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ABSTRACT

Many tasks in modern machine learning can be formulated as finding equilibria
in sequential games. In particular, two-player zero-sum sequential games, also
known as minimax optimization, have received growing interest. It is tempting
to apply gradient descent to solve minimax optimization given its popularity and
success in supervised learning. However, it has been noted that naive application
of gradient descent fails to find some local minimax and can converge to non-
local-minimax points. In this paper, we propose Follow-the-Ridge (FR), a novel
algorithm that provably converges to and only converges to local minimax. We
show theoretically that the algorithm addresses the notorious rotational behaviour of
gradient dynamics, and is compatible with preconditioning and positive momentum.
Empirically, FR solves toy minimax problems and improves the convergence of
GAN training compared to the recent minimax optimization algorithms.

1 INTRODUCTION
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Figure 1: For a quadratic function f(x, y) =
−3x2+4xy−y2, our algorithm moves closer
to the ridge every iteration and it moves along
the ridge once it hits the ridge. Without the
FR correction term, gradient dynamics can
drift away from the ridge.

We consider differentiable sequential games with two play-
ers: a leader who can commit to an action, and a follower
who responds after observing the leader’s action. Particu-
larly, we focus on the zero-sum case of this problem which
is also known as minimax optimization, i.e.,

min
x∈Rn

max
y∈Rm

f(x,y).

Unlike simultaneous games, many practical machine learn-
ing algorithms, including generative adversarial networks
(GANs) (Goodfellow et al., 2014; Arjovsky et al., 2017),
adversarial training (Madry et al., 2018) and primal-dual
reinforcement learning (Du et al., 2017; Dai et al., 2018),
explicitly specify the order of moves between players and
the order of which player acts first is crucial for the prob-
lem. Therefore, the classical notion of local Nash equi-
librium from simultaneous games may not be a proper
definition of local optima for sequential games since mini-
max is in general not equal to maximin. Instead, we consider the notion of local minimax (Jin et al.,
2019) which takes into account the sequential structure of minimax optimization.

The vanilla algorithm for solving sequential minimax optimization is gradient descent-ascent (GDA),
where both players take a gradient update simultaneously. However, GDA is known to suffer from
two drawbacks. First, it has undesirable convergence properties: it fails to converge to some local
minimax and can converge to fixed points that are not local minimax (Jin et al., 2019; Daskalakis and
Panageas, 2018). Second, GDA exhibits strong rotation around fixed points, which requires using
very small learning rates (Mescheder et al., 2017; Balduzzi et al., 2018) to converge.

In this paper, we propose Follow-the-Ridge (FR), an algorithm for minimax optimization that
addresses both issues. Specifically, we elucidate the cause of undesirable convergence of GDA – the
leader whose gradient step takes the system away from the ridge. By adding a correction term to the
follower, we explicitly cancel out negative effects of the leader’s update. Intuitively, the combination
of the leader’s update and the correction term is parallel to the ridge in the landscape (see Fig. 1),
hence the name Follow-the-Ridge. Overall, our contributions are the following:
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• We propose a novel algorithm for minimax optimization which has exact local convergence to
local minimax points. Previously, this property was only known to be satisfied when the leader
moves infinitely slower than the follower in gradient descent-ascent (Jin et al., 2019).
• We show theoretically and empirically that FR addresses the notorious rotational behaviour of

gradient dynamics around fixed points (Balduzzi et al., 2018) and thus allows a much larger
learning rate compared to GDA.
• We prove that our algorithm is compatible with standard acceleration techniques such as

preconditioning and positive momentum, which can speed up convergence significantly.
• We further show that our algorithm also applies to general-sum Stackelberg games (Fiez et al.,

2019; Zeuthen, 1935) with similar theoretical guarantees.
• Finally, we demonstrate empirically our algorithm improves the convergence performance in

both toy minimax problems and GAN training compared to existing methods.

2 PRELIMINARIES

2.1 MINIMAX OPTIMIZATION

We consider sequential games with two players where one player is deemed the leader and the other
the follower. We denote leader’s action by x ∈ Rn, and the follower’s action by y ∈ Rm. The leader
aims at minimizing the cost function f(x,y) while the follower aims at maximizing f(x,y). The
only assumption we make on the cost function is the following.
Assumption 1. f is twice differentiable. ∇2

yyf is invertible (i.e., non-singular).

The global solution to the sequential game minx maxy f(x,y) is an action pair (x∗,y∗), such that
y∗ is the global optimal response to x∗ for the follower, and that x∗ is the global optimal action
for the leader assuming the follower always play the global optimal response. We call this global
solution the global minimax. However, finding this global minimax is often intractable; therefore, we
follow Jin et al. (2019) and take local minimax as the local surrogate.
Definition 1 (local minimax). (x∗,y∗) is a local minimax for f(x,y) if (1) y∗ is a local maximum
of f(x∗, ·); (2) x∗ is a local minimum of φ(x) := f(x, r(x)), where r(x) is the implicit function
defined by ∇yf(x,y) = 0 in a neighborhood of x∗ with r(x∗) = y∗.

In the definition above, the implicit function r(·) : Rn → Rm is a local best response for the follower,
and is a ridge in the landscape of f(x,y). Local minimaxity captures an equilibrium in a two-player
sequential game if both players are only allowed to change their strategies locally. For notational
convenience, we define

∇f(x,y) = [∇xf,∇yf ]
>
, ∇2f(x,y) =

[
Hxx Hxy

Hyx Hyy

]
.

In principle, local minimax can be characterized in terms of the following first-order and second-order
conditions, which were established in Jin et al. (2019).
Proposition 1 (First-order Condition). Any local minimax (x∗,y∗) satisfies∇f(x∗,y∗) = 0.
Proposition 2 (Second-order Necessary Condition). Any local minimax (x∗,y∗) satisfies Hyy 4 0
and Hxx −HxyH

−1
yyHyx < 0.

Proposition 3 (Second-order Sufficient Condition). Any stationary point (x∗,y∗) satisfying Hyy ≺
0 and Hxx −HxyH

−1
yyHyx � 0 is a local minimax.

Figure 2: Relation between local Nash, lo-
cal minimax and GDA stable fixed points.

