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ABSTRACT

Network quantization is a model compression and acceleration technique that has
become essential to neural network deployment. Most quantization methods per-
form fine-tuning on a pretrained network, but this sometimes results in a large loss
in accuracy compared to the original network. We introduce a new technique to
train quantization-friendly networks, which can be directly converted to an accu-
rate quantized network without the need for additional fine-tuning. Our technique
allows quantizing the weights and activations of all network layers down to 4 bits,
achieving high efficiency and facilitating deployment in practical settings. Com-
pared to other fully quantized networks operating at 4 bits, we show substantial
improvements in accuracy, for example 66.68% top-1 accuracy on ImageNet using
ResNet-18, compared to the previous state-of-the-art accuracy of 61.52% Louizos
et al. (2019) and a full precision reference accuracy of 69.76%. We performed a
thorough set of experiments to test the efficacy of our method and also conducted
ablation studies on different aspects of the method and techniques to improve
training stability and accuracy. Our codebase and trained models are available on
GitHub.

1 INTRODUCTION

Neural network quantization is a technique to reduce the size of deep networks and to bypass com-
putationally and energetically expensive floating-point arithmetic operations in favor of efficient
integer arithmetic on quantized versions of model weights and activations. Network quantization
has been the focus of intensive research in recent years (Rastegari et al., 2016; Zhou et al., 2016;
Jacob et al., 2018; Krishnamoorthi, 2018; Jung et al., 2018; Louizos et al., 2019; Nagel et al., 2019;
Gong et al., 2019), with most works belonging to one of two categories. The first line of work quan-
tizes parts of the network while leaving a portion of its operations, e.g. computations in the first and
last network layers in floating point. While such networks can be highly efficient, using bitwidths
down to 5 or 4 bits with minimal loss in network accuracy (Zhang et al., 2018; Jung et al., 2018),
they may be difficult to deploy in certain practical settings, due to the complexity of extra floating
point hardware needed to execute the non-quantized portions of the network. Another line of work
aims for ease of real world deployment by quantizing the entire network, including all weights and
activations in all convolutional and fully connected layers; we term this scheme strict quantization.
Maintaining accuracy under strict quantization is considerably more challenging. While nearly loss-
less 8-bit strictly quantized networks have been proposed (Jacob et al., 2018), to date state-of-the-art
4 bit networks incur large losses in accuracy compared to full precision reference models. For ex-
ample, the strict 4-bit ResNet-18 model in Louizos et al. (2019) has 61.52% accuracy, compared to
69.76% for the full precision model, while the strict 4-bit MobileNet-v2 model in Krishnamoorthi
(2018) has 62.00% accuracy, compared to 71.88% accuracy in full precision.

To understand the difficulty of training accurate low-bitwidth strictly quantized networks, consider
a common training procedure which begins with a pre-trained network, quantizes the model, then
applies fine-tuning using straight-through estimators (STE) for gradient updates until the model
achieves sufficient quantized accuracy. This process faces two problems. First, as the pre-trained
model was not initially trained with the task of being subsequently quantized in mind, it may not be
“quantization-friendly”. That is, the fine-tuning process may need to make substantial changes to the
initial model in order to transform it to an accurate quantized model. Second, fine-tuning a model,
especially at low bitwidths, is difficult due to the lack of accurate gradient information provided
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Figure 1: Architecture of the proposed GQ-Net. Input x0 follows the top and bottom paths to
produce the full precision and quantized outputs xL and x̃L, resp. These are combined through loss
functions Lf and Lq to form the overall loss L, which is optimized by backpropagation. For more
details please refer to Section 3.

by STE. In particular, fine-tuning using STE is done by updating a model represented internally
with floating point values using gradients computed at the nearest quantizations of the floating point
values. Thus for example, if we apply 4 bit quantization to floating point model parameters in
the range [0, 1], a random parameter will incur an average round-off error of 1/32, which will be
incorporated into the error in the STE gradient for this parameter, leading to possibly ineffective
fine-tuning.

