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ABSTRACT

Many machine learning problems can be expressed as the optimization of some cost
functional over a parametric family of probability distributions. It is often beneficial
to solve such optimization problems using natural gradient methods. These methods
are invariant to the parametrization of the family, and thus can yield more effective
optimization. Unfortunately, computing the natural gradient is challenging as it requires
inverting a high dimensional matrix at each iteration. We propose a general framework
to approximate the natural gradient for the Wasserstein metric, by leveraging a dual
formulation of the metric restricted to a Reproducing Kernel Hilbert Space. Our
approach leads to an estimator for gradient direction that can trade-off accuracy and
computational cost, with theoretical guarantees. We verify its accuracy on simple
examples, and show the advantage of using such an estimator in classification tasks
on Cifar10 and Cifar100 empirically.

1 INTRODUCTION

The success of machine learning algorithms relies on the quality of an underlying optimization method.
Many of the current state-of-the-art methods rely on variants of Stochastic Gradient Descent (SGD) such as
AdaGrad (Duchi et al., 2011), RMSProp (Hinton et al., 2012), and Adam (Kingma and Ba, 2014). While
generally effective, the performance of such methods remains sensitive to the curvature of the optimization
objective. When the Hessian matrix of the objective at the optimum has a large condition number, the
problem is said to have a pathological curvature (Martens, 2010; Sutskever et al., 2013). In this case, the
first-order optimization methods tend to have poor performance. It can be not alleviated by using adaptive
step sizes on individual parameters. However, the curvature depends on the parametrization of the model.
One strategy is to find an alternative parametrization of the same model that has a better-behaved curvature
and is thus easier to optimize with standard first-order optimization methods. Designing good network
architectures (Simonyan and Zisserman, 2014; He et al., 2015) along with normalization techniques
(LeCun et al., 2012; Ioffe and Szegedy, 2015; Salimans and Kingma, 2016) is often critical for the success
of such optimization methods.

The natural gradient method (Amari, 1998) takes a related but different perspective. Rather than re-
parametrizing the model, the natural gradient method tries to make the optimizer itself invariant to re-
parameterizations by directly operating on the manifold of probability distributions. This requires endowing
the parameter space with a suitable notion of proximity formalized by a metric. An important metric in this
context is the Fisher information metric (Fisher and Russell, 1922; Rao, 1992), which induces the Fisher-
Rao natural gradient (Amari, 1985). Another important metric in probability space is the Wasserstein metric
(Villani, 2009; Otto, 2001), which induces the Wasserstein natural gradient (Li and Montufar, 2018a;b); see
similar formulations in Gaussian families (Malagò et al., 2018; Modin, 2017). In spite of their numerous
theoretical advantages, applying natural gradient methods is challenging in practice. Indeed, each parameter
update requires inverting the the metric tensor. This becomes infeasible for current deep learning models,
which typically have millions of parameters. This has motivated research into finding efficient algorithms
to estimate the natural gradient (Martens and Grosse, 2015; Grosse and Martens, 2016; George et al., 2018;
Heskes, 2000; Bernacchia et al., 2018). Such algorithms often address the case of the Fisher metric and either
exploit a particular structure of the parametric family or rely on a low rank decomposition of the information
matrix. Recently, Li et al. (2019) proposed to estimate the metric based on a dual formulation and used this
estimate in a proximal method. While this avoids explicitly computing the natural gradient, the proximal
method also introduces an additional optimization problem to be solved at each update of the model’s
parameters. The quality of the solver will thus depend on the accuracy of this additional optimization.
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In this paper, we use the dual formulation of the metric to directly obtain a closed form expression of the
natural gradient as a solution to a convex functional optimization problem. We focus on the Wasserstein
metric as it has the advantage of being well defined even when the model doesn’t admit a density. The
expression remains valid for general metrics including the Fisher-Rao metric. We leverage recent work on
Kernel methods (Sriperumbudur et al., 2017; Strathmann et al., 2015; Arbel and Gretton, 2017; Sutherland
et al., 2017) to compute an estimate of the natural gradient by restricting the functional space appearing
in the dual formulation to a Reproducing Kernel Hilbert Space. We demonstrate empirically the accuracy
of our estimator on toy examples, and show how it can be effectively used to approximate the trajectory
of the natural gradient descent algorithm. We also analyze the effect of the dimensionality of the model
on the accuracy of the proposed estimator. Finally, we illustrate the benefits of our proposed estimator
for solving classification problems when the model has an ill-conditioned parametrization.

The paper is organized as follows. In Section 2, after a brief description of natural gradients, we discuss
Legendre duality of metrics, and provide details on the Wasserstein natural gradient. In Section 3, we
present our kernel estimator of the natural gradient. In Section 4 we present experiments to evaluate the
accuracy of the proposed estimator and demonstrate its effectiveness in supervised learning tasks.

2 NATURAL GRADIENT DESCENT

We first briefly recall the natural gradient descent method in Section 2.1, and its relation to metrics on
probability distribution spaces. We next present Legendre dual formulations for metrics in Section 2.2
where we highlight the Fisher-Rao and Wasserstein metrics as important examples.

2.1 GENERAL FORMULATION

It is often possible to formulate learning problems as the minimization of some cost functional ρ 7→F(ρ)
over probability distributions ρ from a parametric model PΘ. The set PΘ contains probability distributions
defined on an open sample space Ω⊂Rd and parametrized by some vector θ∈Θ, where Θ is an open
subset of Rq. The learning problem can thus be formalized as finding an optimal value θ∗ that locally
minimizes a loss function L(θ) :=F(ρθ) defined over the parameter space Θ. One convenient way to
solve this problem approximately is by gradient descent, which uses the Euclidean gradient of L w.r.t.
the parameter vector θ to produce a sequence of updates θt according to the following rule:

θt+1 =θt−γt∇L(θt).

Here the step-size γt is a positive real number. The Euclidean gradient can be viewed as the direction
in parameter space that leads to the highest decrease of some linear modelMt of the cost function L
per unit of change of the parameter. More precisely, the Euclidean gradient is obtained as the solution
of the optimization problem:

∇L(θt)=−argmin
u∈Rq

Mt(u)+
1

2
‖u‖2. (1)

The linear modelMt is an approximation of the cost function L in the neighborhood of θt and is simply
obtained by a first order expansion: Mt(u) =L(θt)+∇L(θt)

>u. The quadratic term ‖u‖2 penalizes
the change in the parameter and ensures that the solution remains in the neighborhood where the linear
model is still a good approximation of the cost function.

This particular choice of quadratic term is what defines the Euclidean gradient descent algorithm, which
can often be efficiently implemented for neural network models using back-propagation. The performance
of this algorithm is highly dependent on the parametrization of the model PΘ, however (Martens, 2010;
Sutskever et al., 2013). To obtain an algorithm that is robust to parametrization, one can take advantage
of the structure of the cost function L(θ) which is obtained as the composition of the functional F and
the model θ 7→ρθ. This offers the possibility to use a different quadratic term to penalize the change in
the model ρθ regardless of how it is parameterized.

The Fisher information matrix θ 7→GF (θ) (Amari, 1985) is one possible way to construct the quadratic
term, leading to the Fisher-Rao natural gradient. We recall thatGF (θ) is well defined when the probability
distributions in PΘ all have positive densities, and certain additional differentiability and integrability
assumptions on ρθ are satisfied. In fact,GF has an interpretation in Riemannian geometry as the pull-back
of a metric tensor gF defined over the set of probability distributions with positive densities and known
as the Fisher-Rao metric (see Definition 4 in Appendix B.1; see also Holbrook et al. 2017):
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Definition 1 (Fisher information matrix). Assume θ 7→ ρθ(x) is differentiable for all x on Ω and that∫ ‖∇ρθ(x)‖2
ρθ(x) dx<∞. Then the Fisher information matrix is defined as the pull-back of the Fisher-Rao

metric gF :

GF (θ)ij=gFρθ(∂iρθ,∂jρθ):=

∫
fi(x)fj(x)ρθ(x)dx,

where the functions fi on Ω are given by: fi= ∂iρθ
ρθ

.

The Fisher-Rao natural gradient ∇GFL(θt) is obtained by replacing the quadratic term ‖u‖2 in (1) by
1
2u
>GF (θt)u. It corresponds to the direction with the largest decrease in the linear modelMt per unit

of change in ρθ as measured by the Fisher-Rao metric gF . The resulting sequence of probability densities
(ρθt)t≥0 is invariant to parametrization in the limit when the step-size γt tends to 0.

This approach can be extended to any metric tensor g defined on a suitable space of probability distributions
containing PΘ. In this case, the induced metric on the space of parameters Θ has a matrix representation
G(θ)∈Rq×Rq called the information matrix and the corresponding natural gradient ∇Gθ L(θ) is then
obtained by solving:

∇GL(θt)=−argmin
u∈Rq

Mt(u)+
1

2
u>G(θt)u. (2)

From (2), it is possible to express the natural gradient by means of the Euclidean gradient:
∇GL(θt)=G(θt)

−1∇L(θt). The parameter updates are then obtained by the new update rule:

θt+1 =θt−γtG(θt)
−1∇L(θt). (3)

Similarly to the Fisher-Rao natural gradient, the generalized natural gradient leads to a descent algorithm
which is invariant (in the sense of the traversed hypotheses) to parametrization in the limit of small
step-sizes γt. A detailed discussion of parametrization invariant gradient methods is given by Ollivier
et al. (2011). While the particular case when the metric g is chosen to be the Fisher-Rao metric leads
to the well-know Fisher-Rao natural gradient, other choices for the metric g are also possible. Recently,
Li and Montufar (2018a); Chen and Li (2018) proposed to use the Wasserstein 2 metric (Otto and Villani,
2000; Lafferty and Wasserman, 2008) denoted gW (Definition 5 of Appendix B.2) which leads to the
Wasserstein information matrixGW (θ):
Definition 2 (Wasserstein information matrix). The Wasserstein information matrix is defined as the
pull-back of the Wasserstein 2 metric gW :

GW (θ)ij=gWρθ (∂iρθ,∂jρθ):=

∫
φi(x)>φj(x)ρθ(x)dx,

where φi are vector valued functions on Ω that are solutions to the partial differential equations with
Neumann boundary condition:

∂iρθ=−div(ρθφi), ∀1≤i≤q.
Moreover, φi are required to be in the closure of the set of gradients of smooth and compactly supported
functions inL2(ρθ)

d. In particular, when ρθ has a density, φi=∇xfi, for some real valued function fi on Ω.