The concept of global/local minimax is different from Nash
equilibrium and local Nash, which are the equilibrium con-
cepts typically studied for simultaneous games (see Nash
et al. (1950); Ratliff et al. (2016) for more details). In partic-
ular, we note that the concept of Nash equilibrium or local
Nash does not reflect the order between the min-player and
the max-player and may not exist even for simple functions (Jin et al., 2019). In general, the set
of local minimax is a superset of local Nash. Under some mild assumptions, local minimax points
are guaranteed to exist (Jin et al., 2019). However, the set of stable fixed points of GDA, roughly
speaking the set of points that GDA locally converges to, is a different superset of local Nash (Jin
et al., 2019). The relation between the three sets of points is illustrated in Fig. 2.
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2.2 STABILITY OF DISCRETE DYNAMICAL SYSTEMS

Gradient-based methods can reliably find local stable fixed points – local minima in single-objective
optimization. Here, we generalize the concept of stability to games by taking game dynamics as
a discrete dynamical system. An iteration of the form zt+1 = w(zt) can be viewed as a discrete
dynamical system, where in our case w : Rn+m → Rn+m. If w(z) = z, then z is called a fixed
point. We study the stability of fixed points as a proxy to local convergence of game dynamics.
Definition 2. Let J denote the Jacobian of w at a fixed point z. If it has spectral radius ρ(J) ≤ 1,
then we call z a stable fixed point. If ρ(J) < 1, then we call z a strictly stable fixed point.

It is known that strict stability implies local convergence (e.g., see Galor (2007)). In other words, if z
is a strictly stable fixed point, there exists a neighborhood U of z such that when initialized in U , the
iteration steps always converge to z.

3 UNDESIRABLE BEHAVIOURS OF GDA

In this section, we discuss the undesirable behaviours of GDA in more detail. Recall that the update
rule of GDA is given by

xt+1 ← xt − η∇xf,

yt+1 ← yt + η∇yf,
(1)

where we assume the same learning rate for both the leader and the follower for simplicity1. As
illustrated in Fig. 2, the set of stable fixed points of GDA can include points that are not local
minimax and, perhaps even worse, some local minimax are not necessarily stable fixed points of
GDA. Here, we first give an example of a stable fixed point that is not a local minimax. Consider
minx maxy f(x, y) = 3x2 + y2 + 4xy; the only stationary point of this problem is (0, 0) and the
Jacobian of GDA at this point is

J = I− η
[

6 4
−4 −2

]
.

It is easy to see that the eigenvalues of J are e1 = e2 = 1− 2η. Therefore, by Definition 2, (0, 0) is
a strictly stable fixed point of GDA. However, one can show that Hyy = 2 > 0 which doesn’t satisfy
the second-order necessary condition of local minimax.

Similarly, one can easily find examples in which a local minimax is not in the set of stable fixed
points of GDA, e.g., minx∈R maxy∈R f(x, y) = −3x2 − y2 + 4xy (see Fig. 1). In this example, the
two Jacobian eigenvalues are both greater than 1 no matter how small the learning rate is. In other
words, GDA fails to converge to (0, 0) for almost all initializations (Daskalakis and Panageas, 2018).

As we will discuss in the next section, the main culprit of the undesirable behaviours of GDA is
the leader whose gradient update −η∇xf pushes the whole system away from the ridge or attracts
the system to non-local-minimax points. By contrast, the follower’s step η∇yf can pull the system
closer to the ridge (see Fig. 1) or push it away from bad fixed points. To guarantee convergence to
local minimax (or avoid bad fixed points), we have to use a very small learning rate for the leader (Jin
et al., 2019; Fiez et al., 2019) so that the η∇yf term dominates. In the next section, we offer an
alternative approach which explicitly cancels out undesirable effects of −η∇xf , thereby allowing us
to use larger learning rates for the leader.

4 FOLLOW THE RIDGE

Despite its popularity, GDA has the tendency to drift away from the ridge or the implicit function,
and can, therefore, fail to converge with any constant learning rate. To address these problems, we
propose a novel algorithm for minimax optimization, which we term Follow-the-Ridge (FR). The
algorithm modifies gradient descent-ascent by applying an asymmetric preconditioner. The update
rule is described in Algorithm. 1.

The main intuition behind FR is the following. Suppose that yt is a local minimum of f(xt, ·). Let
r(x) be the implicit function defined by∇yf(x,y) = 0 around (xt,yt), i.e., a ridge in the landscape

1In general, the learning rates of two players can be different. Since our arguments below apply to general
setting as long as the ratio ηx/ηy is a positive constant, we assume the same learning rate for convenience.
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Algorithm 1 Follow-the-Ridge (FR). Differences from gradient descent-ascent are shown in blue.

Require: Learning rate ηx and ηy; number of iterations T .
1: for t = 1, ..., T do
2: xt+1 ← xt − ηx∇xf(xt,yt) . gradient descent
3: yt+1 ← yt + ηy∇yf(xt,yt) + ηxH

−1
yyHyx∇xf(xt,yt) . modified gradient ascent

of f(x,y). By definition, a local minimax has to lie on a ridge; hence, it is intuitive to follow the
ridge during learning. However, if (xt,yt) is on the ridge, then ∇yf(xt,yt) = 0, and one step of
gradient descent-ascent will take (xt,yt) to (xt− ηx∇xf,yt), which is off the ridge. In other words,
gradient descent-ascent tends to drift away from the ridge. The correction term we introduce is

∇xr(x) (−ηx∇xf(xt,yt)) = ηxH
−1
yyHyx∇xf.

It would bring yt to yt + ∇xr(x)(xt+1 − xt) ≈ r(xt+1), thereby encouraging both players to
stay along the ridge. When (xt,yt) is not on a ridge yet, we expect the −ηx∇xf term and the
ηxH

−1
yyHyx∇xf term to move parallel to the ridge, while the ηy∇yf term brings (xt,yt) closer

to the ridge. Our main theoretical result is the following theorem, which suggests that FR locally
converges and only converges to local minimax.
Theorem 1 (Exact local convergence). With a suitable learning rate, all strictly stable fixed points of
FR are local minimax, and all local minimax points are stable fixed points of FR.

The proof is mainly based on the following observation. The Jacobian of FR dynamics at a fixed
point (x∗,y∗) is (c := ηy/ηx)

J = I− ηx
[

I
−H−1

yyHyx I

] [
Hxx Hxy

−cHyx −cHyy

]
,

where the Hessians are evaluated at (x∗,y∗). J is similar to

M =

[
I

H−1
yyHyx I

]
J

[
I

−H−1
yyHyx I

]
= I− ηx

[
Hxx −HxyH

−1
yyHyx Hxy

−cHyy

]
.