To address these problems, we propose GQ-Net, a guided quantization training algorithm. The
main goal of GQ-Net is to produce an accurate and quantization-friendly full precision model, i.e. a
model whose quantized version, obtained by simply rounding each full precision value to its near-
est quantized point, has nearly the same accuracy as itself. To do this, we design a loss function
for the model which includes two components, one to minimize error with respect to the training
labels, and another component to minimize the distributional difference between the model’s out-
puts and the outputs of the model’s quantized version. This loss function has the effect of guiding
the optimization process towards a model which is both accurate, by virtue of minimizing the first
loss component, and which is also similar enough to its quantized version due to minimization of
the second component to ensure that the quantized model is also accurate. In addition, because
the first component of the loss function deals only with floating point values, it provides accurate
gradient information during optimization, in contrast to STE-based optimization which uses biased
gradients at rounded points, which further improves the accuracy of the quantized model. Since
GQ-Net directly produces a quantized model which does not require further fine-tuning, the num-
ber of epochs required to train GQ-Net is substantially less than the total number of epochs needed
to train and fine-tune a model using the traditional quantization approach, leading to significantly
reduced wall-clock training time. We note that GQ-Net’s technique is independent of and can be
used in conjunction with other techniques for improving quantization accuracy, as we demonstrate
in Section 4.3. Finally, we believe that the guided training technique we propose can also be applied
to other neural network structural optimization problems such as network pruning.

We implemented GQ-Net in PyTorch and our codebase and trained models are publicly available
1. We validated GQ-Net on the ImageNet classification task with the widely used ResNet-18 and

1An anonymous codebase has been submitted to OpenReview. The GitHub repository will be made public
after the review process.
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compact MobileNet-v1/v2 models, and also performed a thorough set of ablation experiments to
study different aspects of our technique. In terms of quantization accuracy loss compared to refer-
ence floating point models, GQ-Net strictly quantized using 4-bit weights and activations surpasses
existing state-of-the-art strict methods by up to 2.7×, and also improves upon these methods even
when they use higher bitwidths. In particular, 4-bit GQ-Net applied to ResNet-18 achieves 66.68%
top-1 accuracy, compared to 61.52% accuracy in Louizos et al. (2019) and a reference floating point
accuracy of 69.76%, while on MobileNet-v2 GQ-Net achieves 66.15% top-1 accuracy compared to
62.00% accuracy in Krishnamoorthi (2018) and a reference floating point accuracy of 71.88%. Ad-
ditionally, GQ-Net achieves these results using layer-wise quantization, as opposed to channel-wise
quantization in Krishnamoorthi (2018), which further enhances the efficiency and practicality of the
technique.

2 RELATED WORKS

Neural network quantization has been the subject of extensive investigation in recent years. Quan-
tization can be applied to different part of neural networks, including weights, activations or gradi-
ents. Courbariaux et al. (2015), Hou et al. (2016), Zhou et al. (2017), Hou & Kwok (2018) and other
works quantized model weights to binary, ternary or multi-bit integers to reduce model size. Wei
et al. (2018) quantized activations of object detection models for knowledge transfer. Alistarh et al.
(2016), Hou et al. (2019) quantized model gradients to accelerate distributed training. Another line
of work quantizes both weights and activations to accelerate model inference by utilizing fix-point
or integer arithmetic. These works include Courbariaux et al. (2016), Rastegari et al. (2016), Gysel
et al. (2016), Krishnamoorthi (2018), Choi et al. (2018), Zhang et al. (2018), Jung et al. (2018).

A large set of methods have been proposed to improve training or fine-tuning for network quan-
tization. Straight through estimators (Bengio et al., 2013) (STE) propagate gradients through
non-differentiable operations with the identity mapping. Other training methods “soften” non-
differentiable operations to similar differentiable ones in order for gradients to pass through, then
gradually anneal to piecewise continuous functions by applying stronger constraints. This line of
works include Louizos et al. (2019), Gong et al. (2019), Bai et al. (2018). Some works regard quanti-
zation as a stochastic process that produces parameterized discrete distributions, and guides training
using gradients with respect to these parameters Soudry et al. (2014), Shayer et al. (2018). Another
line of works does not require fine tuning, and instead re-calibrates or modifies the original network
to recover accuracy using little or even no data He & Cheng (2018), Nagel et al. (2019), Meller et al.
(2019).

