
Under review as a conference paper at ICLR 2020

FUNCTIONAL REGULARISATION FOR CONTINUAL
LEARNING WITH GAUSSIAN PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a framework for Continual Learning (CL) based on Bayesian infer-
ence over the function space rather than the parameters of a deep neural network.
This method, referred to as functional regularisation for Continual Learning, avoids
forgetting a previous task by constructing and memorising an approximate posterior
belief over the underlying task-specific function. To achieve this we rely on a Gaus-
sian process obtained by treating the weights of the last layer of a neural network
as random and Gaussian distributed. Then, the training algorithm sequentially
encounters tasks and constructs posterior beliefs over the task-specific functions by
using inducing point sparse Gaussian process methods. At each step a new task is
first learnt and then a summary is constructed consisting of (i) inducing inputs – a
fixed-size subset of the task inputs selected such that it optimally represents the
task – and (ii) a posterior distribution over the function values at these inputs. This
summary then regularises learning of future tasks, through Kullback-Leibler regu-
larisation terms. Our method thus unites approaches focused on (pseudo-)rehearsal
with those derived from a sequential Bayesian inference perspective in a principled
way, leading to strong results on accepted benchmarks.

1 INTRODUCTION

Recent years have seen a resurgence of interest in continual learning, which refers to systems that
learn in an online fashion from data associated with possibly an ever-increasing number of tasks (Ring,
1994; Robins, 1995; Schmidhuber, 2013; Goodfellow et al., 2013). A continual learning system
must adapt to perform well on all earlier tasks without requiring extensive re-training on previous
data. There are two main challenges for continual learning (i) avoiding catastrophic forgetting,
i.e. remembering how to solve earlier tasks, and (ii) scalability over the number of tasks. Other
possible desiderata may include forward and backward transfer, i.e. learning new tasks faster and
retrospectively improving on previously tasks.

Similarly to many recent works on continual learning (Kirkpatrick et al., 2017; Nguyen et al., 2017;
Rusu et al., 2016; Li & Hoiem, 2017; Farquhar & Gal, 2018), we focus on the scenario where a
sequence of supervised learning tasks are presented to a continual learning system based on a deep
neural network. While most methods assume known task boundaries, our approach will be also
extended to deal with unknown task boundaries. Among the different techniques proposed to address
this problem, we have methods which constrain or regularise the parameters of the network to not
deviate significantly from those learnt on previous tasks. This includes methods that frame continual
learning as sequential approximate Bayesian inference, including EWC (Kirkpatrick et al., 2017)
and VCL (Nguyen et al., 2017). Such approaches suffer from brittleness due to representation drift.
That is, as parameters adapt to new tasks the values that other parameters are constrained/regularised
towards become obsolete (see Section 2.5 for further discussion on this). On the other hand, we have
rehearsal/replay buffer methods, which use a memory store of past observations to remember previous
tasks (Robins, 1995; Robins & McCallum, 1998; Lopez-Paz et al., 2017; Rebuffi et al., 2017). While
these methods tend to not suffer from brittleness, uncertainty about the unknown functions is not
expressed. Furthermore, they rely on various heuristics to decide which data to store (Rolnick et al.,
2018), often requiring large quantities of stored observations to achieving good performance. In
this paper we will address the open problem of deriving an optimisation objective to select the best
observations for storage.

1

Under review as a conference paper at ICLR 2020

B
ac

kp
ro

p
ag

at
e

d
 s

ig
n

al

TASK 1 TASK 2

A. B. A. B
ac

kp
ro

p
ag

at
e

d
 s

ig
n

al

Figure 1: Depiction of the proposed approach. See also the provided pseudocode. When learning task 1, first,
parameters of the network θ and output layer w are fitted (Panel A). Afterwards, the learned GP is sparsified and
inducing points u1, .. are found (Panel B). When moving to the next task the same steps are repeated. The only
difference is that now the previously found summaries (in this case points u1, .., u8) are used to regularise the
function (via KL-divergence term), such that the first task is not forgotten.

In this paper, we develop a new approach to continual learning which addresses the shortcomings of
both categories. It is based on approximate Bayesian inference, but on the space of functions instead
of neural network parameters, so does not suffer from the aforementioned brittleness. Intuitively,
while previous approaches look at constraining the parameters of a neural network to limit deviations
from previously learnt parameters, our approach looks constraining the neural network outputs from
deviating too far from those that solve previous tasks.

Effectively, our approach avoids forgetting an earlier task by memorising an approximate posterior
belief over the underlying task-specific function. To implement this, we consider Gaussian processes
(GPs) (Rasmussen & Williams, 2005), and make use of inducing point sparse GP methods (Csato
& Opper, 2002; Titsias, 2009; Hensman et al., 2013; Bui et al., 2017b), which summarise posterior
distributions over functions using small numbers of so-called inducing points. These inducing
points are selected from the training set by optimising a variational objective, providing a principled
mechanism to compress the dataset to a meaningful subset of fixed size. They are kept around when
moving to the next task and, together with their posterior distributions, are used to regularise the
continual learning of future tasks, through Kullback-Leibler regularisation terms within a variational
inference framework, thus avoiding catastrophic forgetting of earlier tasks. Our approach bears
similarities to replay-based approaches, with inducing points playing the role of the rehersal/replay
buffer, but has two important advantages. First the approximate posterior distributions at the inducing
points captures the uncertainty of the unknown function as well, rather than providing merely target
values. Second, inducing points can be optimised using specialised criteria from the GP literature,
achieving better performance than a random selection of observations. An intuitive depiction of our
approach is given in Figure 1.

To enable our functional regularisation approach to deal with high-dimensional and complex datasets,
we use a linear kernel with features parameterised by neural networks (Wilson et al., 2016). Such
GPs can be understood as Bayesian neural networks, where only the weights of the last layer are
treated in a Bayesian fashion, while those in earlier layers are optimised. This view allows for a more
computationally efficient and accurate training procedure to be carried out in weight space, before
the approximation is translated into function space where the inducing points are constructed and
then used for regularising learning of future tasks. Finally, note that inducing points are also used to
regularize the deep network, even though they were selected to best represent functions given by the
GP. See Section 2.3 for further details.

