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ABSTRACT

We propose an approach for sequence modeling based on autoregressive normal-
izing flows. Each autoregressive transform, acting across time, serves as a moving
reference frame for modeling higher-level dynamics. This technique provides a
simple, general-purpose method for improving sequence modeling, with connec-
tions to existing and classical techniques. We demonstrate the proposed approach
both with standalone models, as well as a part of larger sequential latent variable
models. Results are presented on three benchmark video datasets, where flow-
based dynamics improve log-likelihood performance over baseline models.

1 INTRODUCTION

Data often contain sequential structure, providing a rich signal for learning models of the world
Such models are useful for learning self-supervised representations of sequences ( , ;
. ) and planning sequences of actions ( s s ).

While sequentlal models have a longstanding tradition in probabilistic modehng ( ,
), it is only recently that improved computational techniques, primarily deep networks, have

facilitated learning such models from high-dimensional data ( , ), particularly video and
audio. Dynamics in these models typlcally contain a combmatlon of stochastlc and deterministic
variables ( , , )

using simple distributions (e.g. Gauss1an) to dlrectly model the llkehhood of data observations.
However, attempting to capture all sequential dependencies with relatively unstructured dynamics
may make it more difficult to learn such models. Intuitively, the model should use its dynamical
components to track changes in the input instead of simultaneously modeling the entire signal.
Rather than expanding the computational capacity of the model, we seek a method for altering the
representation of the data to provide a more structured form of dynamics.

To incorporate more structured dynamics, we propose an approach for sequence modeling based
on autoregressive normalizing flows ( , ), consisting
of one or more autoregressive transforms in time. A smgle transform is equivalent to a Gaussian
autoregressive model. However, by stacking additional transforms or latent variables on top, we
can arrive at more expressive models. Each autoregressive transform serves as a moving reference
frame in which higher-level structure is modeled. This provides a general mechanism for separating
different forms of dynamics, with higher-level stochastic dynamics modeled in the simplified space
provided by lower-level deterministic transforms. In fact, as we discuss, this approach generalizes
the technique of modeling temporal derivatives to simplify dynamics estimation ( , ).

We empirically demonstrate this approach, both with standalone autoregressive normalizing flows,
as well as by incorporating these flows within more flexible sequential latent variable models. While
normalizing flows have been applied in a few sequential contexts previously, we emphasize the use
of these models in conjunction with sequential latent variable models. We present experimental
results on three benchmark video datasets, showing improved quantitative performance in terms
of log-likelihood. In formulating this general technique for improving dynamics estimation in the
framework of normalizing flows, we also help to contextualize previous work.
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(a) Forward Transform (Eq. 5) (b) Inverse Transform (Eq. 6)

Figure 1: Affine Autoregressive Transforms. Computational diagrams for forward and inverse
affine autoregressive transforms (Papamakarios et al., 2017). Each y, is an affine transform of x;,
with the affine parameters potentially non-linear functions of x;. The inverse transform is capable
of converting a correlated input, x;.7, into a less correlated variable, y1.7.

2 BACKGROUND

2.1 AUTOREGRESSIVE MODELS

Consider modeling discrete sequences of observations, X1.77 ~ Pgaa(X1.7), using a probabilistic
model, pg(x1.7), with parameters 6. Autoregressive models (Frey et al., 1996; Bengio & Bengio,
2000) use the chain rule of probability to express the joint distribution over all time steps as the
product of T" conditional distributions. Because of the forward nature of the world, as well as for
handling variable-length sequences, these models are often formulated in forward temporal order:

T
p@(xlzT) = Hpe(xt|x<t)~ (D
t=1

Each conditional distribution, pg (x¢|x<¢), models the temporal dependence between time steps, i.e.
a prediction of the future. For continuous variables, we often assume that each distribution takes a
relatively simple form, such as a diagonal Gaussian density:

Po(xelx<r) = N (xe; o (x<2), diag(of (x<t))), )

where pg(-) and o¢(-) are functions denoting the mean and standard deviation, often sharing pa-
rameters over time steps. While these functions may take the entire past sequence of observations
as input, e.g. through a recurrent neural network, they may also be restricted to a convolutional
window (van den Oord et al., 2016a). Autoregressive models can also be applied to non-sequential
data (van den Oord et al., 2016b), where they excel at capturing local dependencies. However, due
to their restrictive distributional forms, such models often struggle to capture higher-level structure.