Several recent works have focused on quantizing all parts of a network, typically in order to support
deployment using only integer arithmetic units and avoiding the cost and complexity of additional
floating point units. Gysel et al. (2016) proposed performing network inference using dynamic
fixed-point arithmetic, where bitwidths for the integer and mantissa parts are determined based on a
model’s weight distribution. Jacob et al. (2018); Krishnamoorthi (2018) proposed the quantization
training and deployment algorithm behind the Tensorflow-Lite quantization runtime, which gener-
ates strictly quantized networks that can be easily implemented in hardware. Louizos et al. (2019)
proposed a training method for strictly quantized models based on annealing a smooth quantization
function to a piecewise continuous one. There has also been recent work on using parameterized
quantizers which are optimized during quantization training. Choi et al. (2018) introduced learnable
upper bounds to control the range of quantization. Zhang et al. (2018) proposed quantizers with a
learnable basis which an be executed using fixed-point arithmetic. Jung et al. (2018) proposed to
optimize weight scaling and quantization ranges jointly from task losses.

3 DQ-NET

In this section we describe the architecture of our proposed DQ-Net and then discuss components of
the architecture which can be tuned to improve performance.

3.1 DQ-NET ARCHITECTURE

The major components of DQ-Net include the following, and are illustrated in Figure 1:
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1. An L-layer neural network hW (·) with all computations performed using full precision
floating point arithmetic. Here W = {W1, . . . ,WL} denotes the parameter (weights) of
the model, with Wi, i ∈ 1 . . . L being the weights in layer i and expressed in floating point.

2. The quantized model ĥW,Q(·) built from hW (·). Here Q = {Qw1 , . . . , QwL , Qa0 , . . . , QaL} is
a set of quantizers, i.e. mappings from floating point to (scaled) integer values; the quan-
tizers may be parameterized, and we describe how to optimize these parameters in Section
3.2. Qwi quantizes weights Wi and Qai quantizes activations in layer i.

Let x0 denote an input to hW . To construct output ĥW,Q(x0) of the quantized network,
we proceed layer by layer. We first quantize the weights in layers i = 1, . . . , L as ŵi =
Qwi (wi), and also quantize the input by setting x̂0 = Qa0(x0). we compute the quantized
activations x̂i in layer i iteratively for i = 1, . . . , L using x̂i = Qai (x̃i), where x̃i = gi(ŵi ∗
x̂i−1), and gi(·) denotes the nonlinearity function in layer i and ∗ denotes convolution.
Note that since ŵi and x̂i−1 are quantized, x̃i can be computed using integer or fixed point
arithmetic.

3. Next, we construct a loss function L incorporating both the training loss Lf of the full
precision model hW and a loss Lq capturing the difference between hW and the quantized
model ĥW,Q.

L = ωfLf + ωqLq (1)

Here ωf , ωq ∈ R are parameters capturing the relative importance of training loss versus
distributional loss. In this paper, we focus on image classification networks, and thus we
set Lf to be the cross-entropy loss between outputs from hW and the training labels. In ad-
dition, we set Lq = DKL(σ(hW (·)) ||σ(ĥW,Q(·))), where σ denotes the softmax function,
to be the KL divergence between distributions σ(hW ) and σ(ĥW,Q) on each input. Hence,
minimizing the second term in L corresponds to pushing the floating point and quantized
models to behave similarly to each other.
Since the weight parameters W appear in both terms in L, the two terms can give conflict-
ing signals for updating W during the optimization of L, causing the optimization to be
unstable. We discuss how to deal with this problem in Section 3.2.

To train DQ-Net, we successively take mini-batches of training samples and labels and use them to
compute L during the forward pass and propagate gradients with respect to W and the parameters
of Q during the backward pass in order to minimize L. After L has converged sufficiently, we take
the quantized weights in ĥW,Q(·) as the quantized model.

3.2 OPTIMIZING DQ-NET

We now describe how different components of DQ-Net can be optimized to improve accuracy and
training stability.

Weight scheduling for Lf and Lq Parameters ωf and ωq capture the relative importance of the
cross entropy and KL divergence errors during training. A large ωf ignores the similarity be-
tween the floating point and quantized models and may result in a model that is accurate but not
quantization-friendly. Conversely, a large ωq ignores guidance on accuracy from the floating point
model and may result in similar but poorly performing floating point and quantized models.

We tested different schemes for weighting Lf and Lq , and found that using fixed values such as
ωf = ωq = 0.5 already yields better results than many current methods, as discussed in Section 4.
However, further experimentation showed that scheduling, i.e. dynamically modifying the values of
ωf , ωq during training can produce higher accuracy than using static values. For example, consider
a schedule as shown in Figure 2a, which initially sets ωf = 1, ωq = 0, then alternates between
setting ωq = 1 and ωq = 0 several times. Schedules of this sort can be understood as initially
favoring model accuracy so that the floating point model is driven to a high accuracy region of model
space, before increasing the importance of model similarity so that a quantization-friendly model
can be found in the high accuracy region. This is repeated several times, leading to increasingly
more accurate full precision models whose accuracy is then transferred to the quantized model. As
demonstrated in Section 4, this schedule results in better performance than static ones.
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Figure 2: (a) Schedule for learning rate, ωf and ωq . x-axis shows the number of training steps,
y-axis shows the value of the learning rate or loss weight. (b) Distribution of full precision (blue)
and quantized (orange) activations, showing the necessity of multi-domain BN.