2 FUNCTIONAL REGULARISATION FOR CONTINUAL LEARNING

We consider supervised learning of multiple tasks, with known task boundaries, that are processed
sequentially one at a time. At each step we receive a set of examples (Xi,yi) where Xi = {xi,j}Ni

j=1

are input vectors and yi = {yi,j}Ni
j=1 are output targets so that each yi,j is assigned to the input

xi,j ∈ RD. We assume the most extreme case (and challenging in terms of avoiding forgetting)
where each dataset (Xi,yi) introduces a new task, while less extreme cases can be treated similarly.
We wish to sequentially train a shared model or representation from all tasks so that catastrophic
forgetting is avoided, i.e. when the model is trained on the i-th task it should still provide accurate

2

Under review as a conference paper at ICLR 2020

predictions for all tasks j < i seen in the past. As a model we consider a deep neural network with
its final hidden layer providing the feature vector φ(x; θ) ∈ RK where x is the input vector and θ are
the model parameters. This representation is shared across tasks and θ is a task-shared parameter. To
solve a specific task i we additionally construct an output layer

fi(x;wi) ≡ fi(x;wi, θ) = w>i φ(x; θ), (1)

where for simplicity we assume that fi(x;wi) is a scalar function and wi is the vector of task-specific
weights. Dealing with vector-valued functions is straightforward and is discussed in the Appendix.
By placing a Gaussian prior on the output weights, wi ∼ N (wi|0, σ2

wI), we obtain a distribution over
functions. While each task has its own independent/private weight vector wi the whole distribution
refers to the full infinite set of tasks that can be tackled by the same feature vector φ(x; θ). We
can marginalise out wi and obtain the equivalent function space view of the model, where each
task-specific function is an independent draw from a GP (Rasmussen & Williams, 2005), i.e.

fi(x) ∼ GP(0, k(x, x′)), k(x, x′) = σ2
wφ(x; θ)>φ(x′; θ),

where the kernel function is defined by the dot product of the neural network feature vector. By assum-
ing for now that all possible tasks are simultaneously present similarly to multi-task GPs (Bonilla et al.,
2008; Álvarez et al., 2012), the joint distribution over function values and output data for all tasks is
written as

∏
i p(yi|fi)p(fi) =

∏
i p(yi|fi)N (fi|0,KXi),where the vector fi stores all function values

for the input dataset Xi, i.e. fi,j = f(xi,j), j = 1, . . . , Ni. Also the kernel matrix KXi is obtained
by evaluating the kernel function on Xi, i.e. each element [KXi]j,k = σ2

wφ(xi,j ; θ)
>φ(xi,k; θ) where

xi,j , xi,k ∈ Xi. The form of each likelihood function p(yi|fi) depends on the task, for example if the
i-th task involves binary classification then p(yi|fi) =

∏Ni

j=1 p(yi,j |fi,j) =
∏Ni

j=1
1

1+e−yi,jfi,j
where

yi,j ∈ {−1, 1} indicates the binary class label.

Inference in this model requires estimating each posterior distribution p(fi|yi, Xi), which can be
approximated by a multivariate Gaussian N (fi|µi,Σi). Given this Gaussian we can express our
posterior belief over any function value fi,∗ at some test input xi,∗ using the posterior GP (Rasmussen
& Williams, 2005),

p(fi,∗|Xi, yi) =

∫
pθ(fi,∗|fi)N (fi|µi,Σi)dfi.

Given that the tasks arrive one at a time, the above suggests that one way to avoid forgetting the
i-th task is to memorise the corresponding posterior belief N (fi|µi,Σi). While this can regularise
continual learning of subsequent tasks (similarly to the more general variational framework in the
next section), it can be prohibitively expensive since the non-parametric nature of the model means
that for each N (fi|µi,Σi) we need to store O(N2

i) parameters and additionally we need to keep in
memory the full set of input vectors Xi.

Therefore, in order to reduce the time and memory requirements we would like to apply data
distillation and approximate each full posterior by applying sparse GP methods. As shown next,
by applying variational sparse GP inference (Titsias, 2009) in a sequential fashion we obtain a new
algorithm for function space regularisation in continual learning.

2.1 LEARNING THE FIRST TASK

Suppose we encounter the first task with data (X1,y1). We introduce a small set Z1 = {z1,j}M1
j=1 of

inducing inputs where each z1,j lives in the same space as each training input x1,j . The inducing set
Z1 can be a subset of X1 or it can contain pseudo inputs (Snelson & Ghahramani, 2006), i.e. points
lying between the training inputs. For simplicity next we consider Z1 as pseudo points, although in
practice for continual learning it can be more suitable to select them from the training inputs (see
Section D). By evaluating the function output at each z1,j we obtain a vector of auxiliary function
values u1 = {u1,j}M1

j=1, where each u1,j = f(z1,j). Hence, we obtain the joint distribution

p(y1, f1,u1) = p(y1|f1)pθ(f1|u1)pθ(u1). (2)

The exact posterior distribution pθ(f1|u1,y1)pθ(u1|y1) is approximated by a distribution of the
form, q(f1,u1) = pθ(f1|u1)q(u1), where q(ui) is a variational distribution and pθ(f1|u1) is
the GP prior conditional, pθ(f1|u1) = N (f1|KX1Z1

K−1Z1
u1,KX1

− KX1Z1
K−1Z1

KZ1X1
). Here,

KX1Z1 is the cross kernel matrix between the sets X1 and Z1, KZ1X1 = K>X1Z1
and KZ1

3

Under review as a conference paper at ICLR 2020

is the kernel matrix on Z1. The method learns (q(u1), Z1) by minimising the KL divergence
KL(pθ(f1|u1)q(u1)||pθ(f1|u1,y1)pθ(u1|y1)). The ELBO is also maximised over the neural net-
work feature vector parameters θ that determine the kernel matrices. This ELBO is generally written
in the form (Hensman et al., 2013; Lloyd et al., 2015; Dezfouli & Bonilla, 2015; Hensman et al.,
2015; Sheth et al., 2015),

F(θ, q(u1)) =

N1∑
j=1

Eq(f1,j)[log p(y1,j |f1,j)]− KL(q(u1)||pθ(u1)), (3)

where q(f1,j) =
∫
p(f1,j |u1)q(u1)du1 is an univariate Gaussian distribution with analytic mean

and variance that depend on (θ, Z1, q(u1), x1,j). Each expectation Eq(f1,j)[log p(y1,j |f1,j)] is a
one-dimensional integral and can be estimated by Gaussian quadrature. The variational distribution
q(u1) is chosen to be a Gaussian, parameterised as q(u1) = N (u1|µu1 , Lu1L

>
u1

), where Lu1 is a
square root matrix such as a lower triangular Cholesky factor. Then, based on the above we can
jointly apply stochastic variational inference (Hensman et al., 2013) to maximise the ELBO over
(θ, µu1 , Lu1) and optionally over the inducing inputs Z1.