The partial derivatives ∂iρθ should be understood in distribution sense, as discussed in more detail in
Section 2.2. This allows to define the Wasserstein natural gradient even when the model ρθ does not
admit a density. From now on, we will focus on the above two cases of the metricG(θ), namelyGF (θ)
and GW (θ). When the dimension of the parameter space is high, directly using equation (3) becomes
impractical as it requires storing and inverting the matrixG(θ). In Section 2.2 we will see how equation
(2) can be exploited along with Legendre duality to get a expression for the natural gradient that can be
efficiently approximated using kernel methods.

2.2 LEGENDRE DUALITY FOR METRICS

In this section we provide an expression for the natural gradient defined in (2) as a solution of a
saddle-point optimization problem. It exploits Legendre duality for metrics to express the quadratic
term u>G(θ)u as a solution to a functional optimization problem over C∞c (Ω), the set of smooth and
compactly supported functions on Ω. The starting point is to extend the notion of gradient∇ρθ which
appears in Definitions 1 and 2 to the distributional sense of Definition 3 below.
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Definition 3. Given a parametric family PΘ of probability distributions, the distributional gradient∇ρθ
at point θ of ρθ is defined as the linear map∇ρθ :C∞c (Ω)→Rq whose components are given by:

(∇ρθ(f))i= lim
ε→0

ε−1

Å∫
f(x)dρθ+εei(x)−

∫
f(x)dρθ(x)

ã
, ≤1≤i≤q,

where (ei)1≤i≤q is an orthonormal basis of Rq.

When the modelPΘ has a density that is differentiable w.r.t. θ,∇ρθ(f) is simply given by
∫
f(x)∇θρ(x)dx

and one recovers the usual gradient ∇ρθ(x). In this case, the Fisher information matrix admits a dual
formulation provided in Proposition 1 with a proof in Appendix C.1.
Proposition 1. Under the same assumptions as in Definition 1, the Fisher information matrix satisfies:

1

2
u>GF (θ)u= sup

f∈C∞c (Ω)∫
f(x)dρθ(x)=0

∇ρθ(f)>u− 1

2

∫
f(x)2ρθ(x)dx. (4)

Another important case is when PΘ is defined as an implicit model. In this case, any sample x from
a distribution ρθ in PΘ is obtained as x=hθ(z), where z is a sample from a fixed latent distribution ν
defined over a latent space Z and (θ,z) 7→hθ(z) is a deterministic function with values in Ω. This can
be written in a more compact way as the push-forward of ν by the function hθ:

PΘ :={ρθ :=(hθ)#ν |θ∈Ω}. (5)

A different expression for∇ρθ is obtained in the case of implicit models when θ 7→hθ(z) is differentiable
for ν-almost all z and when∇hθ is square integrable under ν:

∇ρθ(f)=

∫
∇hθ(z)>∇xf(hθ(z))dν(z). (6)

Equation (6) is also known as the re-parametrization trick (Kingma et al., 2015) and allows to derive a dual
formulation of the Wasserstein information matrix in the case of implicit models. Proposition 2 below pro-
vides such formulation under mild assumptions stated in Appendix A.2 along with a proof in Appendix C.1.
Proposition 2. Assume PΘ is defined by (5) such that ∇ρθ is given by (6). Under Assumptions (B)
and (C), the Wasserstein information matrix satisfies:

1

2
u>GW (θ)u= sup

f∈C∞c (Ω)∫
f(x)dρθ(x)=0

∇ρθ(f)>u− 1

2

∫
‖∇xf(hθ(z))‖2dν(z). (7)

The similarity between the variational formulations provided in Propositions 1 and 2 is worth noting.
However, while (7) is well defined, the expression in (4) can be infinite when∇ρθ is given by (6). Indeed,
if the ρθ doesn’t admit a density, it is always possible to find an admissible function f ∈C∞c (Ω) with
bounded second moment under ρθ but for which∇ρθ(f) is arbitrarily large. This is avoided in (7) since
the quadratic term penalizes the second moment of the gradient of functions instead.

3 KERNELIZED WASSERSTEIN NATURAL GRADIENT

In this section we propose an estimator for the Wasserstein natural gradient using kernel methods and
exploiting the formulation in (7). We restrict to the case of the Wasserstein natural gradient, denoted by
∇WL(θ), as it is well defined for implicit models, but a similar approach can be used for the Fisher-Rao
natural gradient in the case of models with densities. We first start by presenting the kernelized Wasserstein
natural gradient (KWNG) in Section 3.1, then we introduce an efficient estimator for KWNG in Section 3.2.
In Section 3.3 we provide statistical guarantees and discuss practical considerations in Section 3.4.

3.1 GENERAL FORMULATION AND MINIMAX THEOREM

Consider a Reproducing Kernel Hilbert Space (RKHS) H which is a Hilbert space endowed with an
inner product 〈.,.〉H along with its norm ‖.‖H. H has the additional property that there exists a symmetric
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positive semi-definite kernel k : Ω×Ω 7→ R such that k(x,.) ∈ H for all x ∈ Ω and satisfying the
Reproducing property for all functions f inH:

f(x)=〈f,k(x,.)〉H, ∀x∈Ω. (8)

The above property is central in all kernel methods as it allows to obtain closed form expressions for some
class of functional optimization problems. In order to take advantage of such property for estimating the
natural gradient, we consider a new saddle problem obtained by restricting (7) to functions in the RKHS
H and adding some regularization terms:

min
u∈Rq

sup
f∈H∫

f(x)dρθ(x)=0

Uθ(f)>u− 1

2

∫
‖∇xf(x)‖2dρθ(x)+

1

2
(εu>D(θ)u−λ‖f‖2H) (9)

where we introducedUθ(f):=∇L(θ)+∇ρθ(f) for simplicity. The kernelized Wasserstein natural gradient
is obtained by solving (9) and is denoted by ‹∇WL(θ). Here, λ and ε are non-negative real numbers while
D(θ) is a diagonal matrix in Rq with positive diagonal elements whose choice will be discussed in
Section 3.4. The additional regularization terms allow to use a version of the minimax theorem (Ekeland
and Témam, 1999, Proposition 2.3, Chapter VI) to exchange the order of the supremum and minimum.
This leads to a new expression for the kernelized natural gradient which is provided in Proposition 3.
Proposition 3. The kernelized natural gradient is given by:‹∇WL(θ)=

1

ε
D(θ)−1Uθ(f∗), (10)

where f∗ is the unique solution to the quadratic optimization problem:

inf
f∈H∫

f(x)dρθ(x)=0

J (f):=

∫
‖∇xf(x)‖2dρθ(x)+

1

ε
Uθ(f)>D(θ)−1Uθ(f)+λ‖f‖2H. (11)

Proposition 3 allows to compute the kernelized natural gradient directly provided that the functional
optimization (11) can be solved. This circumvents the direct computation and inversion of the metric as
suggested by (9). In Section 3.2, we propose a method to efficiently compute an approximate solution
to (11) using Nyström projections. We also show in Section 3.3 that restricting the space of functions
toH can still lead to a good approximation of the Wasserstein natural gradient provided thatH enjoys
some denseness properties.

3.2 NYSTRÖM METHODS FOR THE KERENALIZED NATURAL GRADIENT

We are interested now in finding an approximate solution to (11) which will allow to compute an estimator
for the Wasserstein natural gradient using Proposition 3. Here we considerN samples (Zn)1≤n≤N from
the latent distribution ν which are used to produce N samples (Xn)1≤n≤N from ρθ using the map hθ,
i.e.,Xn=hθ(Zn). We also assume we have access to an estimate of the Euclidean gradient∇L(θ) which
is denoted by ÷∇L(θ). This allows to compute an empirical version of the cost function in (11),

Ĵ (f):=
1

N

N∑
n=1

‖∇xf(Xn)‖2+
1

ε
Ûθ(f)>D(θ)−1Ûθ(f)+λ‖f‖2H, (12)

where Ûθ(f) is given by: Ûθ(f)=÷∇L(θ)+ 1
N

∑N
n=1∇hθ(Zn))>∇xf(Xn). Equation (12) is similar to

another functional arising in the context of score estimation for infinite dimensional exponential families
(Sriperumbudur et al., 2017; Strathmann et al., 2015; Arbel and Gretton, 2017). It can be shown using
the generalized Representer Theorem (Schölkopf et al., 2001) that the optimal function minimizing (12) is
a linear combination of functions of the form x 7→∂ik(Xn,x) with 1≤n≤N and 1≤i≤d and ∂ik(y,x)
denotes the partial derivative of k w.r.t. yi. This requires to solve a system of sizeNd×Nd which can be
prohibitive when bothN and d are large. Nyström methods provide a way to improve such computational
cost by further restricting the optimal solution to belong to a finite dimensional subspaceHM ofH called
the Nyström subspace. In the context of score estimation, Sutherland et al. (2017) proposed to use a
subspace formed by linear combinations of the basis functions x 7→∂ik(Ym,x):

span{x 7→∂ik(Ym,x) |1≤m≤M ; 1≤i≤d}, (13)
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where (Ym)1≤m≤M are basis points drawn uniformly from (Xn)1≤n≤N with M ≤ N . This further
reduces the computational cost whenM�N but still has a cubic dependence in the dimension d since all
partial derivatives of the kernel are considered to construct (13). Here, we propose to randomly sample one
component of (∂ik(Ym,.))1≤i≤d for each basis point Ym. Hence, we consider M indices (im)1≤m≤M
uniformly drawn form {1,...,d} and define the Nyström subspaceHM to be:

HM :=span{x 7→∂imk(Ym,x)|1≤m≤M}.