Reducing interference between Lf and Lq The loss function L includes terms in Lf and Lq ,
where the former is a function of the floating point parameters W , and the latter involves both W
and the quantized version Ŵ of W parameterized by θ. We discovered that directly optimizing L
results in reduced accuracy, which we attribute to conflicting updates to W produced by gradients
from the Lf and Lq terms.

Ideally, we would like update W to minimize Lf , while independently updating Ŵ to minimize
Lq . While this is clearly not possible due to the dependency between W and Ŵ , we found that a
heuristic based on this idea helped improve accuracy. In particular, let xL = hW (x0) and x̃L =

ĥW,Q(x0) be the output of the full precision and quantized networks on input x0, so that Lq =
DKL(σ(xL) ||σ(x̃L)), as in Section 3.1. During back propagation we compute Lf from xL and
derive ∇xL

Lf as usual, and use this via the chain rule to update W . However, when computing Lq
from xL and x̃L, we treat xL as a constant tensor which does not produce any gradients, and only
derive ∇x̃L

Lq and use this via the chain rule to update W . We can implement this behavior using
the detach operator in PyTorch or the stop gradient operator in TensorFlow.

Parameterized quantizer GQ-Net can use any type of quantizer Q(·) : R → T for a discrete set
T. Motivated by recent work such as PACT (Choi et al., 2018), we adopt layer-wise linear quantizers
with learnable boundaries in GQ-Net. In particular, for each layer i, we use one weight quantizer
function Qwi,θwi (·) for all weights in the layer, and one activation quantizer function Qai,θai (·) for all
activations. Here, θwi and θai represent learnable parameters; for expository simplicity we drop a,w
and i in the following and denote all parameters by θ. θ consists of k, the quantization bitwidth, and
lb and ub representing the lower and upper quantization boundaries. We use uniform quantization,
which is substantially easier to implement in hardware, and set

∆ =
ub− lb
2k − 1

(2)

Qθ(x) =

⌊
clamp(x, lb, ub)− lb

∆

⌉
∆ + lb (3)

Where clamp(x, a, b) = max(a,min(x, b)), and b·e represents the round operator.

During training, gradients propagate through the nondifferentiable b·e operator using the straight
though estimator (STE), i.e. ∂bxe∂x = 1. Parameters lb, ub are updated by the gradients propagated
from the loss functionL, and thus the quantizers will learn to set the appropriate quantization bound-
aries to improve accuracy.

Alternatingly optimizing W and θ The accuracy of the quantized model depends both on the
weights W of the floating point model as well as how these are quantized using the quantizers
parameterized by θ. We found that jointly optimizing W and θ in each iteration resulted in unstable
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training and poor accuracy. Performance was substantially improved by alternatingly optimizing
W and θ. That is, in each training epoch we update either the values in W or θ while freezing the
values of the other set of parameters, then switch the updated and frozen sets in the next epoch. The
reason alternating optimization improved training is that bothW and θ affect the values of quantized
weights, so that updating both simultaneously may cause suboptimal changes to quantized weights.

Multi-domain batch normalization Batch normalization is a critical component in large model
training. However, since DQ-Net trains a floating point and quantized model simultaneously, we
need to adjust the way batch normalization is performed to achieve good accuracy. In particular,
as illustrated in Figure 2, activations from the floating point and quantized models follow differ-
ent distributions. Thus, normalizing them with same set of running statistics can hinder training.
Instead, we regard activations in different numerical precision as being from different domains, sim-
ilar to as in multi-domain transfer learning, and normalize them with separate statistics {µf , σf}
and {µq, σq}: x̄ =

x−µf

σf
, ¯̂x =

x̂−µq

σq
. This modification only introduces minor storage overhead,

while it significantly improves DQ-Net’s accuracy in both full-precision and quantized settings.