2.2 LEARNING THE SECOND AND SUBSEQUENT TASKS

The functional regularisation framework for continual learning arises from the variational sparse GP
inference method as we encounter the second and subsequent tasks.

Once we have learned the first task we throw away the dataset (X1,y1) and we keep in memory
only a task summary consisting of the inducing inputs Z1 and the variational Gaussian distribution
q(u1) (i.e. its parameters µu1

and Lu1
). Note also that θ (that determines the neural network feature

vector φ(x; θ)) has a current value obtained by learning the first task. When the dataset (X2,y2) for
the second task arrives, a suitable ELBO to continue learning θ and also estimate the second task
summary (Z2, q(u2)) is

N1∑
j=1

Eq(f1,j)[log p(y1j |f1,j)] +

N2∑
j=1

Eq(f2,j)[log p(y2,j |f2,j)]−
∑
i=1,2

KL(q(ui)||pθ(ui)),

which is just the sum of the corresponding ELBOs for the two tasks. We need to approximate this
ideal objective by making use of the fixed summary (Z1, q(u1)) that we have kept in memory for the
first task. By considering Z1 ⊂ X1 as our replay buffer with outputs ỹ1 ⊂ y and ũ1 ⊂ f1 the above
can be approximated by

N1

M1

M1∑
j=1

Eq(u1,j)[log p(ỹ1,j |u1,j)] +

N2∑
j=1

Eq(f2,j)[log p(y2,j |f2,j) −
∑
i=1,2

KL(q(ui)|pθ(ui)),

where each q(u1,j) is a univariate marginal of q(u1). However, since q(u1) is kept fixed the whole
expected log-likelihood term N1

M1

∑M1

j=1Eq(u1,j)[log p(ỹ1,j |u1,j)] is just a constant that does not
depend on the parameters θ any more. Thus, the objective function when learning the second task
reduces to maximising,

F(θ, q(u2)) =

N2∑
j=1

Eq(f2,j)[log p(y2,j |f2,j)]−
∑
i=1,2

KL(q(ui)||pθ(ui)).

The only term associated with the first task is KL(q(u1)||pθ(u1)). While q(u1) is fixed (i.e. its
parameters are constant), the GP prior pθ(u1) = N (u1|0,KZ1

) is still a function of the feature
vector parameters θ, since KZ1

depends on θ. Thus, this KL term regularises the parameters θ so that,
while learning the second task, the feature vector still needs to explain the posterior distribution over
the function values u1 at input locations Z1. Notice that −KL(q(ui)||pθ(ui) is further simplified as∫
q(u1) log pθ(u1)du1 + const, which shows that the regularisation is such that pθ(u1) needs to be

consistent with all infinite draws from q(u1) in a moment-matching or maximum likelihood sense.

Similarly for the subsequent tasks we can conclude that for any new task k the objective will be

F(θ, q(uk)) =

Nk∑
j=1

Eq(fk,j) log p(yk,j |fk,j)− KL(q(uk)||pθ(uk))︸ ︷︷ ︸
objective for the current task

−
k−1∑
i=1

KL(q(ui)||pθ(ui))︸ ︷︷ ︸
regularisation from previous tasks

. (4)

4

Under review as a conference paper at ICLR 2020

Thus, functional regularisation when learning a new task is achieved through the sum of the KL
divergences

∑k−1
i=1 KL(q(ui)||pθ(ui)) of all previous tasks, where each q(ui) is the fixed posterior

distribution which encodes our previously obtained knowledge about task i < k. Furthermore, in
order to keep the optimisation scalable over tasks, we can form unbiased approximations of this latter
sum by sub-sampling the KL terms, i.e. by performing minibatch-based stochastic approximation
over the regularisation terms associated with these previous tasks.

2.3 ACCURATE WEIGHT SPACE INFERENCE FOR THE CURRENT TASK

While the above framework arises by applying sparse GP inference, it can still be limited. When the
budget of inducing variables is small, the sparse GP approximation may lead to inaccurate estimates
of the posterior belief q(uk), which will degrade the quality of regularisation when learning new
tasks. This is worrisome as in continual learning it is desirable to keep the size of the inducing set as
small as possible.

One way to deal with this issue is to use a much larger set of inducing points for the current task
or even maximise the full GP ELBO

∑Nk

j=1 Eq(fk,j) log p(yk,j |fk,j) − KL(q(fk)||pθ(fk)) (i.e. by
using as many inducing points as training examples), and once training is completed to distill the
small subset Zk,uk ⊂ Xk, fk, and the corresponding marginal distribution q(uk) from q(fk), for
subsequently regularising continual learning. However, carrying out this maximisation in the function
space can be extremely slow since it scales as O(N3

k) per optimisation step. To our rescue, there is an
alternative computationally efficient way to achieve this, by relying on the linear form of the kernel,
that performs inference over the current task in the weight space. While this inference does not
immediately provides us with the summary (induced points) for building the functional regularisation
term, we can distill this term afterwards as discussed next. This allows us to address the continual
learning aspect of the problem. Given that the current k-th task is represented in the weight space as
fk(x;wk) = w>k φ(x; θ), wk ∼ N (0, σ2

wI), we introduce a full Gaussian variational approximation
q(wk) = N (wk|µwk

,Σwk
), where µk is a K dimensional mean vector and Σwk

is the corresponding
K ×K full covariance matrix parameterised as Σwk

= Lwk
L>wk

. Learning the k-th task is carried
out by maximising the objective in equation 4, with the only difference that the ELBO for the current
task is now in the weight space. The objective becomes