An estimator for the kernelized Wasserstein natural gradient (KWNG) is then given by:ÿ�∇WL(θ)=
1

ε
D(θ)−1Ûθ(f̂∗), f̂∗ := argmin

f∈HM∫
f(x)dρθ(x)=0

Ĵ (f). (14)

By definition of the Nyström subspaceHM , the optimal solution f̂∗ is necessarily of the form: f̂∗(x)=∑M
m=1αm∂imk(Ym,x), where the coefficients (αm)1≤m≤M are obtained by solving a finite dimensional

quadratic optimization problem. This allows to provide a closed form expression for (15) in Proposition 4.

Proposition 4. The estimator in (14) is given by:ÿ�∇WL(θ)=
1

ε

Å
D(θ)−1−D(θ)−1T>

(
TD(θ)−1T>+λεK+

ε

N
CC>

)†
TD(θ)−1

ã÷∇L(θ), (15)

where C andK are matrices in RM×Nd and RM×M given by

Cm,(n,i) =∂im∂i+dk(Um,Xn), Km,m′=∂im∂im′+dk(Ym,Ym′), (16)

while T is a matrix in RM×q obtained as the Jacobian of θ 7→τ(θ)∈RM , i.e., T :=∇τ(θ), with

(τ(θ))m=
1

N

N∑
n=1

∂imk(Ym,hθ(Zn)).

In (16), we used the notation ∂i+dk(y,x) for the partial derivative of k w.r.t. xi. A proof of Proposition 4 is
provided in Appendix C.2 and relies on the reproducing property (8) and its generalization for partial deriva-
tives of functions. The estimator in Proposition 4 is in fact a low rank approximation of the natural gradient
obtained from the dual representation of the metric (7). While low-rank approximations for the Fisher-Rao
natural gradient were considered in the context of variational inference and for a Gaussian variational
posterior (Mishkin et al., 2018), (15) can be applied as a plug-in estimator for any family PΘ obtained as
an implicit model. We next provide theoretical guarantees for our method in Section 3.3, and discuss the
computational cost of the proposed estimator, along with some practical considerations, in Section 3.4.

3.3 THEORY

In this section we are interested in the behavior of the estimator in the limit of large N and M . We
distinguish two cases: the well-specified case and the miss-specified case.

Well-specified case. Here, we assume that the vector valued functions (φi)1≤i≤q involved in Definition 2
can be expressed as gradients of functions inH. More precisely:

Assumption 1. For all 1≤ i≤ q, there exits functions fi ∈H such that φi =∇fi. Additionally, fi are
of the form fi=A

αvi for some fixed α≥0, with vi∈H andA being the differential covariance operator
defined onH by:

A :f 7→
∫ d∑

i=1

∂ik(hθ(z),.)∂if(hθ(z))dν(z). (17)

The parameter α characterizes the smoothness of fi and therefore controls the statistical complexity of
the estimation problem. Using a similar analysis as Sutherland et al. (2017) we obtain the following
convergence rates for the estimator in Proposition 4:
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Theorem 5. Let δ be such that 0≤δ≤1 and b :=min(1,α+ 1
2). Under Assumption 1 and Assumptions (A)

to (G) listed in Appendix A.2, forN large enough,M∼(dN
1

2b+1 log(N)), λ∼N−
1

2b+1 and ε.N−
b

2b+1 ,
it holds with probability at least 1−δ that:

‖ÿ�∇WL(θ)−∇WL(θ)‖2 =O
(
N−

2b
2b+1

)
.

A proof of Theorem 5 is provided in Appendix C.3 and relies on the same techniques used by Rudi
et al. (2015); Sutherland et al. (2017). The additional assumptions are easy to satisfy in practice by
choosing a suitable model PΘ and kernel k. In the worst case where α=0, the proposed estimator needs
at most M ∼ (d

√
N log(N)) to achieve a convergence rate of N−

1
2 . The smoothest case requires only

M∼ (dN
1
3 log(N)) to achieve a rate of N−

2
3 . Thus, the proposed estimator enjoys the same statistical

properties as the ones proposed by Sriperumbudur et al. (2017); Sutherland et al. (2017) while maintaining
a computational advantage1.

Miss-specified case. We extend the previous analysis to the case where Assumption 1 doesn’t hold.
Instead, we rely on the following weaker assumption:

Assumption 2. There exists two constants C>0 and c≥0 such that for all κ>0 and all 1≤i≤q, there
is a function fκi satisfying:

‖φi−∇fκi ‖L2(ρθ)≤Cκ, ‖fκi ‖H≤Cκ−c. (18)

The left inequality in (18) represents the accuracy of the approximation of φi by gradients of functions
in H while the right inequality represents the complexity of such approximation. Thus, the parameter
c characterizes the difficulty of the problem: a higher value of cmeans that a more accurate approximation
of φi comes at a higher cost in terms of its complexity. Theorem 6 provides convergences rates for the
same estimator Proposition 4 under Assumption 2:

Theorem 6. Let δ be such that 0≤δ≤1 and b := 1
2+c . Under Assumption 2 and Assumptions (A) to (G)

listed in Appendix A.2, forN large enough,M∼(dN
1

2b+1 log(N)), λ∼N
1

2b+1 and ε.N−
b

2b+1 , it holds
with probability at least 1−δ that:

‖ÿ�∇WL(θ)−∇WL(θ)‖2 =O
(
N−

2
4+c

)
.

A proof of Theorem 6 is also provided in Appendix C.3. Here, in the case where c=0, we recover the
same convergence rate as in Theorem 5 for α=0. While c=0 represents the best case under Assumption 2,
α=0 corresponds to the worst case under Assumption 1. Hence, Theorem 6 is a consistent extension of
Theorem 5 to the miss-specified case. For harder problems where c>0 more basis points are required, with
M required to be of order dN log(N) in the limit when c→∞ in which case the Nyström approximation
loses its computational advantage.

3.4 PRACTICAL CONSIDERATIONS

Computational cost. (15) has a computational cost that is controlled by the number of basis pointsM
with the main contributions due to the cost of computing T , C and solving anM×M linear system. This
gives an overall cost of O(dNM2 +qM2 +M3). In practice, M can be chosen to be small (M ≤ 20)
whileN corresponds to the number of samples in a mini-batch. Hence, in a typical deep learning model,
most of the computational cost is due to computing T as the typical number of parameters q is of the
order of millions. In fact, T can be computed using automatic differentiation and would require performing
M backward passes on the model to compute the gradient for each component of τ . Overall, the proposed
estimator can be efficiently implemented and used for typical deep learning problems as shown in Section 4.

Choice of damping term. So far, we only required D(θ) to be a diagonal matrix with positive
coefficients. While a natural choice would be the identity matrix, this doesn’t necessarily represent the
best choice. As discussed by Martens and Sutskever (2012, Section 8.2), using the identity breaks the

1 The estimator proposed by Sutherland et al. (2017) also requires M to grow linearly with the dimension d
although such dependence doesn’t appear explicitly in the statement of Sutherland et al. 2017, Theorem 2.
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Figure 1: Evolution of the relative error of KWNG for the multivariate normal model averaged over 100
runs. For each run, a random value for the parameter θ and for the Euclidean gradient∇L(θ) is sampled
from a centered Gaussian with variance 0.1. In all cases, λ= ε= 10−10. Left (a): Relative error as the
sample sizeN increases. The dimension d of the sample space varies from d=1 (yellow) to d=10 (dark
red) and the number of basis points is set toM=

ö
d
√
N
ù
. Middle (b) Relative error asM increases with

dimension d varying from d=1 (yellow) to d=10 (dark red) and N fixed to 5000. Right (c) Box-plot
of the relative error as d increases withN=5000 andM=

ö
d
√
N
ù
.

self-rescaling properties enjoyed by the natural gradient. Instead, we consider a scale-sensitive choice by
setting (D(θ))i=‖T.,i‖2 where T is defined in Proposition 4. Moreover, while Theorems 5 and 6 suggest
to choose ε.N−

b
2b+1 , this is only valid in the large sample-size limit N→∞. When the sample-size

is limited, as it is often the case whenN is the size of a mini-batch, larger values for εmight be required.
That is to prevent the KWNG from over-estimating the step-size in the directions of low curvature. Indeed,
these directions are rescaled by the inverse of the smallest eigenvalues of the information matrix which
are harder to estimate accurately. To adjust ε dynamically during training, we use the Levenberg-Marquardt
heuristic as Martens and Sutskever (2012) which seems to perform well in practice; see Section 4.

4 EXPERIMENTS

This section presents an empirical evaluation of the Kernelized Wasserstein Natural Gradient (KWNG)
as an estimator of the Wasserstein Natural Gradient (WNG). In all experiments, the kernel k is chosen
to be a Gaussian kernel with an adaptive bandwidth of the form σ=σ0σN,M , where σ0 =103.3 and σN,M
is equal to the average square distance between samples (Xn)1≤n≤N and the basis points (Ym)1≤m≤M .

4.1 CONVERGENCE ON SYNTHETIC MODELS

To empirically assess the accuracy of KWNG, we consider two choices for the parametric model PΘ:
the multivariate normal model and the multivariate log-normal model. Both have the advantage that
the Wasserstein information matrix can be computed in closed form (Chen and Li, 2018; Malagò et al.,
2018). While this choice is essential to obtain closed form expressions for WNG, the proposed estimator
is agnostic to such choice of family. We also assume we have access to the exact Euclidean Gradient (EG)
which is used to compute both of WNG and KWNG.