2.2 AUTOREGRESSIVE LATENT VARIABLE MODELS

Autoregressive models can be improved by incorporating latent variables, often represented as a
corresponding sequence, z;.7. Classical examples include Gaussian state space models and hidden
Markov models (Murphy, 2012). The joint distribution, pg(x1.7, 1.7 ), has the following form:
T
po(X1.7,21:7) = Hpe(xt|x<t7 2<4)Do(2¢|X<t, Z<t). 3)
t=1

Unlike the simple, parametric form in Eq. 2, evaluating pg(x:|X<;) now requires integrating over
the latent variables,

Po(xt|x<t) = /pe(xt|x<t7th)Pe(th\Xq)ngta “4)

yielding a more flexible distribution. However, performing this integration in practice is typically
intractable, requiring approximate inference techniques, like variational inference (Jordan et al.,



Under review as a conference paper at ICLR 2020

). Recent works have parameterized these models with deep neural networks, e.g. (

; s ; s ; s ), using amortized variational
1nference ( ; , ) for inference and learning. Typically, the
conditional likelihood, py (Xt|X<t7Z<t) and the prior, pg(z¢|X<¢, Z<¢), are Gaussian densities, with
temporal conditioning handled through deterministic recurrent networks and the stochastlc latent
variables. Such models have demonstrated success in audio ( s ; s

) and video modeling ( ; ; ; s
, ). However desrgn choices for these models remain an active area of
research with each model proposing new combinations of deterministic and stochastic dynamics.

2.3 AUTOREGRESSIVE FLOWS

Our approach is based on affine autoregressive normalizing flows ( ,

, ). Here, we review this basic concept, continuing with the perspectrve of temporal
sequences, however, it is worth noting that these flows were initially developed and demonstrated in
static settings. ( ) noted that sampling from an autoregressrve Gaussian model is
an 1nvert1ble transform, resulting in a normalizing flow (

, ). Flow-based models transform between snnple and complex
probabrhty distributions while maintaining exact likelihood evaluation. To see their connection to
autoregressrve models, we can express sampling a Gaussian random variable, x; ~ pg(Xt |x<:) (Eq.
2), using the reparameterization trick ( s ; s

Xt = po(X<t) + 00(X<t) Oy, &)
where y; ~ N (y¢; 0,1) is an auxiliary random variable and ® denotes element-wise multiplication.
Thus, x; is an invertible transform of y;, with the inverse given as
Xt — po(X<t)

o9(X<t)

where division is performed element-wise. The inverse transform in Eq. 6 acts to normalize (hence,
normalizing flow) and therefore decorrelate x;.7. Given the functional mapping between y; and x;
in Eq. 5, the change of variables formula converts between probabilities in each space:

ax1:T>
det
<aYI:T

By the construction of Egs. 5 and 6, the Jacobian in Eq. 7 is triangular, enabling efficient evaluation
as the product of diagonal terms:

(6)

Yy =

log po(x1.7) = log pe(y1.7) — log (7

log

det (8){1 T> ’ Z log g (x<)- (8)

And for a Gaussian autoregressive model, pg(y1.7) = N (y1.7;0,I). With these components, the
change of variables formula (Eq. 7) provides an equivalent method for sampling and evaluating the
autoregressive model, i.e. pg(x1.7), from Egs. 1 and 2.

We can improve upon this simple set-up by chaining together multiple transforms, effectively result-
ing in a hierarchical autoregressive model. Letting y ' denote the variables after the m™" transform,
the change of variables formula for M transforms is
a m+1
det ( VLT ) )

ox M-1
det LT) ’ — lo
(aY%:T Z & oyi'r

m=1

log po(x1.7) = log pe(yi4) — log

Autoregressive flows were initially considered in the contexts of variational inference (

) and generative modeling ( , ). These approaches are, in fact, general-
izations of previous approaches with affine transforms ( , ; ). While autoregres-
sive flows are well-suited for sequential data as mentioned previously, these approaches, as well as
many recent approaches ( , , ; , ), were

initially applied in static settings, such as 1mages

More recent works have started applying flow-based models to sequential data. For instance,
( ) and ( ) distill autoregressive speech models into flow-based models.
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Figure 2: Motivating Example. Plots are shown for a sample of x;.7 (left), uy.r (center), and wy.p
(right). Here, w17 ~ N (w1.7;0,1I), and u and x are initialized at 0. Moving from x — u — w via
affine transforms results in successively less temporal correlation and therefore simpler dynamics.