F(θ, q(wk)) =
Nk∑
j=1

Eq(wk)[log p(yk,j |w
>
k φ(xk,j ; θ))]− KL(q(wk)||p(wk))−

k−1∑
i=1

KL(q(ui)||pθ(ui)),

where Eq(wk)[log p(yk,j |w>k φ(xk,j , θ))] can be re-written as one-dimensional integral and estimated
using Gaussian quadrature. Once the variational distribution q(wk) has been optimised, together with
the constantly updated feature parameters θ, we can rely on this solution to select inducing points Zk.
See Section D for more detail. We also compute the posterior distribution over their function values
uk according to q(uk) = N (uk|µuk

, Luk
L>uk

), where
µuk

= ΦZk
µwk

, Luk
= ΦZk

Lwk
(5)

and the matrix ΦZk
stores as rows the feature vectors evaluated at Zk. Subsequently, we store the k-th

task summary (Zk, µuk
, Luk

) and use it for regularising continual learning of subsequent tasks, by
always maximising the objective F(θ, q(wk)). Pseudo-code of the procedure is given in Algorithm 1.

2.4 SELECTION OF THE INDUCING POINTS

After having seen the k-th task, and given that it is straightforward to compute the posterior distribution
q(uk) for any set of function values, the only issue remaining is to select the inducing inputs Zk. A
simple choice that works well in practice is to select Zk as a random subset of the training inputs Xk.
The question is whether we can do better with some more structured criterion.

In our experiments we will investigate several criteria where the most effective one will be an
unsupervised criterion that only depends on the training inputs, while the other supervised criteria are
described in the Appendix. This unsupervised criterion quantifies how well we reconstruct the full
kernel matrix KXk

from the inducing set Zk and it can be expressed as the trace of the covariance
matrix of the prior GP conditional p(fk|uk), i.e.

T (Zk) = tr
(
KXk

−KXkZK
K−1Zk

KZkXk

)
=

Nk∑
j=1

[
k(xk,j , xk,j)− k>ZK ,xk,j

K−1Zk
kZk,xk,j

]
, (6)

5

Under review as a conference paper at ICLR 2020

Algorithm 1 Functional Regularised Continual Learning (FRCL) with task boundary detection

Input: Feature vector φ(x; θ) with initial value of θ, initial task k = 1, starting_time(k) = 10.
Construct output weights w0 and initialise variational parameters µw0

(e.g. around zero) and
Lwk

= I .
for t = 1, 2, . . . , do

Receive next data minibatch (Xt,yt).
Compute KL values `t = {`t,i}, for any xt,i ∈ Xt.
if t - starting_time(k) > min_time_in(k) and StatisticalTest(`t, `old) is significant then

A new task has been detected.
Select inducing inputs Zk for current task.
Compute the parameters of q(uk) from equation 5 and store them.
Construct new output weights wk+1 and variational parameters (µwk+1

, Lwk+1
).

k = k + 1; starting_time(k) = t.
else
`old = `t.

end if
Gradient step to update (θ, µwk

, Lwk
) by maximising F(θ, q(wk)).

end for

where each k(xk,j , xk,j) − k>ZK ,xk,j
K−1Zk

kZk,xk,j
≥ 0 is a reconstruction error for an individual

training point. The above quantity appears in the ELBO in (Titsias, 2009), is also used in (Csato &
Opper, 2002) and it has deep connections with the Nystróm approximation (Williams & Seeger, 2001)
and principal component analysis. The criterion in equation 6 promotes finding inducing points Zk
that are repulsive with one another and are spread evenly in the input space under a similarity/distance
implied by the dot product of the feature vector φ(x; θk) (with θk being the current parameter values
after having trained with the k-th task). An illustration of this repulsive property is given in Section 4.

To select Zk, we minimise T (Zk) by applying discrete optimisation where we select points from the
training inputs Xk. The specific optimisation strategy we use in the experiments is to start with an
initial random set Zk ⊂ Xk and then further refine it by doing local moves where random points in
Zk are proposed to be changed with random points of Xk.

2.5 PREDICTION AND DIFFERENCES WITH WEIGHT SPACE METHODS

Prediction at any i-th task that has been encountered in the past follows the standard sparse GP
predictive equations. Given a test data point xi,∗ the predictive density of its output value yi,∗
takes the form p(yi,∗) =

∫
p(yi,∗|fi,∗)pθ(fi,∗|ui)q(ui)duidfi,∗ =

∫
p(yi,∗|fi,∗)qθ(fi,∗)dfi,∗ where

qθ(fi,∗) = N (fi,∗|µi,∗, σ2
i,∗) is an univariate posterior Gaussian with mean and variance,

µi,∗ = µ>ui
K−1Zi

ΦZ1φ(xi,∗; θ), σ
2
i,∗ = k(xi,∗, xi,∗) + k>Zixi,∗

K−1Zi

[
LuiL

>
ui
−KZi

]
K−1Zi

kZixi,∗ ,

where in µi,∗ we have explicitly written the cross kernel vector kZkxi,∗ = ΦZi
φ(xi,∗; θ) to re-

veal a crucial property of this prediction. Specifically, given that fi,∗ = w>i φ(xi,∗; θ) the vector
µ>ui

K−1Zi
ΦZi

acts as a mean prediction for the task-specific parameter row vector w>i . As we learn
future tasks and the parameter θ changes, this mean parameter prediction automatically adapts (recall
that KZi = ΦZiΦ

>
Zi

and ΦZi vary with θ and only µui is constant) in order to counteract changes in
the feature vector φ(xi,∗; θ), so that the overall prediction for the function value, i.e. µi,∗ = E[fi,∗],
does not become obsolete. For instance, the prediction of the function values at the inducing inputs
Zi always remains constant to our fixed/stored mean belief µui

since by setting xi,∗ = Zi the formula
gives µ>ui

K−1Zi
ΦZi

Φ>Zi
= µ>ui

. Similar observations can be made for the predictive variances.

The above analysis reveals an important difference between continual learning in function space
and in weight space, where in the latter framework task-specific parameters such as wi might not
automatically adapt to counteract changes in the feature vector φ(x; θ), as we learn new tasks and θ
changes. For instance, if as a summary of the task, instead of the function space posterior distribution
q(ui), we had kept in memory the weight space posterior q(wi) (see Section equation 2.3), then the
corresponding mean prediction on the function value, E[fi,∗] = µ>wi

φ(xi,∗; θ), can become obsolete
as φ(xi,∗; θ) changes and µwi remains constant.