4 EXPERIMENTS

To validate the effectiveness of GQ-Net and assess its different components, we conducted a series
of comparisons and ablation studies using the ImageNet classification task. We used the ILSVRC
2012 dataset consists of 1.2M training samples and 10K validation samples from 1K categories, and
evaluated our system using top-1 and top-5 validation accuracies.

4.1 IMPLEMENTATION DETAILS

Network settings We used the ResNet-18, MobileNet-v1 and MobileNet-v2 architectures in the
ImageNet experiments. All MobileNets used channel expansion ratio 1.0. Unlike some recent
works, we did not modify the order of the Conv, BN and ReLU layers. We replaced the BatchNorm
layers in these models with SyncBatchNorm, i.e. we used mini-batch statistics µf , µq and σf , σq
computed from all distributed GPUs during training.

Quantization settings Unless otherwise specified, all of the following experiments were con-
ducted with parameterized linear quantizers using a bitwidth of 4. The weight and activation quan-
tizers each have their own parameters θ = {lb, ub}, which are initialized at the iteration right before
the quantization error penalty Lq is enabled. Specifically, for weight quantizers, {lb, ub} are ini-
tialized by the minimum and maximum elements in the weight tensors of each layer. For activation
quantizers, {lb, ub} are initialized by the upper and lower 99.9% percentile values, computed from
5 mini-batches sampled from the training set. Weights and activations of all layers were quantized,
including the first and last layers.

Training protocol We used the same training protocol for all architectures and quantization set-
tings. Training was performed on 32 distributed GPUs, each with a mini-batch size of 64, and
stopped after 120 epochs on the training set. Model weights W and quantization parameters θ were
optimized with different optimization settings. Model weights W were randomly initialized using
the Kaiming-normal scheme (He et al., 2015) without using a pre-trained model, and optimized by
SGD with 0.9 Nesterov momentum and 10−4 weight decay. The learning rate warmed-up from 0.2
to 0.8 in the first 4 epochs, and decayed twice by a factor of 0.1 at epochs 60 and 90. Quantization
parameters θ were optimized using Adam without weight decay, with coefficients for first and sec-
ond momentums set to β1 = 0.9 and β2 = 0.999, and learning rate fixed to 10−3 during the entire
training process. Following standard practice, training samples were resized and randomly cropped
to 224× 224 pixels, followed by random horizontal flipping and normalization. Validation samples
were centrally cropped to 224× 224 pixels, followed by normalization.

4.2 COMPARISON WITH OTHER STRICT QUANTIZATION METHODS

We validated the effectiveness of GQ-Net by comparing it with several other state-of-the-art quan-
tization methods. As GQ-Net seeks to fully quantize a network and execute it using only integer
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Table 1: Comparison with other strict quantization methods on top-1 and top-5 accuracy for Ima-
geNet. W/A indicates the quantization bitwidths for weights and activations, respectively. 32/32
indicates full-precision models.

Method W/A ResNet-18 MobileNet-v1 MobileNet-v2
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Reference 32/32 69.76 89.08 70.60 71.88 90.29
Ours 32/32 69.89 89.27 70.68 89.64 71.09 90.12
White Paper 4/8 65.00 62.00
White Paper 8/4 64.00 58.00
Integer-only 5/5 64.64 86.67
RelaxedQuant 5/5 65.10 86.57 61.38 83.73
RelaxedQuant 4/4 61.52 83.99
GQ-Net (ours) 4/4 66.68 87.46 65.04 86.09 66.15 86.92

operations, we perform comparisons with other strict quantization methods. The comparison base-
lines include results from (Krishnamoorthi, 2018), (Jacob et al., 2018) and (Louizos et al., 2019),
indicated as White Paper, Integer-only and RelaxedQuant resp. in Table 1.

The first row in the table contains full precision accuracy results evaluated using reference imple-
mentations2, while the second row contains the full precision accuracy for models trained with our
training protocol. For the ResNet-18 model which is widely studied in the network compression
literature, we significantly outperform the state-of-the-art strict quantization method RelaxedQuant
in an equal bitwidth setting (+5.16% top-1 accuracy improvement with 4-bit weights and activa-
tions). Our 4-bit model even outperforms the comparison methods when they use higher bitwidths
(+1.58% compared with 5-bit RelaxedQuant, +2.04% compared with 5-bit Integer-only). For the
compact MobileNets family, our method also achieves higher accuracy using lower bitwidths. For
example, compared with the White Paper method at 8-bit weights and 4-bit activations, our 4-bit
W/A GQ-Net MobileNet-v2 model achieves +8.15% top-1 accuracy improvement, and our GQ-
Net MobileNet-v1 model obtains +1.04% higher top-1 accuracy in the same setting.