Therefore, the eigenvalues of J are those of I + ηyHyy and those of I− ηx(Hxx −HxyH
−1
yyHyx).

As shown in second-order necessary condition 2, (x∗,y∗) being a local minimax implies Hyy 4 0
and Hxx −HxyH

−1
yyHyx < 0; one can then show that the spectral radius of the Jacobian satisfies

ρ(J) ≤ 1; hence (x∗,y∗) is a stable fixed point by Definition 2. On the other hand, when ρ(J) < 1,
by the sufficient condition in Proposition 3, (x∗,y∗) must be a local minimax.
Remark 1 (All eigenvalues are real). We notice that all eigenvalues of J, the Jacobian of FR, are
real since both Hyy and Hxx −HxyH

−1
yyHyx are symmetric matrices. As noted by Mescheder

et al. (2017); Gidel et al. (2019); Balduzzi et al. (2018), the rotational behaviour (instability) of GDA
is caused by eigenvalues with large imaginary part. Therefore, FR addresses the strong rotation
problem around fixed points as all eigenvalues are real.

4.1 CONNECTIONS AND IMPLICATIONS

Here, we draw some connections to consensus optimization (Mescheder et al., 2017) and gradient
penalty regularization (Mescheder et al., 2018). Essentially, consensus optimization modifies the cost
function f(x,y) by adding gradient norm penalties, leading to the following formulation

min
x∈X

{
f(x,y) + λ‖∇f(x,y)‖22 | y ∈ arg max

y∈Y
f(x,y)− λ‖∇f(x,y)‖22

}
.

Similarly, we can view our algorithm FR as a particular form of gradient penalty regularization:

min
x∈X

{
f(x,y) | y ∈ arg max

y∈Y
f(x,y) + λ‖∇xf(x,y)‖2

H−1
yy

}
,

where ‖v‖H−1
yy

= v>H−1
yyv. Here, we stress that Hyy in the regularization term plays an important

role in converging to the correct fixed points. When Hyy is positive definite, our objective actually
encourages the follower y to maximize the gradient norm of the leader, avoiding converging to
spurious bad fixed points (recall that by Proposition 2, at a local minimax Hyy can’t have positive
eigenvalues). Moreover, our objective is asymmetric compared to consensus optimization which we
conjecture is necessary for solving sequential games.
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4.2 ACCELERATING CONVERGENCE WITH PRECONDITIONING AND MOMENTUM

We now discuss several extension of FR that preserves the theoretical guarantees.

Preconditioning: To speed up the convergence, it is often desirable to apply a preconditioner on the
gradients that compensates for the curvature. For FR, the preconditioned variant is given by[

xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−H−1

yyHyx I

] [
ηxP1∇xf
−ηyP2∇yf

]
(2)

We can show that with any constant positive definite preconditioners P1 and P2, the local convergence
behavior of Algorithm 1 remains exact. We note that preconditioning is crucial for successfully
training GANs (see Fig. 9) and RMSprop/Adam has been exclusively used in GAN training.

Momentum: Another important technique in optimization is momentum, which speeds up conver-
gence significantly both in theory and in practice (Polyak, 1964; Sutskever et al., 2013). We show
that momentum can be incorporated into FR, which gives the following update rule:[

xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−H−1

yyHyx I

] [
ηx∇xf
−ηy∇yf

]
+ γ

[
xt − xt−1

yt − yt−1

]
. (3)

Because all of the Jacobian eigenvalues are real, we can show that momentum speeds up local
convergence in a similar way it speeds up single objective minimization.

Theorem 2. For local minimax (x∗,y∗), let α = min
{
λmin(−Hyy), λmin(Hxx −HxyH

−1
yyHyx)

}
,

β = ρ
(
∇2f(x∗,y∗)

)
, κ := β/α. Then FR converges asymptotically to (x∗,y∗) with a rate Ω(κ−2);

FR with a momentum parameter of γ = 1−Θ
(
κ−1

)
converges asymptotically with a rate Ω(κ−1).2

This is in contrast to gradient descent-ascent, whose complex Jacobian eigenvalues prevent the use of
positive momentum. Instead, negative momentum may be more preferable (Gidel et al., 2019), which
does not achieve the same level of acceleration.

4.3 GENERAL STACKELBERG GAMES

Algorithm 2 Follow-the-Ridge (FR) for general-sum Stackelberg games.

Require: Learning rate ηx and ηy; number of iterations T .
1: for t = 1, ..., T do
2: xt+1 ← xt − ηxDxf(xt,yt) . total derivative Dxf = ∇xf −∇2

xyg(∇2
yyg)−1∇yf

3: yt+1 ← yt − ηy∇yg(xt,yt) + ηx(∇2
yyg)−1∇2

yxgDxf(xt,yt)

Here, we further extend FR to general sequential games, also known as Stackelberg games. The
leader commits to an action x, while the follower plays y in response. The leader aims to minimize
its cost f(x,y), while the follower aims at minimizing g(x,y). For Stackelberg games, the notion of
equilibrium is captured by Stackelberg equilibrium, which is essentially the solution to the following
optimization problem:

min
x∈Rn

{
f(x,y)|y ∈ arg min

y∈Rm

g(x,y)

}
.

It can be seen that minimax optimization is the special case when g = −f .

Similarly, one can define local Stackelberg equilibrium as a generalization of local minimax in
general-sum games (Fiez et al., 2019). Stackelberg game has wide applications in machine learn-
ing. To name a few, both multi-agent reinforcement learning (Littman, 1994) and hyperparameter
optimization (Maclaurin et al., 2015) can be formulated as finding Stackelberg equilibria.

For general-sum games, naive gradient dynamics, i.e., both players taking gradient updates with their
own cost functions, is no longer a reasonable algorithm, as local Stackelberg equilibria in general
may not be stationary points. Instead, the leader should try to use the total derivative of f(x, r(x)),

2By a rate a, we mean that one iteration shortens the distance toward the fixed point by a factor of (1− a);
hence the larger the better.
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where r(x) is a local best response for the follower. Thus the counterpart of gradient descent-ascent
in general-sum games is actually gradient dynamics with best-response gradient (Fiez et al., 2019):

xt+1 ← xt − η
[
∇xf −∇2

xyg
(
∇2

yyg
)−1∇yf

]
(xt,yt),

yt+1 ← yt − η∇yg(xt,yt).
(4)

FR can be adapted to general-sum games by adding the same correction term to the follower. The
combined update rule is given in Algorithm 2. Similarly, we show that FR for Stackelberg games
locally converges exactly to local Stackelberg equilibria (see Appendix C.2 for rigorous proof.)