6

Under review as a conference paper at ICLR 2020

Figure 2: Detecting task boundaries using the predictive uncertainty of a Gaussian Process. As GP predictions
revert to the prior (shaded blue) when queried far from observed data (shown as black dots), we can test for a
distribution shift by comparing the GP posterior over functions (in green) to the prior. Small distance between
predictive distributions at test points (red dots) suggest a task switch.

3 DETECTING TASK BOUNDARIES USING BAYESIAN UNCERTAINTIES

So far we have made the assumption that task switches are known, which may not always be a realistic
setting. Instead, we now introduce a novel approach for detecting task boundaries in continual learning
arising naturally from our method by a simple observation: The GP predictive uncertainty grows
as the model is queried far away from observed data, eventually falling back to the prior. When a
minibatch of data {xi, yi}bi=1 from a new task arrives, we thus expect the distance between prior and
posterior to be small (see Figure 2). Thus, a simple way to detect a change in the input distribution is
to compare the GP univariate posterior density

q(f(xi)) = N (f(xi)|µi, σ2
i) ≈

∫
p(f(xi)|f)p(f |y, X)df(xi),

where (µi, σ
2
i) are predictive means and variances, with the prior GP density p(f(xi)) =

N (f(xi)|0, k(xi, xi)). This can be achieved by using a divergence measure between distributions
such as the symmetrised KL divergence,

`i = 0.5
(∫

q(f(xi)) log
q(f(xi))

p(f(xi))
df(xi) +

∫
p(f(xi)) log

p(f(xi))

q(f(xi))
df(xi)

)
, i = 1, . . . , b,

computed separately for any xi in the minibatch. Given that all distributions are univariate Gaussians
the above can be obtained analytically. When each score `i is close to zero this indicate that the input
distribution has changed so that a task switch can be detected. Each `i ≥ 0 can be thought of as
expressing a degree of surprise about xi, i.e. the smaller is `i the more surprising is xi. Thus our idea
has close links to Bayesian surprise (Itti & Baldi, 2006).

In order to use this intuition to detect task switches, we can perform a statistical test between the
values {`i}bi=1 for the current batch and those from the previous batch {`oldi }bi=1 before making any
updates to the parameters using the current batch. A suitable choice is Welch’s t-test (due to unequal
variances), demanding that with high statistical significance the mean of {`i}bi=1 is smaller than the
mean of {`oldi }bi=1.

The ability to detect changes based on the above procedure comes from that in our continual learning
framework we construct posterior distributions over function values f(xi) that depend on inputs xi
(while in contrast a posterior over weights alone does not depend on any input). Subsequently, these
predictive densities contain information about the distribution of these inputs in the sense that when
an xi is close to the training inputs from the same task we expect reduced uncertainty, while for
inputs of a different task we expect high uncertainty that falls back to the prior uncertainty.

4 EXPERIMENTS

We now test the scalability and competitiveness of our method on various continual learning problems,
referring to the proposed approach as Functional Regularised Continual Learning (FRCL). Throughout
this section, we will aim to answer three key questions:

(i) How does FRCL compare to state-of-the-art algorithms for Continual Learning?

7

Under review as a conference paper at ICLR 2020

Table 1: Results on Permuted- and Split-MNIST. Baseline results are taken from Nguyen et al. (2017). For
the experiments conducted in this work we show the mean and standard deviation over 10 random repetitions.
Where applicable, we also report the number of inducing points/replay buffer size per task in parentheses.

Algorithm Permuted-MNIST Split-MNIST

DLP (Eskin et al., 2004) 82% 61.2%
EWC (Kirkpatrick et al., 2017) 84% 63.1%
SI (Zenke et al., 2017) 86% 98.9%
VCL (Nguyen et al., 2017) 90% 97.0%

+ random Coreset 93% (200 points/task)
+ k-center Coreset 93% (200 points/task)
+ unspecified Coreset selection 98.4% (40 points/task)

Methods evaluated in this paper
BASELINE 48.6% ± 1.7 (10 points/task)
FRCL (RANDOM) 48.2% ± 4.0 10 points/task 59.8% ± 8.0 (2 points/task)
FRCL (TRACE) 61.7% ± 1.8 (10 points/task) 82.0% ± 5.0 (2 points/task)

BASELINE 82.3% ± 0.3 (200 points/task) 95.8% ± 1.1 (40 points/task)
FRCL (RANDOM) 94.2% ± 0.1 (200 points/task) 97.1% ± 0.7 (40 points/task)
FRCL (TRACE) 94.3% ± 0.2 (200 points/task) 97.8% ± 0.7 (40 points/task)

(ii) How important is a principled criterion for inducing point selection? How do varying
numbers of inducing points/task affect overall performance?

(iii) If ground truth task boundaries are not given, does the detection method outlined in Section
3 succeed in detecting task changes?

In order to answer these questions, we consider experiments on three established Continual Learning
classification problems: Split-MNIST, Permuted-MNIST and sequential Omniglot (Goodfellow et al.,
2013; Zenke et al., 2017; Schwarz et al., 2018), described in the Appendix. FRCL methods have been
implemented using GPflow (Matthews et al., 2017).

In addition to comparing our method with other approaches in the literature by quoting published
results, we also show results for an additional baseline (BASELINE) corresponding to a simple
replay-buffer method for Continual Learning (explained in the Appendix).

4.1 IS FRCL A COMPETITIVE MODEL FOR CONTINUAL LEARNING?

2 5 10 20 40
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
n
a
l
a
v
g
.
te

st
 a

cc
u
ra

cy

Split-MNIST

Method

FRCL (Random)

FRCL (Log pred. density)

FRCL (Class. Error)

FRCL (ELBO)

FRCL (Trace term)

10 20 50 100 200
#Inducing points

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
n
a
l
a
v
g
.
te

st
 a

cc
u
ra

cy

Perm-MNIST

Figure 3: Comparing optimisation criteria for varying
number of inducing points.

