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ABSTRACT

Storage assignment, the act of choosing what goods are placed in what locations
in a warehouse, is a central problem of supply chain logistics. Past literature has
shown that the optimal method to assign pallets is to arrange them in increasing
duration of stay in the warehouse (the Duration-of-Stay, or DoS, method), but the
methodology requires perfect prior knowledge of DoS for each pallet, which is
unknown and uncertain under realistic conditions. Attempts to predict DoS have
largely been unfruitful due to the multi-valuedness nature (every shipment contains
multiple identical pallets with different DoS) and data sparsity induced by lack of
matching historical conditions. In this paper, we introduce a new framework for
storage assignment that provides a solution to the DoS prediction problem through
a distributional reformulation and a novel neural network, ParallelNet. Through
collaboration with a world-leading cold storage company, we show that the system
is able to predict DoS with a MAPE of 29%, a decrease of ∼30% compared to
a CNN-LSTM model, and suffers less performance decay into the future. The
framework is then integrated into a first-of-its-kind Storage Assignment system,
which is being deployed in warehouses across United States, with initial results
showing up to 21% in labor savings. We also release the first publicly available set
of warehousing records to facilitate research into this central problem.

1 INTRODUCTION

The rise of the modern era has been accompanied by ever-shortening product life cycles, straining the
entire supply chain and demanding efficiency at every node. One integral part of any supply chain is
warehousing (storage); warehouse operations often have major impacts downstream on the capability
to deliver product on time.

One of the largest cold storage companies in the world is looking to improve the efficiency of their
warehouses by optimizing the scheduling of storage systems. According to Hausman et al. (1976),
the scheduling of labor in warehouses can be divided into three main components:

• Pallet Assignment: The assignment of multiple items to the same pallet.

• Storage Assignment: The assignment of pallets to a storage location.

• Interleaving: The overarching rules for dealing with concurrent inbound and outbound
requests.

For this particular paper, we focus on the problem of storage assignment. Various papers such as
Goetschalckx & Ratliff (1990) show labor efficiency to be a bottleneck. In a modern warehouse,
the process of storage assignment usually involves forklift drivers moving inbound pallets from the
staging area of the warehouse to the storage location, so a sub-optimal assignment system causes
unnecessary long travel times to store the pallet. Unfortunately, the inefficiency is quadrupled when
the return of the forklift and the retrieval of the pallet are considered.

To increase the efficiency of the warehouse, we would thus like to minimize the total travel time
needed to store a set of shipments from the staging area. Many different theoretical frameworks exist,
and the details of such frameworks are contained in Appendix 9.1. The ones of chief interest are
turnover-based, class-based, and Duration-of-Stay (DoS) based strategies.
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Turnover-based strategies (e.g. Hausman et al. (1976), Yu & De Koster (2009)) assign locations so
that the resultant travel distance is inversely proportional to the turnover of the product. Class-based
strategies (e.g. Hausman et al. (1976), Rosenblatt & Eynan (1989), Schwarz et al. (1978) and Petersen
et al. (2004)) separate products into k classes, with each class assigned a dedicated area of storage.
DoS-based strategies (e.g. Goetschalckx & Ratliff (1990), Chen et al. (2016)) assign pallets to
locations with travel distance proportional to the duration-of-stay.

Simulation experiments in Goetschalckx & Ratliff (1990) and Kulturel et al. (1999) demonstrated
that under complex stochastic environments, DoS-based strategies outperform other methodologies
significantly. However, among all three categories, the most commonly used strategy is class-based,
as pointed out by Yu et al. (2015) and Yu & De Koster (2013). The authors and industry evidence
suggest that this is due to the fact that class-based systems are relatively easy to implement, but also
because DoS is not known in advance. To utilize a DoS system realistically would therefore require
an accurate prediction model using the features available at shipment entry to the warehouse.

However, even with the availability of modern high-powered predictive methods including Gradient
Boosted Trees and Neural Networks, there has been no documented progress in employing DoS-based
methods. This reflects the following significant challenges in a dynamic, real warehouse:

• Multi-valuedness: Identical pallets arriving at the same time can leave the warehouse at
different times due to differing demand. It is common in the warehouse for 10+ pallets of
the same product to arrive in a single shipment, and then leave the warehouse at different
times depending on the consumption of the end consumer. This causes the ground truth for
the DoS of a product entering at a given time to be ill-defined by a single number.