Figure 1 shows the evolution of the the relative error w.r.t. the sample-sizeN , the number of basis pointsM
and the dimension d in the case of the multivariate normal model. As expected from the consistency results
provided in Section 3.3, the relative error decreases as the samples size N increases with the problem
becoming harder as the dimension d increases. The behavior in the number of basis points M shows a
clear threshold beyond which the estimator becomes consistent and where increasingM doesn’t decrease
the relative error anymore. This threshold increases with the dimension d as discussed in Section 3.3. In
practice, using the rule M =

ö
d
√
N
ù

seems to be a good heuristic as shown in Figure 1 (a). All these
observations persist in the case of the log-normal model as shown in Figure 5 of Appendix D.1.

We also compare the optimization trajectory obtained using KWNG with the trajectories of both the exact
WNG and EG in a simple setting. In this case, PΘ is the multivariate normal family and the loss function
L(θ) is the squared Wasserstein 2 distance between ρθ and a fixed target distribution ρθ∗ . Figure 2 (a),
shows the evolution of the loss function at every iteration. There is a clear advantage of using the WNG
over EG as larger step-sizes are allowed leading to faster convergence. Moreover, KWNG maintains this
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Figure 2: Left (a): Training error per iteration for KWNG, WNG, and EG. Right (b): projection of the
sequence of updates obtained using KWNG, WNG and EG along the first two PCA directions of the
WNG trajectory. The dimension of the sample space is fixed to d= 10. Exact valued for the gradient
are used for EG and WNG. For KWNG, N = 128 samples and M = 100 basis points are used. The
regularization parameters are set to: λ= ε= 10−10. An optimal step-size γt is used: γt = 0.1 for both
KWNG and WNG while γt=0.0001 for EG.

properties while being agnostic to the choice of the model. Figure 2 (b) shows the projected dynamics
of the three methods along the two PCA directions of the WNG trajectory with highest variance. The
dynamics of WNG seems to be well approximated by the one obtained using KWNG.

4.2 APPROXIMATE INVARIANCE TO PARAMETRIZATION

We illustrate now the approximate invariance to parametrization of the KWNG and show its benefits for
training training deep neural networks when the model is ill-conditioned. We consider a classification
task on two datasets Cifar10 and Cifar100 with a Residual Network He et al. (2015). To use
the KWNG estimator, we view the input RGB image as a latent variable z with probability distribution
ν and the output logits of the network x :=hθ(z) as a sample from the model distribution ρθ∈PΘ where
θ denotes the weights of the network. The loss function L is given by:

L(θ):=

∫
y(z)>log(SM(Uhθ(z)))dν(z),

whereSM is the Softmax function, y(z) denotes the one-hot vector representing the class of the image z and
U is a fixed invertible diagonal matrix which controls how well the model is conditioned. We consider two
cases, the Well-conditioned case (WC) in whichU is the identity and the Ill-conditioned case (IC) whereU is
chosen to have a condition number equal to 107. We compare the performance of the proposed method with
several variants of SGD: plain SGD, SGD + Momentum, and SGD + Momentum + Weight decay. We also
compare with KFAC optimizer (Martens and Grosse, 2015; Grosse and Martens, 2016) and eKFAC (George
et al., 2018) which implements a fast approximation of the empirical Fisher Natural Gradient. Details of the
experiments are provided in Appendix D.2. Figure 3 shows the training and test accuracy at each epoch on
Cifar10 in both (WC) and (IC) cases. While all methods achieve a similar test accuracy in the (WC) case
on both datasets, methods based on the Euclidean gradient seem to suffer a drastic drop in performance in the
(IC) case. This doesn’t happen for KWNG (red line) which achieves a similar test accuracy as in (WC) case.
Moreover, a speed-up in convergence can be obtained by increasing the number of basis pointsM (brown
line). On Cifar100, KWNG is also less affected by the ill-conditioning as shown in Figure 4, albeit to a
lower extent. Indeed, the larger number of classes in Cifar100 makes the estimation of KWNG harder
as discussed in Section 4.1. In this case, increasing the batch-size can substantially improve the training
accuracy (pink line). Moreover, methods that are used to improve optimization using the Euclidean gradient
can also be used for KWNG. For instance, using Momentum leads to an improved performance in the (WC)
case (grey line). Interestingly, KFAC seems to also suffer a drop in performance in the (IC) case. This might
result from the use of an isotropic damping termD(θ)=I which would be harmful in this case. Thus, we
expect an increased performance for KFAC if a scale-sensitive damping can be used instead as for KWNG.
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Figure 3: Training accuracy (left) and test accuracy (right) for classification on Cifar10 in both the
ill-conditioned case (top) and well-conditioned case (bottom) for different optimization methods. Results
are averaged over 5 independent runs except for KFAC and eKFAC.
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Figure 4: Training accuracy (left) and test accuracy (right) for classification on Cifar100 in both the
ill-conditioned case (top) and well-conditioned case (bottom) for different optimization methods.
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A PRELIMINARIES

A.1 NOTATION

We recall that Ω is an open subset of Rd while Θ is an open subset of parameters in Rq. Let Z ⊂Rp
be a latent space endowed with a probability distribution ν over Z. Additionally, (θ,z) 7→hθ(z)∈Ω is a
function defined over Θ×Z. We consider a parametric set of probability distributions PΘ over Ω defined
as the implicit model:

PΘ :={ρθ :=(hθ)#ν ; θ∈Θ},

where by definition, ρθ =(hθ)#ν means that any sample x from ρθ can be written as x=hθ(z) where
z is a sample from ν. We will writeB to denote the jacobian of hθ w.r.t. θ viewed as a linear map from
Rq to L2(ν)d without explicit reference to θ:

Bu(z)=∇hθ(z).u; ∀u∈Rq.

As in the main text, L :Θ→R is a loss functions which is assumed to be of the form L=F(ρθ), with
F a real valued functional over the set of probability distributions. ∇L(θ) denotes the euclidean gradient
of L w.r.t θ while ÷∇L(θ) is an estimator of∇L(θ) usingN samples from ρθ.

We also consider a Reproducing Kernel Hilbert SpaceH of functions defined over Ω with inner product
〈.,.〉H nad norm ‖.‖H and with a kernel k : Ω×Ω→R. The reproducing property for the derivatives
(Steinwart and Christmann, 2008, Lemma 4.34) will be important ∂if(x)=〈f,∂ik(x,.)〉H for all x∈Ω.
It holds as long as k is differentiable.

C∞b (Ω) denotes the space of smooth bounded real valued functions on Ω, and C∞c (Ω)⊂C∞b (Ω) denotes
the subset of compactly supported functions. For any measured space Z with probability distribution ν,
we denote by L2(ν) the space of real valued and square integrable functions under ν and by L2(ν)d the
space of square integrable vector valued functions under ν and with values in Rd.

A.2 ASSUMPTIONS

We make the following set of assumptions:

(A) Ω is a non-empty open subset of Rd.
(B) There exists positive constants ζ and σ such that

∫
‖z‖pdν(z)≤ 1

2p!ζ
p−2σ2 for any p≥2.

(C) For all θ∈Θ there exists C(θ) such that ‖∇θhθ(z)‖≤C(θ)(1+‖z‖) for all z∈Z.

(D) For all 0≤δ≤1, it holds with probability at least 1−δ that ‖÷∇L(θ)−∇L(θ)‖.N−1
2 .

(E) k is twice continuously differentiable on Ω×Ω.

(F) For all θ∈Θ it holds that
∫
∂i∂i+dk(x,x)dpθ(x)<∞ for all 1≤i≤d.

(G) The following quantity is finite: κ2 =sup x∈Ω
1≤i≤q

∂i∂i+qk(x,x).

A.3 OPERATORS DEFINITION

Differential operators. We introduce the linear L operator and its adjoint L>:

L :H→L2(ν)d L> :L2(ν)d→H

f 7→(∂if◦hθ)1≤i≤d v 7→
∫ d∑

i=1

∂ik(hθ(z),.)vi(z)dν(z)

This allows to obtain the linear operatorA defined in the main text (17) by compositionA :=L>L. We
recall here another expression forA in terms of outer product⊗ and its regularized version for a given λ>0,

A=

∫ d∑
i=1

∂ik(hθ(z),.)⊗∂ik(hθ(z),.)dν(z) Aλ :=A+λI.
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It is easy to see that A is a symmetric positive operator. Moreover, it was established in Sriperumbudur
et al. (2017) thatA is also a compact operator under Assumption (F).

Assume now we have access toN samples (Zn)1≤n≤N as in the main text. We define the following objects:

Â :=
1

N

N∑
n=1

d∑
i=1

∂ik(hθ(Zn),.)⊗∂ik(hθ(Zn),.), Âλ :=Â+λI.

Furthermore, if v is a continuous function in L2(ν)d, then we can also consider an empirical estimator
for L>v: ‘L>v :=

1

N

N∑
n=1

d∑
i=1

∂ik(hθ(Zn),.)vi(Zn).

Subsampling operators. We consider the operatorQM defined fromH to RM by:

QM :=

√
q

√
M

M∑
m=1

em⊗∂imk(Ym,.) (19)

where (em)1≤m≤M is an orthonormal basis ofRM . QM admits a singular value decomposition of the form
QM =UΣV >, with V V > :=PM being the orthogonal projection operator on the Nyström subspaceHM .
Similarly to Rudi et al. (2015); Sutherland et al. (2017), we define the projected inverse function GM(C) as:

GM(C)=V (V >CV )−1V >.

