chosen dynamics parameters are specified in table 1, and an example
of one such parameter (HalfCheetah gravity component x) is shown in Figure 4. During training the
parameters are sampled uniformly from the chosen range. Source domain parameters are also given
in the table 1. For each source domain, we collect 16 expert demonstrations.

Gym CartPole-V0: We vary the force magnitude in continuous range [−1, 1] in our training setting.
Note that the force magnitude can take negative values, which flips the force direction.

3 Mujoco Environments: Hopper, HalfCheetah, and Ant: With these three environments, we
vary 2d dynamics parameters: gravity x-component and friction.
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Environment Paramater 1 Parameter 2 Source
CartPole-V0 Fm [-1,1] Fm = 1.0
Hopper Gx [-1.0, 1.0] Fr [1.5, 2.5] Gx = 0.0, F r = 2.0
HalfCheetah Gx [-3.0, 3.0] Fr [0.0, 2.0] Gx = 0.0, F r = 0.5
Ant Gx [-5.0, 5.0] Fr [0.0, 4.0] Gx = 0.0, F r = 1.0

Table 1: Environments. Fm = Force magnitude; Gx=Gravity x-component; Fr = Friction. For
each environment, we collect 16 expert demonstrations from the source domain.

4.2 ADAIL ON SIMULATED CONTROL TASKS

Is the dynamics posterior component effective under large dynamics shifts?

We first demonstrate the effectiveness of the dynamics posterior under large dynamics shifts on a toy
Gym environment, Cartpole, by varying 1d force magnitude. As the direction of the force changes,
blindly mimicking the demonstrations collected from the source domain (Fm = 1.0) would not
work on target domains with Fm < 0.0. This result is evident when comparing ADAIL to GAIL
with dynamics randomization. As shown in Figure 5a, GAIL with Dynamics Randomization failed
to generalize to Fm < 0.0, whereas, ADAIL is able to achieve the same performance as Fm > 0.0.
We also put a comparison with ADAIL-rand, where the policy is conditioned on uniformly random
values of the dynamics parameters, which completely breaks the performance across the domains.

How does the GRL help improve the robustness of performance across domains?

To demonstrate the effectiveness of GRL in the adversarial imitation learning formulation, we do
a comparative study with and without GRL on GAIL with dynamics randomization in the Hopper
environment. The results are shown in Figure 5b.

(a) (b)

Figure 5: (a): ADAIL on CartPole-V0. Blue: PPO Expert; green: GAIL with Dynamics Ran-
domization; red: ADAIL with latent parameters from the dynamics posterior; light blue: ADAIL
with uniformly random latent parameters. (b): GAIL with Dynamics Randomization without (left,
2160.09± 611.78) or with (right, 2453.63± 430.51) GRL on Hopper

How does the overall algorithm work in comparison with baseline methods?

We demonstrate the overall performance of ADAIL by applying it to three Mujoco control tasks:
HalfCheetah, Ant and Hopper. For each of the Mujoco environments, we vary 2 continuous dynam-
ics parameters and we compare the performance of ADAIL with a few baseline methods, including
1) the PPO expert which was used to collect demonstrations; 2) the UP-true algorithm of Yu et al.
(2017), which is essentially a PPO policy conditioned on ground truth physics parameters; and 3)
GAIL with dynamics randomization, which is unmodified GAIL training on a variety of environ-
ments with varying dynamics. The results of this experiment are show in in Figure 6.

HalfCheetah The experiments show that 1) as expected the PPO expert (Plot 6a) has limited adapt-
ability to unseen dynamics. 2) UP-true (Plot 6b) achieves similar performance across test envi-
ronments. Note that since UP-true has access to the ground truth reward signals and the policy is
conditioned on ground truth dynamics parameters, the Plot 6b shows an approximate expected up-
per bound for our proposed method since we do not assume access to reward signals during policy
training, or to ground truth physics parameters at policy evaluation time. 3) GAIL with dynamics
randomization (Plot 9c) can generalize to some extent, but failed to achieve the demonstrated per-
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(g) GAIL-rand

(1579.36± 2082.10)
(h) ADAIL

(2119.90± 2534.03)

H
op

pe
r

(i) PPO Expert
(2196.88± 955.15)

(j) UP-true
(2225.49± 830.02)

(k) GAIL-rand
(2160.09± 611.78)

(l) ADAIL
(2352.44± 620.64)

Figure 6: Comparing ADAIL with baselines on Mujoco tasks. Each plot is a heatmap that demon-
strates the performance of an algorithm in environments with different dynamics. Each cell of the
plot shows 10 episodes averaged cumulative rewards on a particular 2D range of dynamics. Note
that to aid visualization, we render plots for Ant in log scale.

formance in the source environment (gravity x = 0.0, friction = 0.5) 4) Plots 9d 9e show evaluation
of the proposed method ADAIL with policy conditioned on ground truth physics parameters and
predicted physics parameters respectively; ADAIL matches the expert performance in the source
environment (gravity x = 0.0, friction = 0.5) and generalizes to unseen dynamics. In particular,
when the environment dynamics favors the task, the adaptive agent was able to obtain even higher
performance (around friction = 1.2, gravity = 2).

Ant and Hopper. We again show favorable performance on both Ant and Hopper in Figure 6.

How does the algorithm generalize to unseen environments?

To understand how ADAIL generalizes to environments not sampled at training time, we do a suite
of studies in which the agent is only allowed to interact in a limited set of environments. Figure 7
shows the performance of ADAIL on different settings, where a 5×5 region of environment parame-
ters including the expert source environment are “blacked-out”. This case is particularly challenging
since the policy is not allowed access the domain from which the expert demonstrations were col-
lected, and so our dynamics-invariant discriminator is essential. For additional held out experiments
see Appendix A.5.