5 RELATED WORK

As a special case of Stackelberg games (Ratliff et al., 2016) in the zero-sum setting, minimax
optimization concerns the problem of solving minx∈X maxy∈Y f(x,y). The problem has received
wide attention due to its extensive applications in modern machine learning, in settings such as
generative adversarial networks (GANs), adversarial training. The vast majority of this line of
research focus on convex-concave setting (Kinderlehrer and Stampacchia, 1980; Nemirovski and
Yudin, 1978; Nemirovski, 2004; Mokhtari et al., 2019b;a). Beyond the convex-concave setting,
Rafique et al. (2018); Lu et al. (2019); Lin et al. (2019); Nouiehed et al. (2019) consider nonconvex-
concave problems, i.e., where f is nonconvex in x but concave in y. In general, there is no hope to
find global optimum efficiently in nonconvex-concave setting.

More recently, nonconvex-nonconcave problem has gained more attention due to its generality.
Particularly, there are several lines of work analyzing the dynamics of gradient descent-ascent (GDA)
in nonconvex-nonconcave setting (especially in GAN training). Though simple and intuitive, GDA
has been shown to have undersirable convergence properties (Adolphs et al., 2019; Daskalakis and
Panageas, 2018; Mazumdar et al., 2019; Jin et al., 2019) and exhibit strong rotation around fixed
points (Mescheder et al., 2017; Balduzzi et al., 2018). To overcome this rotation behaviour of
GDA, various modifications have been proposed, including averaging (Yazıcı et al., 2019), negative
momentum (Gidel et al., 2019), extragradient (EG) (Korpelevich, 1976; Mertikopoulos et al., 2019),
optimistic mirror descent (OGDA) (Daskalakis et al., 2018), consensus optimization (CO) (Mescheder
et al., 2017) and symplectic gradient (SGA) (Balduzzi et al., 2018; Gemp and Mahadevan, 2018).
However, we note that all these algorithms discard the underlying sequential structure of minimax
optimization and take a simultaneous game formulation. We emphasize that GAN training is
better viewed as a sequential game rather than the simultaneous game, since the primary goal is to
learn a good generator. There is also empirical evidence against viewing GANs as simultaneous
games (Berard et al., 2019). Therefore, none of these approaches address the mismatch between the
set of stable fixed points of gradient dynamics and the set of local minimax.

To the best of our knowledge, the only method can (and only) converge to local minimax is two
time-scale GDA (Heusel et al., 2017; Jin et al., 2019) where the leader moves infinitely slower than the
follower. However, it may converge slowly due to infinitely small learning rate. In addition, Fiez et al.
(2019) proved that two time-scale gradient dynamics with best response gradient locally converges
to local Stackelberg equilibria; however, their proof requires stronger assumptions and even in that
case, the dynamics can converge to non-local-Stackelberg points. Besides, Adolphs et al. (2019);
Mazumdar et al. (2019) attempt to solve the undesirable convergence issue of GDA by exploiting
curvature information, but they focus on simultaneous game on finding local Nash and it is unclear
how to extend their algorithm to sequential games.

For GAN training, there is a rich literature on different strategies to make the GAN-game well-
defined, e.g., by adding instance noise (Salimans et al., 2016), by using different objectives (Nowozin
et al., 2016; Gulrajani et al., 2017; Arjovsky et al., 2017; Mao et al., 2017) or by tweaking the
architectures (Radford et al., 2015; Brock et al., 2019). While these strategies try to make the overall
optimization problem easily, our work deals with a specific optimization problem and convergence
issues arise in theory and in practice; hence our algorithm is orthogonal to these work.

6 EXPERIMENTS

In this section, we investigate whether the theoretical guarantees of FR carry over to practical
problems. Particularly, our experiments had three main aims: (1) to test if FR converges and only
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(a) GDA diverges (b) GDA converges to a bad fixed
point that is non local minimax

(c) Limiting cycle

Figure 3: Trajectory of FR and other algorithms in low dimensional toy problems. Left: for g1, (0, 0) is local
minimax. Middle: for g2, (0, 0) is NOT local minimax. Right: for g3, (0, 0) is a local minimax. The contours
are for the function value. The red triangle marks the initial position.

converges to local minimax, (2) to test the effectiveness of FR in training GANs with saturating loss,
(3) to test whether FR addresses the notorious rotation problem in GAN training.

6.1 LOW DIMENSIONAL TOY EXAMPLES

To verify our claim on exact local convergence, we first compare FR with gradient descent-ascent
(GDA), optimistic mirror descent (OGDA) (Daskalakis et al., 2018), extragradient (EG) (Korpelevich,
1976), symplectic gradient adjustment (SGA) (Balduzzi et al., 2018) and consensus optimization
(CO) (Mescheder et al., 2017) on three simple low dimensional problems:

g1(x, y) = −3x2 − y2 + 4xy

g2(x, y) = 3x2 + y2 + 4xy

g3(x, y) =
(
4x2 − (y − 3x+ 0.05x3)2 − 0.1y4

)
e−0.01(x2+y2).

Here g1 and g2 are two-dimensional quadratic problems, which are arguably the simplest nontrivial
problems. g3 is a sixth-order polynomial scaled by an exponential, which has a relatively complicated
landscape compared to g1 and g2.

It can be seen that when running in g1, where (0, 0) is a local (and in fact global) minimax, only
FR, SGA and CO converge to it; all other method diverges (the trajectory of OGDA and EG almost
overlaps). The main reason behind the divergence of GDA is that gradient of leader pushes the system
away from the local minimax when ich it is a local maximum for the leader. In g2, where (0, 0) is not
a local minimax, all algorithms except for FR converges to this undesired stationary point3. In this
case, the leader is still to blame for the undesirable convergence of GDA (and other variants) since
it gets trapped by the gradient pointing to the origin. In g3, FR can converge to (0, 0), which is a
local minimax, while all other methods apparently enter limit cycles around (0, 0). The experiments
suggest that even on extremely simple instances, existing algorithms can either fail to converge to a
desirable fixed point or converge to bad fixed points, whereas FR always exhibits desirable behavior.