We recall here some properties of GM from (Sutherland et al., 2017, Lemma 1):

Lemma 7. Let A :H→H be a positive operator, and define Aλ=A+λI for any λ>0. The following
holds:

1. GM(A)PM =GM(A)

2. PMGM(A)=GM(A)

3. GM(Aλ)AλPM =PM

4. GM(Aλ)=(PMAPM+λI)−1PM

5. ‖A
1
2

λGM(Aλ)A
1
2

λ‖

Estimators of the Wasserstein information matrix. Here we would like to express the estimator in
Proposition 4 in terms of the operators introduced previously. We have the following proposition:

Proposition 8. The estimator defined in Proposition 4 admits the following representation:ÿ�∇WL(θ)=(εD(θ)+GM,N)−1÷∇L(θ)

whereGM,N is given by:

GM,N :=(’L>B)>GM(Âλ)’L>B.
Proof. This a direct consequence of the minimax theorem (Ekeland and Témam, 1999, Proposition 2.3,
Chapter VI) and applying (Sutherland et al., 2017, Lemma 3).

The matrix GM,N is in fact an estimator of the Wasserstein information matrix defined in Definition 2.
We will also need to consider the following population version ofGM,N defined as :

GM :=(L>B)>GM(Aλ)L>B (20)
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B BACKGROUND IN INFORMATION GEOMETRY

B.1 FISHER-RAO STATISTICAL MANIFOLD

In this section we briefly introduce the non-parametric Fisher-Rao metric defined over the set P of
probability distributions with positive density. More details can be found in Holbrook et al. (2017). By
abuse of notation, an element ρ∈P will be identified with its density which will also be denoted by ρ.
Consider Tρ, the set of real valued functions f defined over Ω and satisfying∫

f(x)2

ρ(x)
dx<∞;

∫
f(x)ρ(x)dx=0.

We have the following definition for the Fisher-Rao metric:

Definition 4 (Fisher-Rao metric). The Fisher-Rao metric gF is defined for all ρ∈P as an inner product
over Tρ of the form:

gFρ (f,g):=

∫
1

ρ(x)
f(x)g(x)dx, ∀f,g∈Tρ

Note that the choice of the set Tρ is different from the one considered in Holbrook et al. (2017) which
replaces the integrability condition by a smoothness one. In fact, it can be shown that these choices result
in the same metric by a density argument.

B.2 WASSERSTEIN STATISTICAL MANIFOLD

In this section we review the theory of Wasserstein statistical manifold introduced in Li and Montufar
(2018a); Chen and Li (2018). By analogy to the Fisher-Rao metric which allows to endow the parametric
model PΘ with the structure of a Riemannian manifold, it is also possible to use a different metric that
is derived from the Wasserstein 2 distance. We first start by briefly introducing the Wasserstein 2 distance.
Given two probability distributions ρ and ρ′, we consider the set of all joint probability distributions Π(ρ,ρ′)
between ρ and ρ′ usually called the set of couplings between ρ and ρ′. Any couplingπ defines a way of trans-
porting mass from ρ to ρ′. The cost of such transport can be measured as the expected distance between an el-
ement of mass of ρ at locationx that is mapped to an element of mass of ρ′ at location y using the couplingπ:∫

‖x−y‖2dπ(x,y)

The squared Wasserstein 2 distance between ρ and ρ′ is defined as the smallest transport cost over all
possible couplings:

W2
2 (ρ,ρ′)= inf

π∈Π(ρ,ρ′)

∫
‖x−y‖2dπ(x,y).

A dynamical formulation ofW2 was provided by the celebrated Benamou-Brenier formula in Benamou
and Brenier (2000):

W2
2 (ρ,ρ′)=inf

φt

∫ 1

0

∫
‖φl(x)‖2dρl(x)dl

where the infimum is taken over the set of vector fields φ : [0,1]×Ω→ Rd. Each vector field of the
potential determines a corresponding probability distribution ρl as the solution of the continuity equation:

∂lρl+div(ρlφl)=0, ρ0 =ρ,ρ1 =ρ′. (21)

When Ω is a compact set, a Neumann condition is added on the boundary of Ω to ensure that the total mass
is conserved. Such formulation suggests thatW2(ρ,ρ′) corresponds in fact to the shortest path from ρ to
ρ′. Indeed, given a path ρl from ρ to ρ′, the infinitesimal displacement direction is given by the distribution
∂lρl. The length |∂lρl| of this direction is measured by: |∂lρl|2 :=

∫
‖φl(x)‖2dρl(x) Hence, W2

2 (ρ,ρ′)
can be written as:

W2
2 (ρρ′)=inf

ρl

∫ 1

0

|∂lρl|2dl.

16
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In fact, ∂lρl can be seen as an element in the tangent space TρlP2 to P2 at point ρl. To ensure that (21)
is well defined, TρP2 can be defined as the set of distributions σ satisfying σ(1)=0.

|σ(f)|≤C‖∇f‖L2(ρ), ∀f∈C∞c (Ω) (22)

for some positive constant C. Indeed, the condition in (22) guarantees the existence of a vector field φσ
that is a solution to the PDE: σ=−div(ρφσ).

Moreover, |∂lρl|2 can be seen as an inner product of ∂lρl with itself in TρlP2. This inner product defines in
turn a metric tensor gW on P2 called the Wasserstein metric tensor (see Otto and Villani (2000); Ambrosio
et al. (2004)):
Definition 5. The Wasserstein metric gW is defined for all ρ∈P2 as the inner product over TρP2 of the
form:

gWρ (σ,σ′):=

∫
φσ(x)>φσ′(x)dρ(x), ∀σ,σ′∈TρP2

where φσ and φσ′ are solutions to the partial differential equations:

σ=−div(ρφσ), σ′=−div(ρφσ′).

Moreover, φσ and φσ′ are required to be in the closure of gradient of smooth and compactly supported
functions w.r.t. L2(ρ)d.

Definition 5 allows to endow P2 with a formal Riemannian structure withW2 being its geodesic distance:

W2
2 (ρ,ρ′)=inf

ρl

∫ 1

0

gρl(∂lρl,∂lρl)dl.

C PROOFS

C.1 PRELIMINARY RESULTS

We fist provide a proof of the dual formulation for the Fisher information matrix.

Proof of Proposition 1 . Consider the optimization problem:

sup
f∈C∞c (Ω)∫
f(x)dρθ(x)=0

Å∫
f(x)∇ρθ(x)dx

ã>
u− 1

2

∫
f(x)2ρθ(x)dx (23)

Recalling that the set of smooth and compactly supported functions C∞c (∞) is dense in L2(ρθ) and that
the objective function in (23) is continuous and coercive in f , it follows that (23) admits a unique solution
f∗ in L2(ρθ) which satisfies the optimality condition:∫

f(x)(∇ρθ(x))>udx=

∫
f(x)f∗(x)ρθ(x)dx ∀f∈L2(ρθ)

Hence, it is easy to see that f∗=(∇ρθ)>u/ρθ and that the optimal value of (23) is given by:

1

2

∫
((∇ρθ(x))>u)2

ρθ(x)
dx.

This is equal to u>GF (θ)u by Definition 1.

The next proposition ensures that the Wasserstein information matrix defined in Definition 2 is well-defined
and has a dual formulation.
Proposition 9. Consider the model defined in (5) and let (es)1≤s≤q be an orthonormal basis of Rq.
Under Assumptions (B) and (C), there exists an optimal solution Φ = (φs)1≤s≤q with φs in L2(ρθ)

d

satisfying the PDE:

∂sρθ=−div(ρθφs)

17
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The elliptic equations also imply that L>∇hθ=L>(Φ◦hθ). Moreover, the Wasserstein information matrix
GW (θ) on PΘ at point θ can be written as GW (θ) = Φ>Φ where the inner-product is in L2(ρθ)

d and
satisfies:

1

2
u>GW (θ)u= sup

f∈C∞c (Ω)∫
f(x)dρθ(x)=0

∇ρθ(f)>u− 1

2

∫
‖∇xf(hθ(z))‖2dν(z).

for all u∈Rq.

Proof. Let (es)1≤s≤q be an orthonormal basis of Rq. For all 1≤ s≤ q, we will establish the existence
of an optimal solution φs in L2(ρθ)

d satisfying the PDE:

∂sρθ=−div(ρθφs) (24)

Consider the variational problem:

sup
φ∈S

∫
φ(hθ(z))

>∂θshθ(z)−
1

2
‖φ‖2L2(ρθ)

(25)

where S is a Hilbert space obtained as the closure in L2(ρθ)
d of functions of the form φ=∇xf with

f∈C∞c (Ω):

S :={∇xf | f∈C∞c (Ω)}L2(ρd
θ
).

We have by Assumption (C) that:∫
φ(hθ(z))

>∂θshθ(z)dν(z)≤≤C(θ)

 ∫
(1+‖z‖2)dν(z)

∫
‖φ‖L2(ρθ).

Moreover, by Assumption (B), we know that
»∫

(1+‖z‖2)dν(z)<∞. This implies that the objective
in (25) is continuous in φwhile also being convex.s It follows that (25) admits a unique solution φ∗s∈S
which satisfies for all φ∈S:∫

φ(hθ(z))
>φ∗s(hθ(z))dν(z)=

∫
φ(hθ(z))

>∂θshθ(z))dν(z)

In particular, for any f∈C∞c (Ω), it holds that:∫
∇xf(hθ(z))

>φ∗s(hθ(z))dν(z)=

∫
∇xf(hθ(z))

>∂θshθ(z))dν(z)

which is equivalent to (24) and implies directly that LT∇hθ =LTΦ◦hθ where Φ := (φ∗s)1≤s≤q. The
variational expression for 1

2u
>GWu follows by noting that (25) admits the same optimal value as

sup
f∈C∞c (Ω)∫
f(x)dρθ(x)=0

∇ρθ(f)>u− 1

2

∫
‖∇xf(hθ(z))‖2dν(z).

That is because S is by definition the closure in L2(ρθ)
d of the set of gradients of smooth and compactly

supported functions on Ω.

Proof of Proposition 2. This is a consequence of Proposition 9.