• Data Sparsity: A large warehouse would have significant available historical DoS data, but
such data is scattered across thousands of products/SKUs, and different operating conditions
(e.g. time of the year, day of the week, shipment size). Given strong variation of DoS in a
warehouse, it is very unlikely that all environment-product combinations would exist in data
for the historical average to be valid for future DoS. Furthermore, new SKUs are created
relatively frequently, and the predictive algorithm needs to be robust against that as well.

To solve such difficulties, we reformulate the DoS as a distribution and develop a new framework
based on nonparametric estimation. Then we combine it with recent advances in machine learning
to provide a practical toolkit to realize the efficiency gains of DoS with a parallel architecture of
Residual Deep Convolutional Networks (He et al. (2015)) and Gated Recurrent Unit (GRU) networks
(Cho et al. (2014)) that DoS can be well estimated. As far as the authors know, this is the first
documented attempt to predict DoS in warehousing systems. We further release the first public
dataset of warehousing records to enable future research into this problem.

This neural network is then integrated into the larger framework, which is being implemented in live
warehouses. We illustrate how initial results from the ground show appreciable labor savings.

Specifically, our contributions in this paper include:

• We develop an novel end-to-end framework for optimizing warehouse storage assignment
using the distribution of DoS.

• We release a curated version of a large historical dataset of warehousing records that can be
used to build and test models that predicts DoS.

• We introduce a type of neural network architecture, ParallelNet, that achieves state-of-the-art
performance in estimating the DoS distribution.

• Most importantly, we present real-life results of implementing the framework with Parallel-
Net in live warehouses, and show labor savings by up to 21%.

The structure of the paper is as followed. In Section 2, we would review possible methods to tackle
the storage assignment problem, and why distribution estimation was selected. In Section 3, we
develop the storage assignment framework. We would introduce the dataset in Section 4 and Section
5 contains the implementation with ParallelNet, and its results compared to strong baselines. Section
6 shows the computational results, while real-life evidence is provided in Section 7.
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2 SOLVING THE STORAGE ASSIGNMENT PROBLEM

The general storage assignment problem asks for an algorithm that outputs a storage location given a
pallet’s features, warehouse state, and entry timestamp so the total travel time for storage is minimized.

We first note that the dynamic nature of the problem seems to naturally call for Markov decision
processes or reinforcement learning. However, a typical warehouse has a decision space of over
50, 000 available storage locations, each with varying characteristics. It is not realistic to train such an
algorithm in a live warehouse, and simulating a warehouse using a computational model is infeasible
due to its complexity. Therefore, we would not consider these approaches and turn to classical storage
assignment theory.

From Goetschalckx & Ratliff (1990), we know that the DoS strategy is theoretically optimal; therefore
to utilize this result we would like to predict the DoS of a pallet at its arrival. Since historical data is
sparse in environment-product combinations, we cannot use prior data directly to predict future DoS
and would rather need to train a continuous predictive function f for DoS . However, in most real-life
warehouses, a product Pi enters the warehouse with multiple zi > 1 identical pallets, which leave
at different times ti1, · · · tizi . Thus, assuming the product came in at time 0, the DoS of incoming
pallets of Pi could be any of the numbers ti1, · · · tizi , which makes the quantity ill-defined. The
uncertainty can further be very large - our collaborating company had an average variance of DoS
within a shipment of 10 days when the median DoS was just over 12 days.

To alleviate this, we can either choose to impose an order on the identical shipments or accept the
uncertainty and treat DoS as a distribution. For the former case, a natural order is labelling each
pallet with (1, 2, · · · , zi) so that pallet 1 leaves the warehouse before pallet 2, etc. However, such
methodology is ill-equipped to deal with the randomness of a modern warehouse. The first pallet of a
product Pi entering at t could leave in 3 days while the first pallet of the next Pi shipment at t + ∆t
might stay for over 10 days. The only difference in features between these two pallets is the time
of entry, and for a dynamic warehouse ∆t is small. This presents a significant challenge to fitting a
continuous function f .