6.2 GENERATIVE ADVERSARIAL NETWORKS

One particularly promising application of minimax optimization algorithms is training generative
adversarial networks (GANs). According to the adversarial game formulation, the generator is the
leader who commits to an action first, while the discriminator is the follower that helps the generator
to learn the target data distribution.

6.2.1 MIXTURE OF GAUSSIANS

We first evaluate 4 different algorithms (GDA, EG, CO and FR) on mixture of Gaussian problems with
the original saturating loss. To satisfy the non-singular Hessian assumption, we add L2 regularization
(0.0002) to the discriminator. For both generator and discriminator, we use 2-hidden-layers MLP with
64 hidden units each layer where tanh activations is used. By default, RMSprop (Tieleman and Hinton,

3Note that it is a local minimum for the follower.
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Figure 4: Comparison between FR and other algorithms on GANs with saturating loss. First Row: Generator
distribution. Only consensus optimization (CO) and FR capture all three modes. Second Row: Discriminator
prediction. The discriminator trained by FR converges to a flat line, indicating being fooled by the generator.
Third Row: Gradient norm as a function of iteration. Only in the case of FR, the gradient norm vanishes.
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Figure 5: Comparison between FR and GDA on 2D mixture of Gaussians. Left: GDA; Right: FR.

2012) is used in all our experiments while the learning rate is tuned for GDA. As our FR involves
the computation of Hessian inverses which is computational prohibitive, we instead use conjugate
gradient (Martens, 2010; Nocedal and Wright, 2006) to solve the linear system in the inner loop.
To be specific, instead of solving Hyyz = Hyx∇xf directly, we solve H2

yyz = HyyHyx∇xf to
ensure that the problem is well-posed since H2

yy is always positive semidefinite. For all experimental
details, we refer readers to Appendix D.2.

As shown in Fig. 4, GDA suffers from the “missing mode” problem and both discriminator and
generator fail to converge as confirmed by the gradient norm plot. EG fails to resolve the convergence
issue of GDA and performs similarly to GDA. With tuned gradient penalties, consensus optimization
(CO) can successfully recover all three modes and obtain much smaller gradient norms. However, we
notice that the gradient norm of CO decreases slowly and that both the generator and the discriminator
have not converged after 50,000 iterations. In contrast, the generator trained with FR successfully
learns the true distribution with three modes and the discriminator is totally fooled by the generator.
As expected, both players reach much lower gradient norm with FR, indicating fast convergence.
Moreover, we find that even if initialized with GDA-trained networks (the top row of Fig. 4), FR can
still find all the modes in the end of training.
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Figure 6: Path-norm and path-angle of FR
along the linear path.

To check whether FR fixes the strong rotation problem
around fixed points, we follow Berard et al. (2019) to plot
the gradient norm and path-angle (see Fig. 6). By interpolat-
ing between the initial parameters z and the final parameters
z∗, they proposed to monitor the angle between the vector
field v and the linear path from z to z∗. Specifically, they
looked at the quantity – path-angle, defined as

θ(α) =
〈z∗ − z,vα〉
‖z∗ − z‖‖vα‖

where vα = v(αz + (1− α)z∗).

They showed that a high “bump” around α = 0 in the
path-angle plot typically indicates strong rotation behaviour. We choose α = [0.6, 1.2] and plot

8
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the gradient norm and path-angle along the linear path for the updates of FR. In particular, we
only observe a sign-switch around the fixed point z∗ without an obvious bump, suggesting that FR
doesn’t exhibit rotational behaviour around the fixed point. To further check if FR converges to
local minimax, we check the second-order condition of local minimax by computing the eigenvalues
of Hxx − HxyH

−1
yyHyx and Hyy. As expected, all eigenvalues of Hxx − HxyH

−1
yyHyx are

non-negative while all eigenvalues of Hyy are non-positive.
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Figure 7: Gradient norms of GDA and FR.

We also run FR on 2-D mixture of Gaussian with
the same architectures (see Fig. 5) and compare
it to vanilla GDA. Though GDA captures all the
modes, we note that both the generator and the
discriminator don’t converge which can be seen
from the gradient norm plot in Fig. 7. In contrast,
the discriminator trained by FR is totally fooled
by the generator and gradients vanish. We stress
here that the sample quality in GAN models is
not a good metric of checking convergence as we shown in the above example.

6.2.2 PRELIMINARY RESULTS ON MNIST

In a more realistic setting, we test our algorithm on image generation task. Particularly, we use the
standard MNIST dataset (LeCun et al., 1998) but only take a subset of the dataset with class 0 and 1 for
quick experimenting. To stabilize the training of GANs, we employ spectral normalization (Miyato
et al., 2018) to enforce Lipschitz continuity on the discriminator. To ensure the invertibility of the
discriminator’s Hessian, we add the same amount of L2 regularization to the discriminator as in MOG
experiments. In terms of network architectures, we use 2-hidden-layers MLP with 512 hidden units
in each layer for both the discriminator and the generator. For the discriminator, we use Sigmoid
activation in the output layer. We use RMSProp as our base optimizer in the experiments with batch
size 2,000. We run both GDA and FR for 100,000 iterations.
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Figure 8: Comparison between FR and GDA on MNIST dataset. Left: GDA; Right: FR.

In Fig. 8, we show the generated samples of GDA and FR along with the gradient norm plots. Our
main observation is that FR improves convergence as the gradient norms of both discriminator and
generator decrease much faster than GDA; however the convergence is not well reflected by the
quality of generated samples. We notice that gradients don’t vanish to zero in the end of training. We
conjecture that for high-dimensional data distribution like images, the network we used is not flexible
enough to learn the distribution perfectly.

7 CONCLUSION

In this paper, we studied local convergence of learning dynamics in minimax optimization. To
address undesirable behaviours of gradient descent-ascent, we proposed a novel algorithm that locally
converges to and only converges to local minimax by taking into account the sequential structure of
minimax optimization. Meanwhile, we proved that our algorithm addresses the notorious rotational
behaviour of vanilla gradient-descent-ascent around fixed points. We further showed theoretically
that our algorithm is compatible with standard acceleration techniques, including preconditioning
and positive momentum. More importantly, we showed that our algorithm can be easily extended to
general-sum Stackelberg games with similar theoretical guarantees. Empirically, we validated the
effectiveness of our algorithm in both low-dimensional toy problems and GAN training.
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A PROOF OF THEOREM 1

Proof. First of all, note that FR’s update rule can be rewritten as[
xt+1

yt+1

]
←
[
xt
yt

]
− ηx

[
I

−H−1
yyHyx cI

] [
∇xf
−∇yf

]
, (5)

where c := ηy/ηx, and that
[

I
−H−1

yyHyx cI

]
is always invertible. Therefore, the fixed points of FR

are exactly those that satisfy∇f(x,y) = 0, i.e., the first-order necessary condition of local minimax.