C.2 EXPRESSION OF THE ESTIMATOR

We provide here a proof of Proposition 4

Proof of Proposition 4. Here, to simplify notations, we simply write D instead of D(θ). First consider
the following optimization problem:

inf
f∈HM

1

N

N∑
n=1

‖∇f(Xn)‖2+λ‖f‖2H+
1

ε
R(f)>D−1R(f)+

2

ε
R(f)>D−1÷∇L(θ)

18
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withR(f) given byR(f)= 1
N

∑N
n=1∇f(Xn)>B(Zn). Now, recalling that any f∈HM can be written

as f=
∑M
m=1αm∂imk(Ym,.), and using the reproducing property ∂if(x)=〈f,∂ik(x,.)〉H (Steinwart and

Christmann, 2008, Lemma 4.34) , it is easy to see that:

1

N

N∑
n=1

‖∇f(Xn)‖2 =
1

N

∑
1≤n≤N
1≤i≤d

(
M∑
m=1

αm∂im∂i+dk(Ym,Xn))2.

‖f‖2H=
∑

1≤m,m′≤M
αmαm′∂im∂im′+dk(Ym,Ym′)

R(f)=
1

N

∑
1≤n≤N
1≤i≤d

1≤m≤M

αm∂im∂i+dk(Ym,Xn)Bi(Zn)

The above can be expressed in matrix form using the matrices defined in Proposition 4:

1

N

N∑
n=1

‖∇f(Xn)‖2 =α>CC>α; ‖f‖2H=α>Kα; R(f)=α>CB.

Hence the optimal solution f̂∗ is of the form f̂∗=
∑M
m=1α

∗
m∂imk(Ym,.), with α∗ obtained as a solution

to the finite dimensional problem in RM :

min
α∈RM

α>(εCC>+ελK+CBD−1B>C>)α+2α>CBD−1÷∇L(θ)

It is easy to see that α∗ are given by:

α∗=−(εCCT+ελK+CBD−1BTCT )†CBD−1÷∇L(θ).

Now recall that the estimator in Proposition 4 is given by: ÿ�∇WL(θ) = 1
εD
−1Uθ(f̂∗). Hence,

1
εD
−1(÷∇L(θ)−BTCTα∗) The desired expression is obtained by noting thatCB=T using the chain rule.

C.3 CONSISTENCY RESULTS

Now we provide a proof for Theorems 5 and 6 which are direct consequences of on Proposition 10 and
rely on Proposition 11.

Proof of Theorem 5 . The proof is a direct consequence of Proposition 10 under Assumption 1.

Proof of Theorem 6. The proof is a direct consequence of Proposition 10 under Assumption 2.

Proposition 10. Under Assumptions (A) to (G) and for 0≤ δ ≤ 1 and N large enough, it holds with
probability at least 1−δ:

‖’∇WL−∇WL‖=O(N−
b

2b+1 )

provided that M ∼ dN
1

2b+1 logN , λ ∼ N
1

2b+1 and ε . N−
b

2b+1 where b := min(1,α + 1
2) when

Assumption 1 holds and b= 1
2+c when Assumption 2 holds instead.

Proof. Here for simplicity we assume that D(θ) = I without loss of generality and we omit the
dependence in θ and write∇WL and∇L instead of∇WL(θ) and∇L(θ) and∇WL(θ). We also define
Ĝε = εI+GM,N and Gε = εI+GW . By Proposition 8, we know that ’∇WL= Ĝ−1

ε ∇̂L. We use the
following decomposition:

‖’∇WL−∇WL‖≤‖Ĝ−1
ε (∇̂L−∇L)‖+‖Ĝ−1

ε (GM,N−GW )G−1
W ∇L‖+ε‖Ĝ

−1
ε G−1

W ∇L‖

19



Under review as a conference paper at ICLR 2020

To control the norm of Ĝ−1
ε we write Ĝ−1

ε = G
−1

2
ε (H + I)−1G

−1
2

ε , where H is given by

H := G
−1

2
ε (GM,N − GW )G

−1
2

ε . Hence, provided that µ := λmax(H), the highest eigenvalue of
H, is smaller than 1, it holds that:

‖(H+I)−1‖≤(1−µ)−1.

Moreover, since GW is positive definite, its smallest eigenvalue η is strictly positive. Hence,
‖G−1

ε ‖≤(η+ε)−1. Therefore, we have ‖Ĝ−1
ε ‖≤(η+ε)(1−µ))−1, which implies:

‖’∇WL−∇WL‖≤(η+ε)−1

Ç
‖∇̂L−∇L‖

1−µ
+η−1‖∇L‖‖GM,N−GW‖+εη−1‖∇L‖

å
.

Let 0 ≤ δ ≤ 1. We have by Assumption (D) that ‖∇̂L−∇L‖ = O(N−
1
2 ) with probability at least

1−δ. Similarly, by Proposition 11 and for N large enough, we have with probability at least 1−δ that
‖GM,N−GW‖=O(N−

b
2b+1 ) where b is defined in Proposition 11. Moreover, forN large enough, one

can ensure that µ≤ 1
2 so that the following bound holds with probability at least 1−δ:

‖’∇WL−∇WL‖.(η+ε)−1
Ä
2N−

1
2 +η−1‖∇L‖(N−

b
2b+1 +ε)

ä
.

Thus by setting ε.N−
b

2b+1 we get the desired convergence rate.

Proposition 11. For any 0≤δ≤1, we have with probability as least 1−δ and forN large enough that:

‖GM,N−GW‖=O(N−
b

2b+1 ).

provided that M∼dN
1

2b+1 logN where b :=min(1,α+ 1
2) when Assumption 1 holds and b= 1

2+c when
Assumption 2 holds instead.

Proof. To control the error ‖GM,N−GW‖ we decompose it into an estimation error ‖GM,N−GM‖ and
approximation error ‖GM−GW‖:

‖GM,N−GW‖≤‖GM−GW‖+‖GM−GM,N‖

wereGM is defined in (20) and is obtained by taking the number of samplesN to infinity while keeping
the number of basis pointsM fixed.

The estimation error ‖GM−GM,N‖ is controlled using Proposition 12 where, for any 0≤δ≤1, we have
with probability at least 1−δ and as long asN≥M(1,λ,δ):

‖GM,N−GM‖≤
‖B‖√
Nλ

(aN,δ+
√

2γ1κ+2γ1
λ+κ√
Nλ

)+
1

Nλ
a2
N,δ.

In the limit where N →∞ and λ→ 0, only the dominant terms in the above equation remain which
leads to an error ‖GM,N −GM‖=O((Nλ)−

1
2 ). Moreover, the condition on N can be expressed as

λ−1logλ−1.N .

To control the error approximation error ‖GM −GW‖ we consider two cases: the well-specified case
and the miss-specified case.

• Well-specified case. Here we work under Assumption 1 which allows to use Proposition 14.
Hence, for any 0≤δ≤1 and ifM≥M(d,λ,δ), it holds with probability at least 1−δ:

‖GM−GW‖.λmin(1,α+1
2 )

• Miss-specified case. Here we work under Assumption 2 which allows to use Proposition 13.
Hence, for any 0≤δ≤1 and ifM≥M(d,λ,δ), it holds with probability at least 1−δ:

‖GM−GW‖.λ
1

2+c
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Let’s set b := min(1,α+ 1
2) for the well-specified case and b = 1

2+c for the miss-specified case. In
the limit where M →∞ and λ→ 0 the condition on M becomes: M ∼ dλ−1 logλ−1. Hence, when
M∼dλ−1logλ−1 and λ−1logλ−1.N it holds with probability as least 1−δ that

‖GM,N−GW‖=O(λb+(λN)−
1
2 ).

One can further choose λ of the form λ = N−θ. This implies a condition on M of the form
dNθ log(N).M and Nθ log(N).N . After optimizing over θ to get the tightest bound, the optimal
value is obtained when θ = 1/(2b+1) and the requirement on N is always satisfied once N is large
enough. Moreover, one can choose M∼dN

1
2b+1 logN so that the requirement on M is satisfied for N

large enough. In this case we get the following convergence rate:

‖GM,N−GW‖=O(N−
b

2b+1 ).

Proposition 12. For any 0≤δ≤1, provided thatN≥M(1,λ,δ), we have with probability as least 1−δ:

‖GM,N−GM‖≤
‖B‖√
Nλ

(2aN,δ+
√

2γ1κ+2γ1
λ+κ√
Nλ

)+
1

Nλ
a2
N,δ.

with:

aN,δ :=

…
2σ2

1log
2

δ
+

2alog2
δ√

N

Proof. For simplicity, we define E = ’L>B −L>B. By definition of GM,N and GM we have the
following decomposition:

GM,N−GM =E>GM(Âλ)E︸ ︷︷ ︸
E0

+E>GM(Âλ)L>B︸ ︷︷ ︸
E1

+B>LGM(Âλ)E︸ ︷︷ ︸
E2

−B>LGM(Aλ)PM(Â−A)PMGM(Âλ)L>B︸ ︷︷ ︸
E3

The first three terms can be upper-bounded in the following way:

‖E0‖=‖E>Â
−1

2

λ Â
1
2

λGM(Âλ)Â
1
2

λ Â
−1

2

λ E‖

≤‖E‖2‖Â−1
λ ‖︸ ︷︷ ︸
≤1/λ

‖Â
1
2

λGM(Âλ)Â
1
2

λ‖︸ ︷︷ ︸
≤1

‖E1‖=‖E2‖=‖E>A
−1

2

λ A
1
2

λGM(Aλ)A
1
2

λA
−1

2

λ L>B‖

≤‖B‖‖E‖‖Â−
1
2

λ ‖︸ ︷︷ ︸
≤1/
√
λ

‖Â
1
2

λGM(Âλ)Â
1
2

λ‖︸ ︷︷ ︸
≤1

‖A−
1
2

λ L>‖︸ ︷︷ ︸
≤1

‖Â−
1
2

λ A
1
2

λ‖

For the last term E3 , we first recall that by definition of GM(Aλ) we have:

GM(Aλ)PM(Â−A)PMGM(Aλ)=GM(Aλ)(Â−A)GM(Aλ).