Therefore, to account for the uncertainty that identical pallets map to different DoS values, we would
thus assume that for every shipment S (which contains multiple pallets), the DoS of a random pallet is
uncertain and follows a cumulative distribution FS(t). Furthermore, we make an assumption between
the characteristics XS of the shipment known at arrival time with FS so that FS is identifiable:

Assumption 1 We assume that FS is uniquely determined by XS . As in, there exists a function f
mapping from the space of all characteristics to the space of all cumulative distribution functions
(CDFs) such that:

FS(t) = g(XS)(t)

For all possible shipments S.

This assumption is not as strong as it may seem - the most important variables that affect DoS usually
are the time and the good that is being transported, both of which are known at arrival. As a simple
example, if the product is ice cream and it is the summer, then we expect the DoS distribution to be
right skewed, as ice cream is in high demand during the summer. Moreover, the experimental results
in Section 6 are indicative that g exists and is highly estimable.

If the above assumption holds true, then we can estimate g using modern machine learning techniques.
In the next section, we would outline our storage assignment framework based on such assumption.

3 OVERVIEW OF STORAGE ASSIGNMENT FRAMEWORK

Now let us assume we have an optimal estimate g̃ of g, measured relative to a loss function
l(FS , g̃(XS)) denoting the loss between the actual and predicted distribution. Since by our as-
sumption FS is uniquely determined by XS , we cannot obtain any further information about DoS
relative to this loss function. Thus, for each shipment with characteristics XS , we take a random
sample TS from the distribution F̃S = g̃(XS) and let that be the estimate of the DoS of the shipment.
Then we construct the storage location assignment function A : R→W as followed:

A(TS) = arg min
w∈W̃

d(M(W (TS)), w) + c(w)
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Where W (t) is the historical cumulative distribution of DoS in the warehouse, M(k) is the storage
location at 100k% percentile distance away from the staging area, d(v, w) is the distance function
between location v and w in the warehouse. c(w) are other costs associated with storing at this
position, including anti-FIFO orders, item mixing, height mismatch between the pallet and the slot,
and others. W̃ is the set of positions that are available when the pallet enters the warehouse.

The optimal position of storing the pallet according to the DoS is the M(W (TS)) position as the kth
percentile in DoS should correspond to the kth percentile location in the warehouse. However, it
is probable that such location is not ideal, either because it is already taken (M(W (TS)) 6∈ W̃ ), or
there are other factors that affect its optimality. For the collaborating company, one important factor
is item mixing due to potential of cross-contamination of food allergens in close pallets. These terms
are highly dependent on the specific storage company, and thus we include them as a general cost
term c(w) to add to the cost d(M(W (TS)), w) of not storing the pallet at the DoS ideal position. The
resulting optimal location based on the combination of the two costs is then chosen for the pallet.

In summary, our framework consists of four steps:

1. Use a machine learning model to provide an estimate g̃ of g through training on historical
data for XS and FS .

2. For a shipment S, calculate its approximate distribution F̃S = g̃(XS).

3. Generate a random sample TS from F̃S .

4. Apply the optimal assignment function A under the DoS policy to determine a storage
location A(TS), as defined above.

4 WAREHOUSING DATASET OVERVIEW AND CONSTRUCTION

In this section, we introduce the historical dataset from the cold storage company to test out the
framework and model introduced in Section 3.

4.1 OVERVIEW OF THE DATA

The data consists of all warehouse storage records from 2016.1 to 2018.1, with a total of 8,443,930
records from 37 different facilities. Each record represents a single pallet and one shipment of goods
usually contain multiple identical pallets (which have different DoS). On average there are 10.6
pallets per shipment in the dataset. The following covariates are present:

• Non-sequential Information: Date of Arrival, Warehouse Location, Customer Type, Prod-
uct Group, Pallet Weight, Inbound Location, Outbound Location

• Sequential Information: Textual description of product in pallets.