( ) and ( ) instead train these models directly. ( )
use a flow to model individual video frames, with an autoregressive prior modeling dynamics across
time steps. ( ) use flows for motion synthesis with motion-capture data. Like

these recent works, we apply flow-based models to sequential data. However, we demonstrate that
autoregressive flows can serve as a powerful, general-purpose technique for sequence modeling,
both as standalone models, but particularly as components of sequential latent variable models. To
the best of our knowledge, our work is the first to demonstrate flows across time steps for video data,
as well as the first to combine flows with sequential latent variable models.

3 METHOD

We now describe our approach for sequence modeling with autoregressive flows. Although the
core idea is a relatively straightforward extension of autoregressive flows, we show how this simple
technique can be incorporated within autoregressive latent variable models (Section 2.2), providing
a general-purpose approach for improving dynamics modeling. We first motivate the benefits of
affine autoregressive transforms in the context of sequence modeling with a simple example.

3.1 A MOTIVATING EXAMPLE

Consider the discrete dynamical system defined by the following set of equations:
Xt = X¢—1 + Uy, (10)
U = U1 + Wy, 1D
where w; ~ N (wy; 0, X). We can express x; and uy in probabilistic terms as

X¢ NN(Xt;Xt—l +ut—172)7 (12)
w ~ N(ugue_g, X). (13)

Physically, this describes the noisy dynamics of a particle with momentum and mass 1, subject to
Gaussian noise. If we consider the dynamics at the level of x, we can use the fact that u;_; =
X;_1 — X;_o to write

P(Xe|xi—1,Xp—2) = N (X3 %41 + Xe1 — Xp—2, X). (14)

Thus, we see that in the space of x, the dynamics are second-order Markov, requiring knowledge of
the past two time steps. However, at the level of u (Eq. 13), the dynamics are first-order Markov,
requiring only the previous time step. Yet, note that u; is, in fact, an affine autoregressive transform

of x; because u; = x; —x;_1 is a special case of the general form %(:5” In Eq. 10, we see that

the Jacobian of this transform is 0x;/0u; = 1, so, from the change of variables formula, we have
p(Xt|X¢—1,%Xt—2) = p(usjuz—1). In other words, an affine autoregressive transform has allowed us
to convert a second-order Markov system into a first-order Markov system, thereby simplifying the
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Figure 3: Graphical Models. Diagrams for (a) a single-transform affine autoregressive flow-based
model, with random variables, yi.7 ~ N (y1.1;0,I), and (b) a sequential latent variable model
with a flow-based conditional likelihood. We have depicted simplified dynamics for y;1.7 and z1.7
for clarity, however, in general, these can be non-Markov. The flow removes low-level temporal
correlations in x1.7, whereas the latent variables, z1.7, capture any remaining structure in yy.7.

dynamics. Continuing this process to move to w; = u; — u;_1, we arrive at a representation that is
entirely temporally decorrelated, i.e. no dynamics, because p(w;) = N (wy;0,X). A sample from
this system is shown in Figure 2, illustrating this process of temporal decorrelation.

The special case of modeling temporal changes, u; = x;—x;_1 = Ax,, is acommon pre-processing

technique; for recent examples, see ( ); ( ); ( ).
In fact, Ax; is a finite differences approximation of the generalized velocity ( , ) of x,
a classic modeling technique in dynamical models and control ( , ), redefining

the state-space to be first-order Markov. Affine autoregressive flows offer a generalization of this
technique, allowing for non-linear transform parameters and flows consisting of multiple transforms,
with each transform serving to successively decorrelate the input sequence in time. In analogy with
generalized velocity, each transform serves as a moving reference frame, allowing us to focus model
capacity on less correlated fluctuations rather than the highly correlated raw signal.