4.3 ABLATION STUDIES

We also validated the effectiveness of the different components of GQ-Net discussed in Section 3.2,
by progressively adding them to the vanilla quantization-friendly training protocol, and applying
these protocols to the ResNet-18 architecture with its weights and activations quantized to 4-bits.
For the vanilla setting, W and θ were optimized jointly at each training step, loss weights were set
to ωf = ωq = 0.5 through the entire training process, gradients from Lq propagated through both
σ(xL) and σ(x̃L), and full precision and quantized activations were normalized using the same set
of running statistics. For a more complete comparison, we also evaluated these settings using the
full precision GQ-Net model. The numerical results are given in Table 2.

By alternatingly updating model weights W and quantizer parameters θ between training steps,
quantization accuracy improved by +4.24% over the vanilla protocol. This indicates that although
gradients∇WL and∇θL both guide their respective parameters to minimize training loss, combin-
ing them in a training step makes the quantized weights Ŵ derived from these parameters subopti-
mal.

Dynamically adjusting the weights ωf and ωq during different parts of the training process as de-
scribed in Section 3.2 improved quantization accuracy by +0.23%. This suggests that the impor-
tance of the accuracy loss Lf and the distributional loss Lq may not be equal at different stages of
the training process. The schedule we used, alternating between short periods of ωq = 0 and longer
periods of ωq = 1, suggests we should first allow the floating point model settle into a reasonably
accurate state before enforcing its similarity to the quantized model.

2Implementations of ResNet-18 and MobileNet-v2 are taken from torchvision package (v0.3.0,
https://pytorch.org/docs/stable/torchvision/models.html). The accuracy of
MobileNet-v1 is cited from the original paper.
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Table 2: Full-precision (FP) and quantized (Q) top-1 accuracy for 4-bit weights and activations in
ResNet-18 on ImageNet. Components of GQ-Net are progressively applied. The first row indicates
the vanilla setting. A check mark in column “Alt {W, θ}” means alternatingly optimizing W and θ.
A check for “Schedule ωf , ωq” means ωf and ωq were dynamically adjusted, as described in §3.2.
A check for “Detach σ(xL)” means that σ(xL) is treated as a constant and we do not propagate
∇σ(xL)Lq during the backward pass. A check for “Multi-domain BN” means that full-precision and
quantized activations are normalized using separate running statistics. The full-precision reference
has top-1 accuracy = 69.89.)

Alt {W, θ} Schedule ωf , ωq Detach σ(xL) Multi-domain BN Top-1 (FP) Top-1 (Q)

65.21 60.95
X 67.14 65.19
X X 66.56 65.42
X X X 66.61 66.08
X X X X 68.30 66.68

Blocking the gradient fromLq caused by σ(xL) further improved quantization accuracy by +0.66%.
This indicates that although the full precision logits xL and quantized logits x̃L are both derived from
the same set of parameters W , it is useful to heuristically separate their effects during backpropaga-
tion.

Normalizing full precision and quantized activations by different sets of running statistics in
the BatchNorm layers improved both full precision accuracy (+1.69%) and quantized accuracy
(+0.60%). This highlights the difference in the mean and variance of the full precision and quan-
tized activations, despite the similarity of the full precision and quantized models in terms of KL
divergence.

Lastly, we considered the effectiveness of using parameterized quantizers. We tested replacing the
parameterized quantizers in GQ-Net with naive linear quantizers using fixed weight and activation
quantization ranges set to the 99.9% percentile values derived from 5 initial training mini-batches.
We found that using fixed quantizers significantly lowered accuracy, by 3.59%. We note that Re-
laxedQuant also uses learned quantizers, and that replacing these with fixed quantizers may also
result in decreased accuracy.

5 CONCLUSION

In this paper we presented GQ-Net, a novel method for training accurate quantized neural networks.
GQ-Net uses a loss function balancing full precision accuracy as well as similarity between the full
precision and quantized models to guide the optimization process. By properly tuning the weights
of these two factors, we obtained fully quantized networks whose accuracy significantly exceeds the
state of the art. We are currently studying additional ways to adjust GQ-Net components to further
improve accuracy. We are also interested in combining GQ-Net with complementary quantization
techniques, and in applying similar methodologies to other neural network optimization problems.
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