Inbound and Outbound location refers to where the shipment was coming from, and where it would
be going (both are known at arrival). The records are mainly food products, with the most common
categories being (in decreasing order): chicken, beef, pork, potato, and dairy. However, non-food
items such as cigarettes are also present.

The item descriptions describe the contents of the pallet, but most of them are not written in a human
readable form, such as ”NY TX TST CLUB PACK”. Acronyms are used liberally due to the length
restriction of item descriptions in the computer system. Furthermore, the acronyms do not necessarily
represent the same words: ”CKN WG” means ”chicken wing” while ”WG CKN” means ”WG brand
chicken”. Therefore, even though the descriptions are short, the order of the words is important.

To enable efficient use of these item descriptions, we decoded common acronyms used by hand (such
as tst → toast). We would stress that the resulting dataset is not perfectly clean (intentionally so
to mimic item descriptions encountered in real life) and contains many broken phrases, misspelled
words, unidentified acronyms, and other symbols.
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4.2 PUBLIC RELEASE VERSION 1

We release the above dataset, which as far as the authors know, is the first publicly available dataset
of warehousing records.

The collaborating company transports an appreciable amount (> 30%) of the entire US refrigerated
food supply, so US law prohibits the release of the full detail of the transported shipments. Further-
more, NDA agreements ban any mentioning of the brand names. Thus, for the public version, we
removed all brands and detailed identifying information in the item descriptions. The testing in the
section below is done on the private version to reflect the full realistic scenario in the warehouse, but
the results on the public version are similar and the conclusions carry over to the public version.

5 IMPLEMENTING THE FRAMEWORK

The Framework described in Section 3 requires the knowledge of four parameters: XS and FS for
pallets in the training data, the loss function l(FS , F̃S), and the machine learning model estimate g̃.

XS is immediately available in the form of the non-sequential and sequential information. For the
textual description, we encode the words using GloVe embeddings. (Pennington et al. (2014)) We
limit the description to the first five words with zero padding.

For FS , we first exploit the fact that each shipment arriving most often contains p � 1 units of
the good, and we could treat these p units as p copies of a shipment of one unit, denoted S1, · · ·Sp.
Then by using the known DoS for each of these p units (T1, · · ·Tp), we could create an empirical
distribution function F̂S(t) = 1

p

∑n
i=1 1Ti≤t for the DoS of the shipment. This is treated as the

ground truth for the training data.

To obtain a loss function for the distribution, we selected the 5%, · · · 95% percentile points of the
CDF, which forms a 19-dimensional output. This definition provides a more expressive range of
CDFs than estimating the coefficients for a parametric distribution. Then we chose the mean squared
logarithmic error (MSLE) as our loss function to compare each percentile point with those predicted.
This error function is chosen as the error in estimating DoS affects the positioning of the unit roughly
logarithmically in the warehouse under the DoS policy. For example, estimating a shipment to stay 10
days rather than the true value of 1 day makes about the same difference in storage position compared
to estimating a shipment to stay 100 days rather than a truth of 10. This is due to a pseudo-lognormal
distribution of the DoS in the entire warehouse as seen in the historical data.

Thus, our empirical loss function is defined as:

L(F̂S , F̃S) =
1

19

19∑
i=1

(
log(F̂−1S (0.05i) + 1)− log(F̃−1S (0.05i) + 1)

)2
Now, we would introduce the machine learning algorithm g̃ to approximate FS .

5.1 INTRODUCTION OF PARALLELNET

For the dataset introduced in Section 4, the textual description carries some of the most important
information relating to the DoS distribution. The nature of a product usually determines its seasonality
and largely its average value of DoS, and therefore it would be desirable to extract as much information
as possible through text. In this area, there are three popular classes of architectures: convolutional
neural networks (CNN), recurrent neural networks (RNN), and transformers. In particular recently
transformers have gained popularity due to their performance in machine translation and generation
tasks (e.g. Devlin et al. (2018), Radford et al.). However, we argue that transformers are not the
appropriate model for the textual descriptions here. The words often do not form a coherent phrase
so there is no need for attention, and there is a lack of long-range dependency due to the short length
of the descriptions.