3.2 AUTOREGRESSIVE FLOWS ON SEQUENCES

We apply autoregressive flows across time steps within a sequence, x;.7 € R7*P. That is, the
observation at each time step, x; € RP, is modeled as an autoregressive function of past observa-
tions, X4 € R*=1%D and a random variable, y: € RP (Figure 3a). We consider flows of the form
given in Eq. 5, where pgp(x<+) and og(x<¢) are parameterized by neural networks. In constructing
chains of flows, we denote the shift and scale functions at the m™ transform as pj*(-) and o' (*)
respectively. We then calculate y™ using the corresponding inverse transform:
S A 7 10 40
v = 0 o<t J (15)
oy (yZ, )
After the final (M™) transform, the base distribution, Do (y{”T) can range from a simple distribution,
eg N (y{‘?T; 0,1), in the case of a flow-based model, up to more complicated distributions in the
case of other latent variable models (Section 3.3). While flows of greater depth can improve model
capacity, such transforms have limiting drawbacks. In particular, 1) they require that the outputs
maintain the same dimensionality as the inputs, RT*D and 2) they are restricted to affine trans-
forms. As we discuss in the next section, we can combine autoregressive flows with non-invertible
sequential latent variable models (Section 2.2), which do not have these restrictions.

3.3 LATENT VARIABLE MODELS WITH AUTOREGRESSIVE FLOWS

We can use autoregressive flows as a component in parameterizing the dynamics within autoregres-
sive latent variable models. To simplify notation, we consider this set-up with a single transform,
but a chain of multiple transforms (Section 3.2) can be applied within each flow.
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3.3.1 MODEL FORMULATION

Let us consider parameterizing the conditional likelihood, pg(x¢|x<¢, Z<¢), within a latent variable
model using an autoregressive flow (Figure 3b). To do so, we express a base conditional distribution
for y, denoted as py(y+|y<¢,z<¢), which is then transformed into x; via the affine transform in
Eq. 5. We have written pg(y:|y<:, Z<;) with conditioning on y ., however, by removing temporal
correlations to arrive at y1.7, our hope is that these dynamics can be primarily modeled through
z1.7. Using the change of variables formula, we can express the latent variable model’s log-joint
distribution as

log pe(x1.7, 21.7) = log pa(y 1.7, Z1.7) — log |det (gXLT) ) (16)
yiurT
where the joint distribution over y;.7 and z;.7, in general, is given as
T
po(yrr z1r) = [ [ Po(yely <t z2<i)po(zely < z<1). (17)

t=1

Note that the latent prior, pg(z:|y <, Z<¢), can be equivalently conditioned on x; or y ¢, as there
is a one-to-one mapping between these variables. We could also consider parameterizing the prior
with autoregressive flows, or even constructing a hierarchy of latent variables. However, we leave
these extensions for future work, opting to first introduce the basic concept here.

3.3.2 VARIATIONAL INFERENCE & LEARNING

Training a latent variable model via maximum likelihood requires marginalizing over the
latent variables to evaluate the marginal log-likelihood of observations: logpe(x1.7) =
log f po(X1.7,21.7)dz1.7. This marginalization is typically intractable, requiring the use of approx-
imate inference methods. Variational inference ( , ) introduces an approximate
posterior distribution, ¢(z1.7|X1.7), which provides a lower bound on the marginal log-likelihood:

Inge(XlzT) > £(X1:T; q, 9) = Eq(zlzT\xlzT) Unge(XlzT, zl:T) - log q(Z1:T|X1:T)] s (18)

referred to as the evidence lower bound (ELBO). Often, we assume ¢(z1.7|X1.7) i a structured
distribution, attempting to explicitly capture the model’s temporal dependencies across zi.7. We
can consider both filtering or smoothing inference, however, we focus on the case of filtering, with

T
q(zrrlxir) = [ [ alzlx<e, 2<1). (19)
=1

The conditional dependencies in ¢ can be modeled through a direct, amortized function, e.g. using
a recurrent network ( , ), or through optimization ( , ). Again,
note that we can condition ¢ on x<; or y<;, as there exists a one-to-one mapping between these
variables. With the model’s joint distribution (Eq. 16) and approximate posterior (Eq. 19), we can
then evaluate the ELBO. We derive the ELBO for this set-up in Appendix A, yielding

aXt

This expression makes it clear that a flow-based conditional likelihood amounts to learning a latent
variable model on top of the intermediate learned space provided by y, with an additional factor in
the objective penalizing the scaling between x and y.