Therefore, one can write:

‖E3‖=‖B>LA
−1

2

λ A
1
2

λGM(Aλ)A
1
2

λA
−1

2

λ (Â−A)A
−1

2

λ A
1
2

λ Â
−1

2

λ Â
1
2

λGM(Âλ)Â
1
2

λ Â
−1

2

λ A
1
2

λA
−1

2

λ L>B‖

≤‖B‖2‖LA−
1
2

λ ‖
2︸ ︷︷ ︸

≤1

‖A
1
2

λGM(Aλ)A
1
2

λ‖︸ ︷︷ ︸
≤1

‖Â
1
2

λGM(Âλ)Â
1
2

λ‖︸ ︷︷ ︸
≤1

‖A
1
2

λ Â
1
2

λ‖
2‖A−

1
2

λ (Â−A)A
−1

2

λ ‖

≤‖B‖2‖A
1
2

λ Â
1
2

λ‖
2‖A−

1
2

λ (Â−A)A
−1

2

λ ‖

We recall now (Rudi et al., 2015, Proposition 7.) which allows to upper-bound ‖A
1
2

λ Â
1
2

λ‖ by (1−η)−1
2

where η=λmax(A
1
2

λ (A−Â)A
1
2

λ ) provided that η<1. Moreover, (Rudi et al., 2015, Proposition 8.) allows
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to control both η and ‖A−
1
2

λ (Â−A)A
−1

2

λ ‖ under Assumption (G). Indeed, for any 0≤δ≤1 and provided
that 0<λ≤‖A‖ it holds with probability 1−δ that:

‖A−
1
2

λ (Â−A)A
−1

2

λ ‖≤2γ1
1+κ/λ

3N
+

…
2γ1κ

Nλ
; η≤ 2γ2

3N
+

…
2γ2κ

Nλ

where γ1 and γ2 are given by:

γ1 =log(
8Tr(A)

λδ
); γ2 =log(

4Tr(A)

λδ
).

Hence, forN≥M(1,λ,δ) we have that (1−η)−1
2 ≤2 and one can therefore write:

‖E3‖≤4‖B‖2(2γ1
1+κ/λ

3N
+

…
2γ1κ

Nλ
)

‖E1‖=‖E1‖≤
2‖B‖√
λ
‖E‖

The error ‖E‖ is controlled by Proposition 17 where it holds with probability greater or equal to 1−δ that:

‖E‖≤ 1√
N

(

…
2σ2

1log
2

δ
+

2alog2
δ√

N
):=

1√
N
aN,δ.

Finally, we have shown that provided thatN≥M(1,λ,δ) then with probability greater than 1−δ one has:

‖GM,N−GM‖≤
‖B‖√
Nλ

(2aN,δ+
√

2γ1κ+2γ1
λ+κ√
Nλ

)+
1

Nλ
a2
N,δ.

Proposition 13. Let 0≤λ≤‖A‖ and defineM(d,λ,δ):= 128
9 log4Tr(A)

λδ (dκλ−1+1). Under Assumption 2
and Assumption (G), for any δ≥0 such thatM≥M(d,λ,δ) the following holds with probability 1−δ:

‖GM−GW‖.λ
1

2+c

Proof. We consider the error ‖GM −GW‖. Recall that GW is given by GW = Φ>Φ with Φ defined
in Proposition 9. Let κ be a positive real number, we know by Assumption 2 that there exists
Fκ := (fκs )1≤s≤q with fκs ∈H such that ‖Φ−Fκ‖L2(ρθ) ≤ Cκ and ‖fκs ‖H ≤ Cκ−c for some fixed
positive constant C. Therefore, we use Fκ to control the error ‖GM−GW‖. Let’s callE=Φ◦hθ−LFκ
We consider the following decomposition:

GM−GW =(L>Φ◦hθ)>GM(Aλ)L>Φ◦hθ−Φ>Φ

=E>LGM(Aλ)L>E︸ ︷︷ ︸
E1

−E>E︸ ︷︷ ︸
E2

+F>κ
(
L>LGM(Aλ)−I

)
L>Φ◦hθ︸ ︷︷ ︸

E3

+E>L
(
GM(Aλ)L>L−I

)
Fκ︸ ︷︷ ︸

E4

First we consider the term E1 one simply has:

‖E1‖≤κ2‖LA−
1
2

λ ‖︸ ︷︷ ︸
≤1

‖A
1
2

λGM(Aλ)A
1
2

λ‖︸ ︷︷ ︸
≤1

‖A−
1
2

λ L>‖︸ ︷︷ ︸
≤1

≤κ2

The second term also satisfies ‖E1‖≤κ2 by definition of Fκ. For the last two terms E3 and E4 we use
Lemma 15 which allows to control the operator norm of L(GM(Aλ)L>L−I). Hence, for any δ≥0 and
M such thatM≥M(d,λ,δ) and for κ≤1 it holds with probability 1−δ that:

‖E3‖.
√
λκ−c; ‖E4‖.

√
λκ−c

We have shown so far that ‖GM−GW‖.(κ2+2κ−c
√
λ). One can further optimize over κ on the interval

[0,1] to get a tighter bound. The optimal value in this case is κ∗=min(1,(cλ
1
2 )

1
2+c ). By considering λ>0

such that (cλ
1
2 )

1
2+c )≤1, it follows directly that ‖GM−GW‖.λ

1
2+c which shows the desired result.
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Proposition 14. Let 0≤λ≤‖A‖ and defineM(d,λ,δ):= 128
9 log4Tr(A)

λδ (dκλ−1+1). Under Assumption 1
and Assumption (G), for any δ≥0 such thatM≥M(d,λ,δ) the following holds with probability 1−δ:

‖GM−GW‖.λmin(1,α+1
2 )

Proof. Recall that GW is given by GW =Φ>Φ with Φ defined in Proposition 9. By Assumption 1, we
have that Φ=∇(AαV ) with V :=(vs)1≤s≤q∈Hq. Hence, one can write

GM−GW =(L>Φ◦hθ)>GM(Aλ)L>Φ◦hθ−Φ>Φ

=V >(Aα(AGM(Aλ)A−A)AαV

we can therefore directly apply Lemma 15 and get ‖GM−GW‖.λmin(1,α+1
2 ) with probability 1−δ

for any δ≥0 such thatM≥M(d,λ,δ).

Lemma 15. Let 0 ≤ λ ≤ ‖A‖, α ≥ 0 and define M(d,λ,δ) := 128
9 log 4Tr(A)

λδ (dκλ−1 + 1). Under
Assumption (G), for any δ≥0 such thatM≥M(d,λ,δ) the following holds with probability 1−δ:

‖L(GM(Aλ)L>L−I)Aα‖.λmin(1,α+1
2 )

Proof. We have the following identities:

L(GM(Aλ)L>L−I)Aα=L(GM(Aλ)Aλ−I−λGM(Aλ))Aα

=LA
−1

2

λ A
1
2

λ (GM(Aλ)AλPM−I)Aα︸ ︷︷ ︸
E1

−λLA−
1
2

λ A
1
2

λGM(Aλ)A
1
2

λA
−1

2

λ Aα︸ ︷︷ ︸
E3

+LA
−1

2

λ A
1
2

λGM(Aλ)A
1
2

λA
1
2

λ (I−PM)Aα︸ ︷︷ ︸
E2

.

For the first E1 we use (Sutherland et al., 2017, Lemma 1 (iii)) which implies that GM(Aλ)AλPM =PM .

Thus E1 =LA
−1

2

λ A
1
2

λ (PM−I)Aα. Moreover, by Lemma 16 we have that ‖A
1
2

λ (I−PM)‖≤2
√
λ with

probability 1− δ for M >M(d,λ,δ). Therefore, recalling that (I −PM)2 = I −PM since PM is a
projection, one can further write:

‖E1‖≤‖LA
−1

2

λ ‖︸ ︷︷ ︸
≤1

‖A
1
2

λ (PM−I)‖2︸ ︷︷ ︸
≤λ

‖A−
1
2

λ Aα‖

‖E2‖≤‖LA
−1

2

λ ‖︸ ︷︷ ︸
≤1

‖A
1
2

λGM(Aλ)A
1
2

λ‖︸ ︷︷ ︸
≤1

‖A
1
2

λ (PM−I)‖2︸ ︷︷ ︸
≤4λ

‖A−
1
2

λ Aα‖

‖E3‖≤λ‖LA
−1

2

λ ‖︸ ︷︷ ︸
≤1

‖A
1
2

λGM(Aλ)A
1
2

λ‖︸ ︷︷ ︸
≤1

‖A−
1
2

λ Aα‖

It remains to note that ‖A−
1
2

λ Aα‖≤ λα−1
2 when 0≤α≤ 1

2 and that ‖A−
1
2

λ Aα‖≤ ‖A‖α−1
2 for α> 1

2
which allows to conclude.

C.4 AUXILIARY RESULTS

Lemma 16. Let 0 ≤ λ ≤ ‖A‖. Under Assumption (G), for any δ ≥ 0 such that
M≥M(d,λ,δ):= 128

9 log4Tr(A)
λδ (κλ−1+1) the following holds with probability 1−δ:

‖A
1
2

λ (I−PM)‖≤2
√
λ

Proof. The proof is an adaptation of the results in Rudi et al. (2015); Sutherland et al. (2017). Here we recall
QM defined in (19). Its transposeQ>M sends vectors in RM to elements in the span of the Nyström basis
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points, hence PM andQ>M have the same range, i.e.: range(PM)= ¯range(Q>M). We are in position to ap-

ply (Rudi et al., 2015, Proposition 3.) which allows to find an upper-bound onA
1
2

λ (PM−I) in terms ofQM :

‖A
1
2

λ (PM−I)‖≤
√
λ‖A

1
2

λ (Q>MQM+λI)−
1
2‖.