We then proceed to use both CNN and RNN to model the textual description. As illustrated in Section
3, word order is important in this context, and RNNs are well equipped to capture such ordering. As

1Academic users can currently obtain the dataset by inquiring at an email address available in the ArXiv
version. It would be hosted online in the near future.
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Figure 1: ParallelNet Simplified Architecture. Green boxes are inputs and the red box is the output.
We separate inputs into sequential data and non-sequential data to maximally exploit different types
of data.

the textual information is critical to the DoS prediction, we would supplement the RNN prediction
with a CNN architecture in a parallel manner, as presented in Figure 1.

We designed the output layer as below in Figure 2 to directly predict the 19 percentile points
(F̃−1S (0.05), F̃−1S (0.1),· · · ,F̃−1S (0.95)):

Figure 2: Output Layer. Here t1, · · · t19 corresponds to the 5%, · · · 95% percentile points.

Note that the 19 percentile points are always increasing. Thus the output is subjected to 19 separate
1-neuron dense layers with ReLu, and the output of the previous dense layer is added to the next one,
creating a residual output layer in which each (non-negative) output from the 1-neuron dense layer is
only predicting the residual increase ti+1 − ti.

This architecture is similar to ensembling, which is well known for reducing bias in predictions
(see Opitz & Maclin (1999)). However, it has the additional advantage of a final co-training output
layer that allows a complex combination of the output of two models, compared to the averaging
done for ensembling. This is particularly useful for our purpose of predicting 19 quantile points of a
distribution, as it is likely the CNN and RNN would be better at predicting different points, and thus a
simple average would not fully exploit the information contained in both of the networks. We would
see in Section 6 that this allows the model to further improve its ability to predict the DoS distribution.
We also further note that this is similar to the LSTM-CNN framework proposed by Donahue et al.
(2014), except that the LSTM-CNN architecture stakcs the CNN and RNN in a sequential manner.
We would compare with such framework in our evaluation in Section 6.

In interest of brevity, we omit the detailed architecture choice in RNN and CNN respectively and
include it in Appendix 9.2. Hyperparameters are contained in Appendix 9.3.
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6 COMPUTATION RESULTS

In this section, we test the capability of ParallelNet to estimate the DoS distributions FS on the
dataset introduced in Section 4. We separate the dataset introduced in Section 4 into the following:

• Training Set: All shipments that exited the warehouse before 2017/06/30, consisting about
60% of the entire dataset.

• Testing Set: All shipments that arrived at the warehouse after 2017/06/30 and left the
warehouse before 2017/07/30, consisting about 7% of the entire dataset.
• Extended Testing Set: All shipments that arrived at the warehouse after 2017/09/30 and left

the warehouse before 2017/12/31, consisting about 14% of the entire dataset.

We then trained five separate neural networks to evaluate the effectiveness of ParallelNet. Specifically,
we evaluated the parallel combination of CNN and RNNs against a vertical combination (introduced
in Donahue et al. (2014)), a pure ensembling model, and the individual network components.

• CNN-LSTM This implements the neural network model introduced in Donahue et al.
(2014). To ensure the best comparability, we use a ResNet convolutional neural network and
a 2-layer GRU, same as ParallelNet.
• CNN+LSTM This implements an ensembling model of the two architectures used in

ParallelNet, where the two network’s final output is averaged.
• ResNet (CNN) We implement the ResNet arm of ParallelNet.
• GRU We implement the GRU arm of ParallelNet.
• Fully-connected Network (FNN) We implement a 3-layer fully-connected network.

All neural networks are trained on Tensorflow 1.9.0 with Adam optimizer Kingma & Ba (2014). The
learning rate, decay, and the number of training epochs are 10-fold cross-validated. We used a 6-core
i7-5820K, GTX1080 GPU, and 16GB RAM. The results on the Testing Set are as followed:

Architecture Testing Set Extended Testing Set
MSLE MAPE MSLE MAPE

ParallelNet 0.4419 29% 0.7945 51%
CNN-LSTM 0.4812 41% 0.9021 80%
CNN+LSTM 0.5024 47% 0.9581 91%

CNN 0.6123 70% 1.0213 124%
GRU 0.5305 47% 1.1104 122%
FNN 0.8531 120% 1.0786 130%

Table 1: Table of Prediction Results for Different Machine Learning Architectures

We can see that ParallelNet comfortably outperforms other architectures. Its loss is lower than the
vertical stacking CNN-LSTM, by 8%. The result of 0.4419 shows that on average, our prediction in
the 19 percentiles is 44% away from the true value. We also note that its loss is about 15% less than
the pure ensembling architecture, indicating that there is a large gain from the final co-training layer.