Q(Zt|)’§t» Z<t)

T
L= Eqacly<, |logpo Zse) —lo e
Z aasiy=) | 108Po(Vely<t,2<t) gpe(Zt\Y<t,Z<t) ¢

t=1

4 EVALUATION

We demonstrate and evaluate the proposed framework on three benchmark video datasets: Moving
MNIST ( R ), KTH Actions ( s ), and BAIR Robot Pushing
( , ). Experimental setups are described in Section 4.1, followed by a set of qualitative
experiments in Section 4.2. In Section 4.3, we provide quantitative comparisons across different
model classes. Further implementation details and visualizations can be found in Appendix B.
Anonymized code is available at the following link.


https://anonymous.4open.science/r/f02199f7-86d2-45ee-ad23-3f13f769ee10/
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(d)

Figure 4: Flow Visualization. Visualization of the flow component for (a), (¢) standalone flow-
based models and (b), (d) sequential latent variable models with flow-based conditional likelihoods
for Moving MNIST and BAIR Robot Pushing. From top to bottom, each figure shows 1) the original
frames, x;, 2) the predicted shift, pg(x<¢), for the frame, 3) the predicted scale, og(x <), for the
frame, and 4) the noise, y;, obtained from the inverse transform.

4.1 EXPERIMENTAL SETUP

We implement three classes of models: 1) standalone autoregressive flow-based models, 2) sequen-
tial latent variable models, and 3) sequential latent variable models with flow-based conditional
likelihoods. Flows are implemented with convolutional networks, taking in a fixed window of previ-
ous frames and outputting shift, t¢, and scale, oy, parameters. The sequential latent variable models
consist of convolutional and recurrent networks for both the encoder and decoder networks, follow-
ing the basic form of architecture that has been previously employed in video modeling (

s ) ) bl )

In the case of a regular sequential latent variable model, the conditional likelihood is a Gaussian
that models the frame, x;. In the case of a flow-based conditional likelihood, we model the noise
variable, y,, with a Gaussian. In our experiments, the flow components have vastly fewer parameters
than the sequential latent variable models. In addition, for models with flow-based conditional
likelihoods, we restrict the number of parameters to enable a fairer comparison. These models
have fewer parameters than the baseline sequential latent variable models (with non-flow-based
conditional likelihoods). See Appendix B for parameter comparisons and architecture details.

4.2 QUALITATIVE EVALUATION

To better understand the behavior of autoregressive flows on sequences, we visualize each compo-
nent as an image. In Figure 4, we show the data, x;, shift, g, scale, oy, and noise variable, y,
for standalone flow-based models (left) and flow-based conditional likelihoods (right) on random
sequences from the Moving MNIST and BAIR Robot Pushing datasets. Similar visualizations for
KTH Actions are shown in Figure 6 in the Appendix. In Figure 7 in the Appendix, we also visualize
these quantities for a flow-based conditional likelihood with two transforms.

From these visualizations, we can make a few observations. The shift parameters (second row) tend
to capture the static background, blurring around regions of uncertainty. The scale parameters (third
row), on the other hand, tend to focus on regions of higher uncertainty, as expected. The resulting
noise variables (bottom row) display any remaining structure not modeled by the flow. In comparing
standalone flow-based models with flow-based conditional likelihoods in sequential latent variable
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Table 1: Quantitative Comparison. Average test log-likelihood (higher is better) in nats per pixel
per channel for Moving MNIST, BAIR Robot Pushing, and KTH Actions. For flow-based models
(1-AF and 2-AF), we report the average log-likelihood. For sequential latent variable models (SLVM
and SLVM w/ 1-AF), we report the average lower bound on the log-likelihood.