Addressing first question (i), we show results
on the MNIST-variations in Table 1 and on the
more challenging Omniglot benchmark in Table
2. Note that we also specify the inducing point
optimisation criterion in brackets, i.e. FRCL
(TRACE-TERM) corresponds to the loss in equa-
tion 6. We observe strong results on all bench-
marks, setting a new state-of-the-art results on
Permuted-MNIST & Omniglot while coming
close to existing results on Split-MNIST. The
improvement on the BASELINE shows that ap-
proximate posterior distributions over functions
values can lead to more effective regularisation
for CL compared to just having a replay buffer
of input-output pairs. Furthermore, despite its
simplicity, the simple BASELINE strategy per-
forms competitively. In line with other results,
we conclude that rehearsal-based ideas continue
to provide a strong baseline. This also gives
justification to a main motivation of this work:
To unite the two previously separate lines of CL work on rehearsal-based and Bayesian methods.
Nevertheless, other methods may be more suitable when storing data is not feasible.

8

Under review as a conference paper at ICLR 2020

Table 2: Results on sequential Omniglot. Baseline results are taken from Schwarz et al. (2018). Shown are
mean and standard deviation over 5 random task permutations. Note that methods ‘Single model per Task’ and

‘Progressive Nets’ are not directly comparable due to unrealistic assumptions, but serve as an upper bound on the
performance for the remaining continual learning methods.

Algorithm Test Accuracy

Single model per Task 88.34
Progressive Nets 86.50 ± 0.9

Finetuning 26.20 ± 4.6

Learning Without Forgetting 62.06 ± 2.0

Elastic Weight Consolidation (EWC) 67.32 ± 4.7

Online EWC 69.99 ± 3.2

Progress & Compress 70.32 ± 3.3

Methods evaluated in this paper 1 point/char 2 points/char 3 points/char
BASELINE 42.73 ± 1.2 57.17 ± 1.2 65.32 ± 1.1

FRCL (RANDOM) 69.74 ± 1.1 80.32 ± 2.5 81.42 ± 1.2

FRCL (TRACE) 72.02 ± 1.3 81.47 ± 1.6 81.01 ± 1.1

Datapoints Initial induced points Final induced points

(a) A TSNE projection of inducing points in feature space.

(b) Random inducing points

(c) Optimised inducing points

Figure 4: Inducing point optimisation for the first task on the Permuted-MNIST benchmark. The number of
inducing points was limited to 10. Left: A example optimisation shown in the feature space of a trained network.
Points are coloured by class label. Data shown corresponds to the first row in the images on the right. Right:
Optimised inducing points consistently cover examples of all classes. Each row corresponds to a different run
with random initialisation. Best viewed in colour.

4.2 INDUCING POINT OPTIMISATION AND TASK SWITCH DETECTION

An appealing theoretical property of our method is the principled selection of inducing points through
optimisation. Answering question (ii), we now proceed to investigate the importance of the criterion
used as well as the dependence on the number of inducing points. These results are shown in Figure
3. Note that the definition of objectives Class. Error, ELBO & Log pred. density are given in the
Appendix. In accordance with our intuition, we observe that optimisation becomes increasingly
important as the number of inducing points is reduced. The results also give strong statistical
motivation to use the trace-term motivated before. Further, as can be seen looking at the results for
Log pred. density, a poorly chosen criterion may behave worse than random.

To provide an insight into the solutions obtained by the trace-term criterion, we provide a visualisation
of inducing points in Figure 4. Remarkably, even though the objective is fully unsupervised, it results
in a consistent allocation of one example per class. Furthermore, the optimised inducing points are

9

Under review as a conference paper at ICLR 2020

spread across the input space as shown by the TNSE (Maaten & Hinton, 2008) visualisation, which is
in line with the intuition that the objective encourages repulsive inducing points.

Finally, we answer question (iii) by first showing both the mean of the terms {`i}bi=1 (top) as well
as the result of Welch’s t-test (bottom) between terms {`i}bi=1, {`oldi }bi=1 in Figure 4.2, using only a
small number Omniglot alphabets and 1000 training iterations per task for illustrative purposes. We
note that the intuition built up in Section 3 holds, with clear spikes being shown whenever the t-test
returns a positive result.

Furthermore, we provide a quantitative comparison in Table 3. On the positive side, we note very
strong results for Split- & Perm-MNIST and further observe that we find a similar t-test threshold
value to apply to all dataset, making this an easy hyper-parameter to set. While the task boundary
detection results for Omniglot are less strong, which may due to the smaller batch size (32 for
Omniglot, ≥ 100 for the MNIST-versions), resulting a noisier test result. Note that this could be
easily mitigated by using a larger set {`oldi }, e.g. the last 10 minibatches, which would make this test
more robust.

0.0

0.5

1.0

1.5

2.0
Mean symmetric. KL divergence between GP prior and posterior.

0 1000 2000 3000 4000 5000
10

0

10

20

30

40

Task 1: Korean Task 2: Ge'ez Task 3: Oriya Task 4: Tibetan Task 5: Jawi Arabic

Welch's t-test statistic between subsequent mini-batches.

Figure 5: Visualising KL terms and test statistics on multiple
Omniglot tasks.

Table 3: Task boundary detection evaluated
as a binary classification task (Positive labels
corresponds to task switches).

Precision/Recall/F1 @ Threshold

Split-MNIST Perm-MNIST Omniglot

4.0 0.94/1.0/0.97 0.43/0.98/0.60 0.13/0.90/0.23
5.0 1.0/1.0/1.0 0.95/0.94/0.94 0.71/0.75/0.73
6.0 1.0/1.0/1.0 1.0/0.91/0.95 0.89/0.59/0.71
7.0 1.0/1.0/1.0 1.0/0.91/0.95 0.89/0.46/0.60
8.0 1.0/1.0/1.0 1.0/0.86/0.92 0.88/0.32/0.46

5 DISCUSSION

We introduced a functional regularisation approach for supervised continual learning that combines
inducing point GP inference with deep neural networks. Our method constructs task-specific posterior
beliefs or summaries on inducing inputs. Subsequently, the task-specific summaries allow us to
regularise continual learning and avoid catastrophic forgetting. Our approach unifies the two extant
approaches to continual learning, of parameter regularisation and replay/rehersal. Viewed from the
regularisation perspective, our approach regularises the functional outputs of the neural network,
thus avoid the brittleness due to representation drift. Viewed from a rehearsal method perspective,
we provide a principled way of compressing data from previous task, by means of optimizing the
selection of inducing points. By investigating the behaviour of the posterior beliefs, we also proposed
a method for detecting task boundaries. All these improvements lead to strong empirical gains
compared to state-of-the-art continual learning methods.