Now, consider a fixed point (x∗,y∗). The Jacobian of FR’s update rule at (x∗,y∗) is given by

J = I− ηx
[

I
−H−1

yyHyx I

] [
Hxx Hxy

−cHyx −cHyy

]
.

Observe that J is similar to[
I

H−1
yyHyx I

]
J

[
I

−H−1
yyHyx I

]
=I− ηx

[
I

H−1
yyHyx I

] [
I

−H−1
yyHyx I

] [
Hxx Hxy

−cHyx −cHyy

] [
I

−H−1
yyHyx I

]
=I− ηx

[
Hxx −HxyH

−1
yyHyx Hxy

−cHyy

]
,

which is block diagonal. Therefore, the eigenvalues of J are exactly those of I+ ηyHyy and those of
I− ηx(Hxx −HxyH

−1
yyHyx), which are all real because both matrices are symmetric.

Moreover, suppose that

ηx <
2

max
{
ρ(Hxx −HxyH

−1
yyHyx), cρ(−Hyy)

} ,
where ρ(·) stands for spectral radius. In this case

−I ≺ I + ηyHyy, −I ≺ I− ηx(Hxx −HxyH
−1
yyHyx).

Therefore whether ρ(J) < 1 depends on whether−Hyy or Hxx−HxyH
−1
yyHyx has negative eigen-

values. If (x∗,y∗) is a local minimax, by the necessary condition, Hyy 4 0, Hxx−HxyH
−1
yyHyx <

0. It follows that the eigenvalues of J all fall in (−1, 1]. (x∗,y∗) is thus a stable fixed point of FR.

On the other hand, when (x∗,y∗) is a strictly stable fixed point, ρ(J) < 1. It follows that both Hyy

and Hxx −HxyH
−1
yyHyx must be positive definite. By the sufficient conditions of local minimax,

(x∗,y∗) is a local minimax.

B PROOF OF THEOREM 2

Consider a general discrete dynamical system zt+1 ← g(zt). Let z∗ be a fixed point of g(·). Let
J(z) denote the Jacobian of g(·) at z. Similar results can be found in many texts; see, for instance,
Theorem 2.12 (Olver, 2015).
Proposition 4 (Local convergence rate from Jacobian eigenvalue). If ρ(J(z∗)) = 1−∆ < 1, then
there exists a neighborhood U of z∗ such that for any z0 ∈ U ,

‖zt − z∗‖2 ≤ C
(

1− ∆

2

)t
‖z0 − z∗‖2,

where C is some constant.

Proof. By Lemma 5.6.10 (Horn and Johnson, 2013), since ρ(J(z∗)) = 1−∆, there exists a matrix
norm ‖ · ‖ induced by vector norm ‖ · ‖ such that ‖J(z∗)‖ < 1 − 3∆

4 . Now consider the Taylor
expansion of g(z) at the fixed point z∗:

g(z) = g(z∗) + J(z∗)(z− z∗) +R(z− z∗),
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where the remainder term satisfies

lim
z→z∗

R(z− z∗)

‖z− z∗‖
= 0.

Therefore, we can choose 0 < δ such that whenever ‖z− z∗‖ < δ, ‖R(z− z∗)‖ ≤ ∆
4 ‖z− z∗‖. In

this case,
‖g(z)− g(z∗)‖ ≤ ‖J(z∗)(z− z∗)‖+ ‖R(z− z∗)‖

≤ ‖J(z∗)‖‖z− z∗‖+
∆

4
‖z− z∗‖

≤
(

1− ∆

2

)
‖z− z∗‖.

In other words, when z0 ∈ U = {z| ‖z− z∗‖ < δ},

‖zt − z∗‖ ≤
(

1− ∆

2

)t
‖z0 − z∗‖.

By the equivalence of finite dimensional norms, there exists constants c1, c2 > 0 such that
∀z, c1‖z‖2 ≤ ‖z‖ ≤ c2‖z‖2.

Therefore

‖zt − z∗‖2 ≤
c2
c1

(
1− ∆

2

)t
‖z0 − z∗‖2.

In other words, the rate of convergence is given by the gap between ρ(J) and 1. We now prove
Theorem 2 using this view.

proof of Theorem 2. In the following proof we use ‖ · ‖ to denote the standard spectral norm. It is
not hard to see that λmax(−Hyy) ≤ ρ(∇2f(x∗,y∗)) = β and ‖Hxy‖ ≤ β. Also,

λmax(Hxx −HxyH
−1
yyHyx) ≤ ‖Hxx‖+ ‖Hxy‖2 · ‖H−1

yy‖ ≤ β +
β2

α
= (1 + κ)β.

Therefore we choose our learning rate to be ηx = ηy = 1
2κβ . In this case, the eigenvalues of the

Jacobian of FR without momentum all fall in
[
0, 1− 1

2κ2

]
. Using Proposition 4, we can show that

FR locally converges with a rate of Ω(κ−2).

Now, let us focus on FR with Polyak’s momentum:[
xt+1

yt+1

]
←
[
xt
yt

]
− ηx

[
I

−H−1
yyHyx I

] [
∇xf
−∇yf

]
+ γ

[
xt − xt−1

yt − yt−1

]
. (6)

This is a dynamical system on the augmented space of (xt,yt,xt−1,yt−1). Let

J1 := I− ηx
[

I
−H−1

yyHyx I

] [
Hxx Hxy

−Hyx −Hyy

]
be the Jacobian of the original FR at a fixed point (x∗,y∗). Then the Jacobian of Polyak’s momentum
at (x∗,y∗,x∗,y∗) is

J2 :=

[
γI + J1 −γI

I 0

]
.

The spectrum of J2 is given by solutions to
det (λI− J2) = det

(
(λ2 − γλ+ γ)I− γJ1

)
= 0.

In other words, an eigenvalue r of J1 corresponds to two eigenvalues of J2 given by the roots of
λ2− (γ+r)λ+γ = 0. For our case, let us choose γ = 1+ 1

2κ2 −
√

2
κ . Then for any r ∈

[
0, 1− 1

2κ2

]
,

(r + γ)2 − 4γ ≤
(

1− 1

2κ2
+ γ

)2

− 4γ = 0.