We then look at a different statistic: the Median Absolute Percentage Error (MAPE). For every
percentile in every sample, the Absolute Percentage Error (APE) of the predicted number of days T̂
and the actual number of days T is defined as:

APE(T̂ , T ) =
|T̂ − T |

T

Then MAPE is defined as the median value of the APE across all 19 percentiles and all samples in
the testing set. This statistic is more robust to outliers in the data.

As seen in Table 1, ParallelNet has a MAPE of 29%. This is highly respectable given the massive
innate fluctuations of a dynamic warehouse, as this means the model could predict 50% of all
percentiles with an error less than 29%. The result also compares well with the other methods, as
ParallelNet reduces the MAPE by 29.3% when compared to the best baseline of CNN-LSTM.
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Figure 3: Placement percentile of putaway pallets before and after using a DoS system for 5 months
in two selected facilities. Red line denotes the mean and blue line denotes the median.

If we look further out into the future in the Extended Testing Set, the performance of all algorithms
suffer. This is expected as our information in the training set is outdated. Under this scenario, we
see that ParallelNet still outperforms the other comparison algorithms by a significant amount. In
fact, the difference between the pairs (CNN-LSTM, ParallelNet) and (CNN+LSTM, ParallelNet)
both increase under the MSLE and MAPE metrics. This provides evidence that a parallel co-training
framework like that of ParallelNet is able to generalize better. We hypothesize that this is due to the
reduction in bias due to ensembling-like qualities leading to more robust answers.

7 REAL-LIFE IMPLEMENTATION RESULTS

With the favorable computational results, the collaborating company is implementing the framework
with ParallelNet across their warehouses, and in this section we would analyze the initial results.

The graphs in Figure 3 records the empirical distribution of the placement percentiles before and after
the DoS framework was online. The placement percentile is the percentile of the distance from the
staging area to the placement location. Thus, 40% means a pallet is put at the 40th percentile of the
distance from staging. The distance distribution of locations is relatively flat, so this is a close proxy
of driving distance between staging and storage locations, and thus time spent storing the pallets.

Ideally, according to the DoS strategy, the histogram of placement locations should roughly resemble
y = 1

x , as items are stored at the location proportional its length of stay (and thus inversely propor-
tional to number of pallets sent in during a period of time). We see that such trend is observed in the
2 facilities shown in Figure 3. The slight drop in the lower percentiles is due to some locations close
to the staging area reserved for packing purposes and thus not available for storage.

Specifically, Facility A had an average placement percentile of 51% before, and 41% after, while
Facility B had an average placement percentile of 50% before, and 39% after. On average, we record
a 10.5% drop in absolute terms or 21% in relative terms. This means that the labor time spent on
storing pallets has roughly declined by 21%. An unpaired t-test on the average putaway percentile
shows the change is statistically significant on the 1% level for both facilities. This provides real-life
evidence that the system is able to generate real labor savings in the warehouses.

8 CONCLUSION AND REMARKS

In conclusion, we have introduced a comprehensive framework for storage assignment under an
uncertain DoS. We produced an implementation of this framework using a parallel formulation of
two effective neural network architectures. We showed how the parallel formulation has favorable
generalization behavior and out-of-sample testing results compared with sequential stacking and
ensembling. This has allowed this framework to be now implemented in live warehouses all around
the country, and results show appreciable labor savings on the ground. We also release the first dataset
of warehousing records to stimulate research in this central problem for storage assignment.
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9 APPENDIX

9.1 LITERATURE REVIEW ON STORAGE ASSIGNMENT

Since Hausman et al. (1976), many different theoretical frameworks have been introduced, which can
roughly be separated into two classes: dedicated storage systems and shared storage systems.