M-MNIST BAIR KTH
1-AF —2.15 —3.05 -3.34
2-AF —-2.13 —2.90 —3.35
SLVM >—-192 > -357 > —-4.63
SLVM w/ 1-AF >-186 >-235 >-239

models, we see that the latter qualitatively contains more structure in y, e.g. dots (Figure 4b, fourth
row) or sharper edges (Figure 4d, fourth row). This is expected, as the noise distribution is more
expressive in this case. With a relatively simple dataset, like Moving MNIST, a single flow can
reasonably decorrelate the input, yielding white noise images (Figure 4a, fourth row). However,
with natural image datasets like KTH Actions and BAIR Robot Pushing, a large degree of structure
is still present in these images, motivating the use of additional model capacity to model this signal.

4.3 QUANTITATIVE EVALUATION

Quantitative results for each model class are shown in Table 1. We report the average test log-
likelihood in nats per pixel per channel for flow-based models and the lower bound on this quantity
for sequential latent variable models. Standalone flow-based models perform surprisingly well,
even outperforming sequential latent variable models in some cases. Increasing flow depth from 1
to 2 generally results in improved performance. Sequential latent variable models with flow-based
conditional likelihoods outperform their baseline counterparts, despite having fewer parameters.
One reason for this disparity is overfitting. Comparing with the training performance reported in
Table 2, we see that sequential latent variable models with flow-based conditional likelihoods overfit
less. This is particularly apparent on KTH Actions, which contains training and test sets with a
high degree of separation (different identities and activities). This suggests that removing static
components, like backgrounds, yields a reconstruction space that is better for generalization.

5 CONCLUSION

We have presented a technique for improving sequence modeling based on autoregressive normal-
izing flows. This technique uses affine transforms to temporally decorrelate sequential data, thereby
simplifying the estimation of dynamics. We have drawn connections to classical approaches, which
involve modeling temporal derivatives. Finally, we have empirically shown how this technique can
improve sequential latent variable models.
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A LOWER BOUND DERIVATION

Consider the model defined in Section 3.3.1, with the conditional likelihood parameterized with
autoregressive flows. That is, we parameterize

Xt = po(X<t) + 09(X<t) Oyt (21
yielding
8Xt -1
Po(Xt[X<t,2<t) = po(yi|y<t,z<t) |det By, (22)
t
The joint distribution over all time steps is then given as
T
po(x1.r, z1.7) = [ [ Po(Xelx<r, 2<i)po (2| x <t 224) (23)
t=1
T %\ |
= Hpe(}’t|}’<t, z<y) |det <t> po(Ze[x<t, z2<t). (24)
=1 dy1
To perform variational inference, we consider a filtering approximate posterior of the form
T
Q(Zl:T|X1:T) = H Q(Zt|xgt7Z<t)~ (25)
t=1
We can then plug these expressions into the evidence lower bound:
L= ]Eq(zl;T|x1:T) [logpe(xl:T7 Zl:T) - log Q(Z1:T|X1:T)] (26)
T o\ |
= Eg(zr.rx1.7) [log <H Po(ye|y<t,z<t) |det <8yt) pG(Zt|X<t7Z<t)>
t=1 ¢

T
— log <H q(z¢|x<¢, Z<t)> ] 27

t=1

T

q(z¢|X<t,2<1) 0%y
=Eq(z . Ix;. 1 , —log ——————= —log|det | — . (28
gz x1r) LZ_; 0g po(yely<t,z<t) — log o(zxrzy) 08| <8yt (28)
Finally, in the filtering setting, we can rewrite the expectation, bringing it inside of the sum (see

(2017); (2018)):

4 q(z¢|x<t, Z<t) ox
L= Ey(z,x<,) | logpo ,Z<t) — lo A i kS VAR det(t>‘ . (29

tz:; a(z<elx< )l g o (Yely<t z<t) gpe(Zt\X<t,Z<t) g ay,

Because there exists a one-to-one mapping between x;.7 and y;.7, we can equivalently condition
the approximate posterior and the prior on y, i.e.

T

q(ztly<t, Z<t) ’ (axt> ‘
L= E E,( ly<e lo ,Z —log ———=——" —log|det [ =— . (30)
t=1 iy [ ng(Yt|y<t St) gpe(zt\Y<t,Z<t) & 0yt
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B EXPERIMENT DETAILS

We store a fixed number of past frames in the buffer of each transform, to generate the shift and
scale for the transform. For each stack of flow, 4 convolutional layers with kernel size (3, 3), stride 1
and padding 1 are applied first on each data observation in the buffer, preserving the data shape. The
outputs are concatenated along the channel dimension and go through another four convolutional
layers also with kernel size (3, 3), stride 1 and padding 1. Finally, separate convolutional layers with
the same kernel size, stride and padding are used to generate shift and scale respectively.