The experiments show that, 1) without training on the source environment, ADAIL with the ground
truth parameters tends to have performance drops on the blackout region but largely is able to gener-
alize (Figure 7a); 2) the posterior’s RMSE raises on the blackout region (Figure 7c); 3) consequently
ADAIL with the predicted dynamics parameters suffers from the posterior error on the blackout re-
gion (Figure 7b).

How does unsupervised version of the algorithm perform?
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(a) ADAIL-true (5x5) (b) ADAIL-pred (5x5) (c) Posterior RMSE (5x5)

Figure 7: Generalization of our policy to held out parameters on the HalfCheetah environment. The
red rectangles in plots show the blackout regions not seen during policy training.

VAE-ADAIL on HalfCheetah. With the goal of understanding the characteristics of the learned dy-
namics latent embedding through the unsupervised method and its impact on the overall algorithm,
as a proof of concept we apply VAE-ADAIL to HalfCheetah environment varying a 1D continuous
dynamics, friction. The performance is shown in Figure 8.

Figure 8: VAE-ADAIL performance on HalfCheetah

5 CONCLUSION

In this work we proposed the ADaptive Adversarial Imitation Learning (ADAIL) algorithm for learn-
ing adaptive control policies from a limited number of expert demonstrations. We demonstrated the
effectiveness of ADAIL on two challenging MuJoCo test suites and compared against recent SoTA.
We showed that ADAIL extends the generalization capacities of policies to unseen environments,
and we proposed a variant of our algorithm, VAE-ADAIL, that does not require environment dy-
namics labels at training time. We will release the code to aid in reproduction upon publication.
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A APPENDIX

A.1 HUBER LOSS FOR DYNAMICS EMBEDDING LOSS

We use the following loss function when training the dynamics embedding posterior:

Lδ(c,Qφ(τ)) =

{
1
2 (c−Qφ(τ))

2 for |c−Qφ(τ)| < δ

δ|c−Qφ(τ)| − 1
2δ

2 otherwise
(5)

Where δ controls the joint position between L2 and L1 penalty in Huber loss.

Lemma 1. Minimizing the above Huber loss is equivalent to maximizing the log likelihood,
logP (c|τ), assuming P (c|τ) is distributed as a Gaussian distribution when |c−Qφ(τ)| < δ, and as
a Laplace distribution otherwise. See appendix A.2 for the proof.

A.2 LEMMA 1 PROOF

Proof. For |c−Qφ(τ)| < δ,

logP (c|τ) = log
1√
2πσ1

e
− (c−Q(τ))2

2σ21 σ1 is a positive constant (6)

logP (c|τ) = log
1√
2πσ1

− 1

2σ2
1

(c−Q(τ))2 (7)

∇ logP (c|τ) =∇(log 1√
2πσ1

− 1

2σ2
1

(c−Q(τ))2) (8)

=− C1∇
1

2
(c−Q(τ))2 C1 is a positive constant (9)

=− C1∇Lδ(c,Qφ(τ)) (10)

Likewise, we can prove for |c−Qφ(τ)| ≥ δ. �
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A.3 VAE-ADAIL ALGORITHM

Algorithm 2 VAE-ADAIL
1: Inputs:
2: An environment class E.
3: Initial parameters of policy θ, discriminator ω, and dynamics posterior φ, ψ.
4: A set of expert demonstrations {τexp} on one of the environment eexp ∈ E.
5: for i = 1, 2, .. do
6: Sample environment e ∈ E.
7: Sample trajectories τi ∼ πθ(·|Qφ) in e and τei ∼ {τexp}
8: Update the discriminator parameters ω with the gradients

Ê(s,a)∼τi [∇w log(Dw(s, a))] + Ê(s,a)∼τei [∇w log(1−Dw(s, a)]
9: Update the posterior parameters φ, ψ with the objective described in Eq (3) & (4)

10: Update policy πθ(·|c) using policy optimization method (TRPO/PPO) with:

Ê(s,a)∼τi [− log(1−Dω(s, a))]

11: Output: Learned policy πθ , and posterior Qφ.

A.4 HALFCHEETAH ADAIL PERFORMANCE COMPARISON

(a) PPO Expert
(2991.23± 2020.93)

(b) UP-true
(3441.76± 1248.77)

(c) GAIL-rand
(3182.72± 1753.86)

(d) ADAIL-true
(4419.75± 1493.54)

(e) ADAIL-pred
(4283.20± 1569.31)

(f) Posterior RMSE
(1.03± 0.36)

Figure 9: Comparing ADAIL with a few baselines on HalfCheetah. Each plot is a heatmap that
demonstrates the performance of an algorithm in environments with different dynamics. Each cell
of the plot shows 10 episodes averaged cumulative rewards on a particular 2D range of dynamics.
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A.5 HELD-OUT ENVIRONMENT EXPERIMENT

(a) ADAIL-true (1x1) (b) ADAIL-pred (1x1) (c) Posterior RMSE (1x1)

(d) ADAIL-true (3x3) (e) ADAIL-pred (3x3) (f) Posterior RMSE (3x3)

(g) ADAIL-true (5x5) (h) ADAIL-pred (5x5) (i) Posterior RMSE (5x5)

Figure 10: Generalization of our policy to held out environments. The red rectangles in plots on the
first column show the blackout regions not seen during policy training.
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