Therefore the two roots of λ2− (γ+ r)λ+ γ = 0 must be imaginary, and their magnitude are exactly√
γ. Since

√
γ ≤ 1− 1−γ

2 ≤ 1− 1
2
√

2κ
, we now know that ρ(J2) ≤ 1− 1

2
√

2κ
. Using Proposition 4,

we can see that FR with momentum locally converge with a rate of Ω(κ−1).

14



Under review as a conference paper at ICLR 2020

C PROOFS FOR SECTION 4

C.1 PRECONDITIONING

Recall that the preconditioned variant of FR is given by[
xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−H−1

yyHyx I

] [
ηxP1∇xf
−ηyP2∇yf

]
. (7)

We now prove that preconditioning does not effect the local convergence properties.
Proposition 5. If A is a symmetric real matrix, B is symmetric and positive definite, then the
eigenvalues of AB are all real, and AB and A have the same number of positive, negative and zero
eigenvalues.

Proof. AB is similar to and thus has the same eigenvalues as B
1
2AB

1
2 , which is symmetric and has

real eigenvalues. Since B
1
2AB

1
2 is congruent to A, they have the same number of positive, negative

and zero eigenvalues (see Horn and Johnson (2013, Theorem 4.5.8)).

Proposition 6. Assume that P1 and P2 are positive definite. The Jacobian of (7) has only real
eigenvalues at fixed points. With a suitable learning rate, all strictly stable fixed points of (7) are
local minimax, and all local minimax are stable fixed points of (7).

Proof. First, observe that both
[

I
−H−1

yyHyx I

]
and

[
P1

P2

]
are both always invertible. Hence

fixed points of (7) are exactly stationary points. Let c := ηy/ηx. Note that the Jacobian of (7) is
given by

J = I− ηx
[

I
−H−1

yyHyx I

] [
P1

P2

] [
Hxx Hxy

−cHyx −cHyy

]
,

which is similar to [
I

H−1
yyHyx I

]
J

[
I

−H−1
yyHyx I

]
=I− ηx

[
P1

P2

] [
Hxx −HxyH

−1
yyHyx Hxy

−cHyy

]
.

Therefore the eigenvalues of J are exactly those of I − ηxP1

(
Hxx −HxyH

−1
yyHyx

)
and I +

ηyP2Hyy. By Proposition 5, the eigenvalues of both matrices are all real. When the learning rates
are small enough, i.e., when

ηx <
2

max
{
ρ
(
P1(Hxx −HxyH

−1
yyHyx)

)
, cρ(−P2Hyy)

} ,
whether ρ(J) ≤ 1 solely depends on whether P1

(
Hxx −HxyH

−1
yyHyx

)
and −P2Hyy have

negative eigenvalues. By Proposition 5, the number of positive, negative and zero eigenvalues of the
two matrices are the same as those of Hxx −HxyH

−1
yyHyx and −Hyy respectively. Therefore the

proposition follows from the same argument as in Theorem 1.

C.2 GENERAL-SUM STACKELBERG GAMES

A general-sum Stackelberg games is formulated as follows. There is a leader, whose action is x ∈ Rn,
and a follower, whose action is y ∈ Rm. The leader’s cost function is given by f(x,y) while the
follower’s is given by g(x,y). The generalization of minimax in general-sum Stackelberg games is
Stackelberg equilibrium.
Definition 3 (Stackelberg equilibrium). (x∗,y∗) is a (global) Stackelberg equilibrium if y∗ ∈ R(x∗),
and ∀x ∈ X ,

f(x∗,y∗) ≤ max
y∈R(x)

f(x,y),

where R(x) := arg min g(x, ·) is the best response set for the follower.
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Similarly, local minimax is generalized to local Stackelberg equilibrium, defined as follows.
Definition 4. (x∗,y∗) is a local Stackelberg equilibrium if

1. y∗ is a local minimum of g(x∗, ·);

2. Let r(x) be the implicit function defined by ∇yg(x,y) = 0 in a neighborhood of x∗ with
r(x∗) = y∗. Then x∗ is a local minimum of φ(x) := f(x, r(x)).

For local Stackelberg equilibrium, we have similar necessary conditions and sufficient conditions.
For simplicity, we use the following notation when it is clear from the context

∇2f(x,y) =

[
Hxx Hxy

Hyx Hyy

]
, ∇2g(x,y) =

[
Gxx Gxy

Gyx Gyy

]
.

Proposition 7 (Necessary conditions). Any local Stackelberg equilibrium satisfies ∇yg(x,y) = 0,
∇xf(x,y)−GxyG

−1
yy∇yf(x,y) = 0,∇2

yyg(x,y) < 0 and

Hxx −HxyG
−1
yyGyx −∇x

(
GxyG

−1
yy∇yf

)
+∇y

(
GxyG

−1
yy∇yf

)
G−1

yyGyx < 0.

Proposition 8 (Sufficient conditions). If (x,y) satisfy ∇yg(x,y) = 0, ∇xf(x,y) −
GxyG

−1
yy∇yf(x,y) = 0,∇2

yyg(x,y) � 0 and

Hxx −HxyG
−1
yyGyx −∇x

(
GxyG

−1
yy∇yf

)
+∇y

(
GxyG

−1
yy∇yf

)
G−1

yyGyx � 0.

then (x,y) is a local Stackelberg equilibrium.

Henceforth we will use Dxf(x,y) to denote ∇xf −GxyG
−1
yy∇yf(x,y). The general-sum version

of Follow-the-Ridge is given by[
xt+1

yt+1

]
←
[
xt
yt

]
−
[

I
−G−1

yyGyx I

] [
ηxDxf(xt,yt)
ηy∇yg(xt,yt)

]
. (8)

Just as the zero-sum version of FR converges exactly to local minimax, we can show that the
general-sum version of FR converges exactly to local Stackelberg equilibria.
Theorem 3. The Jacobian of (8) has only real eigenvalues at fixed points. With a suitable learning
rate, all strictly stable fixed points of (8) are local Stackelberg equilibria, and all local Stackelberg
equilibria are stable fixed points of (8).

Proof. Let c := ηy/ηx. Note that
[

I
−G−1

yyGyx I

]
is always invertible. Therefore, the fixed points

of (8) are exactly those that satisfy Dxf(x,y) = 0 and∇yg(x,y) = 0, i.e. the first-order necessary
condition for local Stackelberg equilibria.