For latent variable models, we use a DC-GAN structure ( s ), with 4 layers of
convolutional layers of kernel size (4,4), stride 2 and padding 1 before another convolutional layer
of kernel size (4,4), stride 1 and no padding to encode the data. The encoded data is sent to an
LSTM ( , ) followed by fully connected layers to generate the mean
and log-variance for estimating the approximate posterior distribution of the latent variable, z;. The
conditional prior distribution is modeled with another LSTM followed by fully connected layers,
taking the previous latent variable as input. The decoder take the inverse structure of the encoder.
In the SLVM, we use 2 LSTM layers for modelling the conditional prior and approximate posterior
distributions, while in the combined model we use 1 LSTM layer for each.

We use the Adam optimizer ( , ) with a learning rate of 1 x 10~ to train all the
models. For Moving MNIST, we use a batch size of 16 and train for 200, 000 iterations for latent
variable models and 100, 000 iterations for flow-based and latent variable models with flow-based
likelihoods. For BAIR Robot Pushing, we use a batch size of 8 and train for 200, 000 iterations
for all models. For KTH dataset we use a batch size of 8 and train for 90, 000 iterations for all
models. Batch norm ( , ) is applied to all convolutional layers that do not
directly generate distribution or transform parameters. We randomly crop sequence of length 13
from all sequences and evaluate on the last 10 frames. (For 2-flow models we crop sequence of
length 16 to fill up all buffers.) Anonymized code is available at the following link.

oV

NN : 4 layer CNN
1 :1layer CNN

t-3 t-2 t-1 t

All convolution layers are set up with with kernel size (3,3) stride 1 and padding 1.

Figure 5: Implementation Visualization of the autoregressive flow.
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C ADDITIONAL EXPERIMENTAL RESULTS

Table 2: Training Quantitative Comparison. Average training log-likelihood (higher is better) in
nats per pixel per channel for Moving MNIST, BAIR Robot Pushing, and KTH Actions. For flow-
based models (1-AF and 2-AF), we report the average log-likelihood. For sequential latent variable
models (SLVM and SLVM w/ 1-AF), we report the average lower bound on the log-likelihood.

M-MNIST BAIR KTH
1-AF —2.06 —2.98 —-2.95
2-AF —2.04 —2.76 —2.95
SLVM >—-193 >-346 > -3.05
SLVM w/ 1-AF >—-185 >-231 > -221

Figure 6: Flow Visualization on KTH Action. Visualization of the flow component for (a) stan-
dalone flow-based models and (b) sequential latent variable models with flow-based conditional
likelihoods for KTH Actions. From top to bottom, each figure shows 1) the original frames, x;, 2)
the predicted shift, pg(x<¢), for the frame, 3) the predicted scale, op(x~;), for the frame, and 4)
the noise, y;, obtained from the inverse transform.

Table 3: Number of parameters for each model on each dataset. Flow-based models contain
relatively few parameters as compared with the SLVM, as our flows consist primarily of 3 x 3
convolutions with limited channels. In the SLVM, we use 2 LSTM layers for modelling the prior
and posterior distribution of latent variable while in the combined model we use 1 LSTM layer for
each.

Model 1-AF  2-AF SLVM SLVM w/ 1-AF
Moving Mnist 343k 686k 11302k 10592k
BAIR Robot Pushing 363k 726k 11325k 10643k
KTH Action 343k 686k 11302k 10592k
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Figure 7: SLVM w/ 2-AF Visualization on Moving MNIST. Visualization of the flow component
for sequential latent variable models with 2-layer flow-based conditional likelihoods for Moving
MNIST. From top to bottom on the left side, each figure shows 1) the original frames, x;, 2) the
lower-level predicted shift, ué (x<¢), for the frame, 3) the predicted scale, aé}(xq), for the frame.
On the right side, from top to bottom, we have 1) the higer-level predicted shift, p(x<), for the

frame, 3) the predicted scale, 0'3 (x<¢), for the frame and 4) the noise, y;, obtained from the inverse
transform.
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