9.1.1 DEDICATED STORAGE SYSTEMS

For this class of storage systems, each product gets assigned fixed locations in the warehouse. When
the product comes in, it is always assigned to one of the pre-determined locations. Under this
constraint, it is optimal to dedicate positions with travel distance inversely proportional to the turnover
of the product, as shown in Goetschalckx & Ratliff (1990). Turnover of a product is defined as the
inverse of Cube per Order Index (COI), which is the ratio of the size of the location it needs to the
frequency of retrieval needed. Heuristically, those products with the smallest surface footprint and the
highest frequency should be put closest to the warehouse entry, so that those locations are maximally
utilized.

9.1.2 SHARED STORAGE SYSTEMS

This class of storage systems allows multiple pallets to occupy the same position in the warehouse
(at different times). It is widely considered to be superior than dedicated storage systems due to its
savings on travel time and smaller need for storage space, as shown by Yu et al. (2015), Malmborg
(2000). Within this category, there are mainly three strategies:

• Turnover (Cube-per-Order, COI) Based: Products coming into the warehouse are assigned
locations so that the resultant travel distance is inversely proportional to the turnover of the
product. Examples of such work includes Hausman et al. (1976), Yu & De Koster (2009),
and Yu & De Koster (2013).

• Class Based: Products are first separated into k classes, with each class assigned a dedicated
area of storage. The most popular type of class assignment is called ABC assignment,
which divides products into three classes based on their turnover within the warehouse.
Then within each class, a separate system is used to sort the pallets (usually random or
turnover-based). It was introduced by Hausman et al. (1976), and he showed that a simple
framework saves on average 20 − 25% of time compared to the dedicated storage policy
in simulation. Implementation and further work in this area include Rosenblatt & Eynan
(1989), Schwarz et al. (1978) and Petersen et al. (2004).

• Duration-of-Stay (DoS) Based: Individual products are assigned locations with travel
distance proportional to the duration of stay. Goetschalckx & Ratliff (1990) proved that
if DoS is known in advance and the warehouse is completely balanced in input/output,
then the DoS policy is theoretically optimal. The main work in this area was pioneered
by Goetschalckx & Ratliff (1990). Recently, Chen et al. (2016) and Chen et al. (2010)
reformulated the DoS-based assignment problem as a mixed-integer optimization problem
in an automated warehouse under different configurations. Both papers assume that the DoS
is known exactly ahead of time.
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9.2 ARCHITECTURE CHOICE

9.2.1 BIDIRECTIONAL GRU LAYERS

Gated Recurrent Units, introduced by Cho et al. (2014), are a particular implementation of RNN
intended to capture long-range pattern information. In the proposed system, we further integrate
bi-directionality, as detailed in Schuster & Paliwal (1997), to improve feature extraction by training
the sequence both from the start to end and in reverse.

The use of GRU rather than LSTM is intentional. Empirically GRU showed better convergence
properties, which has also been observed by Chung et al. (2014), and better stability when combined
with the convolutional neural network.

9.2.2 RESNET CONVOLUTIONAL LAYERS

In a convolutional layer, many independent filters are used to find favorable combinations of features
that leads to higher predictive power. Further to that, they are passed to random dropout layers
introduced in Srivastava et al. (2014) to reduce over-fitting and improve generalization. Dropout
layers randomly change some outputs in c0, · · · ci to zero to ignore the effect of the network at some
nodes, reducing the effect of over-fitting.

Repeated blocks of convolution layers and random dropout layers are used to formulate a deep
convolution network to increase generalization capabilities of the network.

However, a common problem with deep convolutional neural networks is the degradation of training
accuracy with increasing number of layers, even though theoretically a deeper network should
perform at least as well as a shallow one. To prevent such issues, we introduce skip connections in
the convolution layers, introduced by Residual Networks in He et al. (2015). The residual network
introduces identity connections between far-away layers. This effectively allows the neural network
to map a residual mapping into the layers in between, which is empirically shown to be easier to train.
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9.3 DETAILED SETTINGS OF IMPLEMENTED ARCHITECTURE

Figure 4: ParallelNet Architecture
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