Regarding related work on online learning using GPs, notice that previous algorithms (Bui et al.,
2017a; Csato & Opper, 2002; Csato, 2002) learn in an online fashion a single task where data from
this task arrive sequentially. In contrast in this paper we developed a continual learning method for
dealing with a sequence of different tasks.

A direction for future research is to enforce a fixed memory buffer (or a buffer that grows sub-linearly
w.r.t. the number of tasks), in which case one would need to compress the summaries of all previous
seen tasks into a single summary. Finally, while in this paper we applied the method to supervised
classification tasks, it will be interesting to consider also applications in other domains such as
reinforcement learning.

REFERENCES

Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions:
A review. Found. Trends Mach. Learn., 4(3):195–266, March 2012. ISSN 1935-8237. doi:
10.1561/2200000036. URL http://dx.doi.org/10.1561/2200000036.

10

http://dx.doi.org/10.1561/2200000036

Under review as a conference paper at ICLR 2020

Edwin V Bonilla, Kian M. Chai, and Christopher Williams. Multi-task gaussian process prediction.
In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis (eds.), Advances in Neural Information
Processing Systems 20, pp. 153–160. Curran Associates, Inc., 2008. URL http://papers.
nips.cc/paper/3189-multi-task-gaussian-process-prediction.pdf.

Thang D Bui, Cuong Nguyen, and Richard E Turner. Streaming Sparse Gaussian Process Approx-
imations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp. 3299–3307. Curran
Associates, Inc., 2017a.

Thang D. Bui, Josiah Yan, and Richard E. Turner. A Unifying Framework for Gaussian Process
Pseudo-Point Approximations using Power Expectation Propagation. Journal of Machine Learning
Research, 18(104):1–72, 2017b.

Csato. Gaussian processes: iterative sparse approximations. PhD thesis, Aston University, 2002.

L. Csato and M. Opper. Sparse online Gaussian processes. Neural Computation, 14:641–668, 2002.

Amir Dezfouli and Edwin V Bonilla. Scalable Inference for Gaussian Process Models with Black-
Box Likelihoods. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.),
Advances in Neural Information Processing Systems 28, pp. 1414–1422. 2015.

Eleazar Eskin, Alex J Smola, and SVN Vishwanathan. Laplace propagation. In Advances in neural
information processing systems, pp. 441–448, 2004.

Sebastian Farquhar and Yarin Gal. Towards Robust Evaluations of Continual Learning. arXiv preprint
arXiv:1805.09733, 2018.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for Big Data. In Conference
on Uncertainty in Artificial Intellegence, pp. 282–290. auai.org, 2013.

James Hensman, Alexander G de G Matthews, and Zoubin Ghahramani. Scalable Variational
Gaussian Process Classification. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, 2015.

Laurent Itti and Pierre F Baldi. Bayesian surprise attracts human attention. In Advances in neural
information processing systems, pp. 547–554, 2006.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, pp.
201611835, 2017.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning of
simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science Society,
volume 33, 2011.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2017.

Chris Lloyd, Tom Gunter, Michael A. Osborne, and Stephen J. Roberts. Variational inference
for gaussian process modulated poisson processes. In Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15, pp. 1814–
1822, 2015.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pp. 6470–6479, 2017.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

11

http://papers.nips.cc/paper/3189-multi-task-gaussian-process-prediction.pdf
http://papers.nips.cc/paper/3189-multi-task-gaussian-process-prediction.pdf

Under review as a conference paper at ICLR 2020

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas,
Pablo Le‘on-Villagr‘a, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process
library using TensorFlow. Journal of Machine Learning Research, 18(40):1–6, April 2017.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
arXiv preprint arXiv:1710.10628, 2017.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5533–5542. IEEE, 2017.

Mark Bishop Ring. Continual learning in reinforcement environments. PhD thesis, University of
Texas at Austin Austin, Texas 78712, 1994.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Anthony Robins and Simon McCallum. Catastrophic forgetting and the pseudorehearsal solution in
hopfield-type networks. Connection Science, 10(2):121–135, 1998.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne. Experience
replay for continual learning. arXiv preprint arXiv:1811.11682, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem. Frontiers in psychology, 4:313, 2013.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. arXiv preprint arXiv:1805.06370, 2018.

Rishit Sheth, Yuyang Wang, and Roni Khardon. Sparse variational inference for generalized gp
models. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1302–1311,
Lille, France, 07–09 Jul 2015. PMLR.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In Y. Weiss,
B. Schölkopf, and J. C. Platt (eds.), Advances in Neural Information Processing Systems 18, pp.
1257–1264. 2006.

Michalis K Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
International Conference on Artificial Intelligence and Statistics, pp. 567–574, 2009.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one shot
learning. In Advances in Neural Information Processing Systems, pp. 3630–3638, 2016.

Christopher K. I. Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. In T. K. Leen, T. G. Dietterich, and V. Tresp (eds.), Advances in Neural Information
Processing Systems 13, pp. 682–688. MIT Press, 2001.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning.
In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research,
pp. 370–378, Cadiz, Spain, 09–11 May 2016. PMLR.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
arXiv preprint arXiv:1703.04200, 2017.

12

Under review as a conference paper at ICLR 2020

A TASK DESCRIPTIONS

Split-MNIST and Permuted-MNIST. Among a large number of diverse experiments in continual
learning publications, two versions of the popular MNIST dataset have recently started to become in-
creasingly popular benchmarks: Permuted- and Split-MNIST. In Permuted-MNIST (e.g. Goodfellow
et al., 2013; Kirkpatrick et al., 2017; Zenke et al., 2017), each task is a variant of the initial 10-class
MNIST classification task where all input pixels have undergone a fixed (random) permutation. The
Split-MNIST experiment was introduced by Zenke et al. (2017): Five binary classification tasks are
constructed from the classes in the following order: 0/1, 2/3, 4/5, 6/7, and 8/9.