Now, consider a fixed point (x,y). The Jacobian of (8) at (x,y) is given by

J = I− ηx
[

I
−G−1

yyGyx I

] [
Hxx −∇x(GxyG

−1
yy∇yf) Hxy −∇y(GxyG

−1
yy∇yf)

cGyx cGyy

]
.

Observe that[
I

G−1
yyGyx I

]
J

[
I

−G−1
yyGyx I

]
=I− ηx

[
Hxx −∇x(GxyG

−1
yy∇yf) Hxy −∇y(GxyG

−1
yy∇yf)

cGyx cGyy

] [
I

−G−1
yyGyx I

]
=I− ηx

[
Hxx −HxyG

−1
yyGyx −∇x (�) +∇y (�)G−1

yyGyx Hxy −∇y(�)
0 cGyy

]
,

where � is a shorthand for GxyG
−1
yy∇yf . Let

H̃xx := Hxx −HxyG
−1
yyGyx −∇x (�) +∇y (�)G−1

yyGyx.
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We can now see that the eigenvalues of J are exactly those of I− ηxH̃xx and those of I− ηyGyy. It
follows that all eigenvalues of J are real.4 Suppose that

ηx <
2

max{ρ(H̃xx), cρ (Gyy)}
.

In that case, if (x,y) is a local Stackelberg equilibrium, then from the second-order necessary
condition, both H̃xx and Gyy are positive semidefinite. As a result, all eigenvalues of J would be in
(−1, 1]. This suggests that (x,y) is a stable fixed point.

On the other hand, if (x,y) is a strictly stable fixed point, then all eigenvalues of J fall in (−1, 1),
which suggests that H̃xx � 0 and Gyy � 0. By the sufficient condition, (x,y) is a local Stackelberg
equilibrium.

D EXPERIMENTAL DETAILS

D.1 LOW DIMENSIONAL PROBLEMS

The algorithms we compared with are[
xt+1

yt+1

]
←
[
xt
yt

]
− η

[
∇xf(xt,yt)
−∇yf(xt,yt)

]
, (GDA)[

xt+1

yt+1

]
←
[
xt
yt

]
− 2η

[
∇xf(xt,yt)
−∇yf(xt,yt)

]
+ η

[
∇xf(xt−1,yt−1)
−∇yf(xt−1,yt−1)

]
, (OGDA)[

xt+1

yt+1

]
←
[
xt
yt

]
− η

[
∇xf(xt − η∇xf(xt,yt),yt + η∇yf(xt,yt))
−∇yf(xt − η∇xf(xt,yt),yt + η∇yf(xt,yt))

]
, (EG)[

xt+1

yt+1

]
←
[
xt
yt

]
− η

[
I −λHxy

λHyx I

] [
∇xf(xt,yt)
−∇yf(xt,yt)

]
, (SGA)[

xt+1

yt+1

]
←
[
xt
yt

]
− η

[
∇xf(xt,yt)
−∇yf(xt,yt)

]
− γη∇‖∇f(xt,yt)‖2 . (CO)

We used a learning rate of η = 0.05 for all algorithms, λ = 1.0 for SGA and γ = 0.1 for CO. We did
not find SGA with alignment (Balduzzi et al., 2018) to be qualitatively different from SGA in our
experiments.

D.2 MIXTURE OF GAUSSIAN EXPERIMENT

Dataset. The mixture of Gaussian dataset is composed of 5,000 points sampled independently from
the following distribution pD(x) = 1

3N (−4, 0.01) + 1
3N (0, 0.01) + 1

3N (4, 0.01) where N (µ, σ2)

is the probability density function of a 1D-Gaussian distribution with mean µ and variance σ2. The
latent variables z ∈ R16 are sampled from a standard Normal distribution N (0, I). Because we want
to use full-batch methods, we sample 5,000 points that we re-use for each iteration during training.
For the two-dimensional case, we generate the data from 9 Gaussians with µx ∈ {−3, 0, 3} and
µy ∈ {−3, 0, 3}.
Neural Networks Architecture. Both the generator and discriminator are 2 hidden layer neural
networks with 64 hidden units and Tanh activations.

Other Hyperparameters. For FR, we use conjugate gradient (CG) in the inner-loop to approximately
invert the Hessian. In practice, we use 10 CG iterations (5 iterations also works well). Since the loss
surface is highly non-convex (let alone quadratic), we add damping term to stabilize the training.
Specifically, we follow Levenberg-Marquardt style heuristic adopted in Martens (2010). For both
generator and discriminator, we use learning rate 0.0002. For consensus optimization (CO), we tune
the gradient penalty coefficient using grid search over {0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0}.

4H̃xx is always symmetric.
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D.3 MNIST EXPERIMENT

Dataset. The dataset we used in our experiment only includes class 0 and 1. For each class, we take
4,800 training examples. Overall, we have 9,800 examples. The latent variables z ∈ R64 are sampled
from a standard Normal distribution N (0, I).

Neural Networks Architecture. Both the generator and discriminator are 2 hidden layer neural
networks with 512 hidden units and Tanh activations. For each fully-connected layer, we use spectral
normalization to stabilize training.

Other Hyperparameters. For FR, we use conjugate gradient (CG) in the inner-loop to approximately
invert the Hessian. In practice, we use 5 CG iterations for computational consideration. We also
use the same damping scheme as MOG experiment. For both generator and discriminator, we use
learning rate 0.0001. We use batch size 2,000 in our experiments.

E ADDITIONAL RESULTS
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Figure 9: Ablation study on the effect of preconditioning. Vanilla FR also converges in the end of training
though it takes much longer.

Following the same setting as Fig. 4, we investigate the effect of preconditioning for our algorithm.
As we shown in section 4.2, FR is compatible with preconditioning with same theoretical convergence
guarantee. In Fig. 4, we use diagonal preconditioning for accelerating the training. Here, we report
the results of FR without preconditioning in Fig. 9. For fair comparison, we also tune the learning
rate for vanilla FR and the optimal learning rate is 0.05. Our first observation is that vanilla FR does
converge with 500,000 iterations which is consistent with our theoretical results. Particularly, the
discriminator is being fooled at the end of training and the gradient vanishes. Our second observation
is that it takes much longer to converge, which can be seen from the comparison between the second
column (preconditioned version) and the third column. With the same time budget (50,000 iterations),
preconditioned FR already converges as seen from the gradient norm plot while the vanilla FR is far
from converged.
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