For simplicity we write ÂM :=Q>MQM andE2 :=A
−1

2

λ (A−ÂM)A
−1

2

λ . We also denote by β=λmax(E2)

the highest eigenvalue of E2. We can therefore control ‖A
1
2

λ (ÂM +λI)−
1
2‖ in terms of β using (Rudi

et al., 2015, Proposition 7) provided that β<1:

‖A
1
2

λ (PM−I)‖≤
√
λ

1√
1−β

.

Now we need to make sure that β<1 forM large enough. To this end, we will apply (Rudi et al., 2015,
Proposition 8.) to ÂM . Denote by vm =

√
d∂imk(Ym,.). Hence, by definition of ÂM it follows that

ÂM = 1
M

∑M
m=1vm⊗vm. Moreover, (vm)1≤m≤M are independent and identically distributed and satisfy:

E[vm⊗vm]=

∫ q∑
i=1

∂ik(y,.)⊗∂ik(y,.)dpθ(y)=A.

We also have by Assumption (G) that 〈vm,A−1
λ vm〉≤ dκ

λ almost surely and for all λ>0. We can therefore
apply (Rudi et al., 2015, Proposition 8.) which implies that for any 1≥δ≥0 and with probability 1−δ
it holds that:

β≤ 2γ

3M
+

…
2γdκ

Mλ

with γ=log4Tr(A)
λδ provided that λ≤‖A‖. Thus by choosingM≥ 128γ

9 (dκλ−1+1) we have that β≤ 3
4

with probability 1−δ which allows to conclude.

Proposition 17. There exist a>0 and σ1>0 such that for any 0≤δ≤1, it holds with probability greater
of equal than 1−δ that:

‖’L>B−L>B‖≤ 2alog2
δ

N
+

 
2σ2

1log2
δ

N

Proof. denote by vn=
∑d
i=1∂ik(Xn,.)Bi(Zn), we have that E[vn]=L>B. We will apply Bernstein’s

inequality for sum of random vectors. For this we first need to find a>0 and σ1>0 such that E[‖zn−
L>B‖pH]≤ 1

2p!σ
2
1a
p−2. To simplify notations, we write x and x′ instead of hθ(z) and hθ(z′). We have that:

E[‖zn−L>B‖pH]=

∫ ∥∥∥∥∥ d∑
i=1

∂ik(x,.)Bi(z)−
∫ d∑

i=1

∂ik(x′,.)Bi(z
′)dν(z′)

∥∥∥∥∥
p

dν(z)

≤2p−1

∫ ∥∥∥∥∥ d∑
i=1

∫
(∂ik(x,.)−∂ik(x′,.))Bi(z)dν(z′)

∥∥∥∥∥
p

dν(z)︸ ︷︷ ︸
E1

+2p−1

∫ ∥∥∥∥∥
∫ d∑

i=1

∂ik(x,.)(Bi(z)−Bi(z′))dν(z′)

∥∥∥∥∥
p

dν(z)︸ ︷︷ ︸
E2

We used the convexity of the norm and the triangular inequality to get the last line. We introduce the
notation γi(x):=∂ik(x,.)−

∫
∂ik(hθ(z

′),.)dν(z′) and by Γ(x) we denote the matrix whose components
are given by Γ(x)ij :=〈γi(x),γj(x)〉H. The first term E1 can be upper-bounded as follows:

E1 =

∫ ∣∣∣Tr(B(z)B(z)>Γ(x))
∣∣∣p2

≤
∫ ∣∣∣‖B(z)‖2Tr(Γ(x)2)

1
2

∣∣∣p2 .
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Moreover, we have that Tr(Γ(x)2)
1
2 =(

∑
1≤i,j≤d〈γi(x),γj(x)〉2H)

1
2 ≤
∑d
i=1‖γi(x)‖2. We further have

that ‖γi(x)‖ ≤ ∂i∂i+dk(x,x)
1
2 +

∫
∂i∂i+dk(hθ(z),hθ(z))

1
2 dν(z) and by Assumption (G) it follows

that ‖γi(x)‖ ≤ 2
√
κ. Hence, one can directly write that: E1 ≤ (2

√
κd)p

∫
‖B(z)‖pdν(z). Recalling

Assumptions (B) and (C) we get:

E1≤2p−1(2
√
κd)pC(θ)p(1+

1

2
p!ζp−2σ2)

Similarly, we will find an upper-bound on E2. To this end, we introduce the matrix Q(x′,x”) whose
components are given byQ(x′,x”)i,j=∂i∂i+dk(x′,x”). One, therefore has:

E2 =

∫ ∣∣∣∣∫ ∫ Tr((B(z)−B(z′))(B(z)−B(z”))
>
Q(x′,x”)dν(z′)dν(z”)

∣∣∣∣p2 dν(z)

≤
∫ ∣∣∣∣∫ ∫ ‖B(z)−B(z′)‖‖B(z)−B(z”)‖Tr(Q(x′,x”)2)

1
2 dν(z′)dν(z”)

∣∣∣∣p2 dν(z)

Once again, we have that Tr(Q(x′,x”)2)
1
2 ≤ (

∑d
i=1∂i∂i+dk(x′,x′))

1
2 (
∑d
i=1∂i∂i+dk(x”,x”))

1
2 ≤ dκ

thanks to Assumption (G). Therefore, it follows that:

E2≤(
√
dκ)p

∫
|
∫
‖B(z)−B(z′)‖dν(z)|pdν(z)

≤3p−1(
√
dκ)pC(θ)p(2p+

∫
‖z‖pdν(z)+

Å∫
‖z‖dν(z)

ãp
)

≤3p−1(
√
dκ)pC(θ)p(2p+

1

2
p!ζp−2σ2+

Å∫
‖z‖dν(z)

ãp
).

The second line is a consequence of Assumption (C) while the last line is due to Assumption (B). These
calculations, show that it is possible to find constants a and σ1 such that E[‖zn−L>B‖pH]≤ 1

2p!σ
2
1a
p−2.

Hence one concludes using Bernstein’s inequality for a sum of random vectors (see for instance Rudi
et al., 2015, Proposition 11).

D EXPERIMENTAL DETAILS

D.1 NATURAL WASSERSTEIN GRADIENT FOR THE MULTIVARIATE NORMAL MODEL

Multivariate Gaussian. Consider a multivariate gaussian with mean µ ∈ Rd and covariance matrix
Σ∈Rd×Rd parametrized using its lower triangular components s=T(Σ). We denote by Σ=T−1(s)

the inverse operation that maps any vector s∈R
d(d+1)

2 to its corresponding symmetric matrix in Rd×Rd.
The concatenation of the mean µ and s will be denoted as θ : θ= (µ,s). Given two parameter vectors
u= (m,T(S)) and v = (m′,T(S′)) where m and m′ are vectors in Rd and S and S′ are symmetric
matrices in Rd×Rd the metric evaluated at u and v is given by:

u>G(θ)v=m>m′+Tr(AΣA′)

whereA andA′ are symmetric matrices that are solutions to the Lyapunov equation:

S=AΣ+ΣA, S′=A′Σ+ΣA′.

A and A′ can be computed in closed form using standard routines making the evaluation of the metric
easy to perform. Given a loss function L(θ) and gradient direction ∇θL(θ) = ∇µL(θ),∇sL(θ), the
corresponding natural gradient∇Wθ L(θ) can also be computed in closed form:

∇Wθ L(θ)=(∇µL(θ),T(Σ(A+diag(A))+(A+diag(A))Σ)),

where A = T−1(∇sL(θ)). To use the estimator proposed in Proposition 4 we take advantage of the
parametrization of the Gaussian distribution as a push-forward of a standard normal vector:

X∼N (µ,Σ)⇐⇒X=Σ
1
2Z+µ,Z∼N (0,Id)
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Figure 5: Evolution of the relative error of KWNG for the multivariate log-normal model averaged over
100 runs. For each run, a random value for the parameter θ and for the Euclidean gradient ∇L(θ) is
sampled from a centered Gaussian with variance 0.1. In all cases, λ=ε=10−10. Left (a): Relative error
as the sample sizeN increases. The dimension d of the sample space varies from d=1 (yellow) to d=10

(dark red) and the number of basis points is set toM=
ö
d
√
N
ù
. Middle (b) Relative error asM increases

with dimension d varying from d=1 (yellow) to d=10 (dark red) andN fixed to 5000. Right (c) Box-plot
of the relative error as d increases withN=5000 andM=

ö
d
√
N
ù
.

Kernel size Output shape
z 32×32×3
Conv 3×3 64
Residual block [3×3]×2 64
Residual block [3×3]×2 128
Residual block [3×3]×2 256
Residual block [3×3]×2 512
Linear - Number of classes

Table 1: Network architecture.

D.2 CLASSIFICATION ON CIFAR10 AND CIFAR100

Architecture. We use a residual network with one convolutional layer followed by 8 residual blocks
and a final fully connected layer. Each residual block consists of two 3×3 convolutional layers each and
ReLU nonlinearity. We use batch normalization for all methods. Details of the intermediate output shapes
and kernel size are provided in Table 1.

Hyper-parameters. For all methods, we used a batch-size of 128. The optimal step-size γ was selected
in {10−1,10−2,10−3,10−4} for each method. In the case of SGD with momentum, we used a momentum
parameter of 0.9 and a weight decay of either 0 or 5×10−4. For KFAC and EKFAC, we used a damping
coefficient of 10−3 and a frequency of reparametrization of 100 updates. For KWGN we set M = 5,
λ = 10−5 and adjust ε using an adaptive scheme based on the Levenberg-Marquardt dynamics as in
(Martens and Grosse, 2015, Section 6.5). More precisely, we use the following update equation for ε after
every 5 iterations of the optimizer:

ε←ωε, if r>
3

4

ε←ω−1ε, if r<
1

4
.

Here, r is the reduction ratio: r=2 L(θt)−L(θt+1)
∇WL(θ)>∇L(θ)>

and ω is the decay constant chosen to ω=0.85.
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