Omniglot. To assess our method under more challenging conditions, we consider the sequential
Omniglot task proposed for continual learning in Schwarz et al. (2018). Omniglot Lake et al. (2011)
is a dataset of 50 alphabets, each with a varying number of classes/characters which we treat of as a
sequence of distinct classification problems. As suggested in Schwarz et al. (2018), for Omniglot, we
apply data-augmentation and use the same train/validation/test split. Following the same experimental
setup proposed, we used an identical convolutional network to construct the feature vector φ(x; θ).
Results reported are obtained by training on the union of training and validation set after choosing
any hyper-parameters based on the validation set. Note that all experiments were run with data
processing and neural network construction code kindly provided by the authors in Schwarz et al.
(2018), ensuring directly comparable results.

Given that Permuted-MNIST and Omniglot are multi-class classification problems, where each k-th
task involves classification over Ck classes, we need to generalise the model and the variational
method to deal with multiple GP functions per task. This is outlined in the next section.

B EXTENSION TO MULTI-CLASS (OR MULTIPLE-OUTPUTS) TASKS

For multi-class classification problems, such as permuted MNIST and Omniglot considered in our
experiments, where in general each k-th task involves classification over varying number of classes,
we need to extend the method to deal with multiple functions per task. For instance, assume that
the k-th task is a multi-class classification problem that inolves Ck classes. To model this we
need Ck independent draws from the GP, such that f ck(x) ∼ GP(0, k(x, x′)) with c = 1, . . . , Ck,
which are combined based on a multi-class likelihood such as softmax. While in the main text
we presented the method assuming a single GP function per task, the generalisation to multiple
functions is straightforward by assuming that all variational approximations factorise across different
functions/classes. For example, the variational distribution over all inducing variables Uk = {uck}

Ck
c=1

takes the form q(Uk) =
∏Ck

c=1 q(u
c
k) and similarly the variational approximation over the task weights

Wk = {wck}, needed in the ELBO in Section 3.2, also factorises across classes. Notice also that
all inducing variables Uk are evaluated on the same inputs Zk. Furthermroe, the KL regularization
term for each task takes the form of a sum over the different functions, i.e. KL(q(Uk)||pθ(Uk)) =∑Ck

c=1 KL(q(uck)||pθ(uck)).

C BASELINE MODEL

The BASELINE model (see main text) is based on storing an explicit replay buffer (ỹi, X̃i), i.e. a
subset of the training data where ỹi ⊂ yi and X̃i ⊂ Xi, for each past task. Then, at each step when
we encounter the k-th task training is performed by optimising an unbiased estimate of the full loss
(i.e. if we had all k tasks at once), given by

L(θ, w1:k) = `k(yk, Xk;wk, θ) +

k−1∑
i=1

Ni
Mi

`i(ỹi, X̃i;wi, θ),

where each `i(·) is a task-specific loss function, such as cross entropy for classification, and each
scalar Ni

Mi
corrects for the bias on the loss value caused by approximating the initial full loss by

a random replay buffer of size Mi. All output weights wi:k of the current and old tasks, in the
multi-head architecture, are constantly updated together with the feature parameter vector θ. Also at
each step a fresh set of output weights is constructed in order to deal with the current task.

13

Under review as a conference paper at ICLR 2020

D SELECTION OF THE INDUCING POINTS AND OPTIMISATION CRITERIA

After having seen the k-th task, and given that it is straightforward to compute the posterior distribution
q(uk) for any set of function values, the only issue remaining is to select the inducing inputs Zk. A
simple choice that works well in practice is to select Zk as a random subset of the training inputs Xk.
The question is whether we can do better with some more structured criterion. In our experiments
we will investigate three supervised criteria, that make use of class labels, and one unsupervised that
only depends on inputs and the neural network feature vector. All criteria below optimise over Zk
using discrete search.

The first supervised criterion is to minimize the negative average log predictive density,

Log pred. density(Zk) = − 1

|Xk \ Zk|
∑

xk,j∈Xk\Zk

log p(yk,j |Zk), (7)

computed at all remaining training inputs by excluding the selected inducing inputs Zk. Each
predictive density p(yk,j |Zk) is obtained through the inducing inputs Zk and it takes the form

p(yk,j |Zk) =

∫
p(yk,j |fk,j)q(uk|Zk)duk =

∫
p(yk,j |fk,j)N (uk|µuk

, Luk
L>uk

)duk, (8)

which for the classification problems, where the likelihood p(yk,j |fk,j) is not Gaussian, is computed
numerically by one-dimensional Gaussian quadrature. Notice that for the multi-class case the
predictive density is obtained by integrating over q(Uk) ≡ q(Uk|Zk) (see previous Appendix B).
Modern GP packages, such as GPflow, provide efficient implementation of the above predictive
densities.

The second supervised criterion is similar, but − log p(yk,j |ZK) is replaced by classification error
score I(yk,j 6= y∗k,j),

Class. Error(Zk) =
1

|Xk \ Zk|
∑

xk,j∈Xk\Zk

I(yk,j 6= y∗k,j), (9)

where y∗k,j is the predicted label, which is obtained by first computing the predictive density p(yk,j |Zk)
conditional on a given set of inducing inputsZk and then choosing y∗k,j by taking argmax (i.e. selecting
the class with the largest predictive probability).

Both criteria above essentially capture how well we predict the remaining points from the inducing
points Zk, thus good choices for Zk are presumably those that lead to good prediction for the
remaining points.

The third supevised criterion is the standard sparse GP variational lower bound,

ELBO(Zk) =

Nk∑
j=1

Eq(fk,j)[log p(yk,j |fk,j)]− KL(q(uk|Zk)||pθ(uk|Zk)), (10)

which is viewed purely as a function of Zk while all remaining quantities are constant. This criterion
tries to optimise over Zk in order to approximate as best as possible the marginal likelihood on the
training data and it is the one used by all variational sparse GP training methods (although there the
ELBO is maximized jointly over both Zk with the remaining parameters).

The last unsupervised criterion (also discussed in the main paper) expresses how well we reconstruct
the full kernel matrix KXk

from the inducing set Zk, which can be described by

Trace term(Zk) =
(
KXk

−KXkZk
K−1Zk

KZkXk

)
=

Nk∑
j=1

[
k(xk,j , xk,j)− k>ZK ,xj,k

K−1Zk
kZk,xi,k

]
,

(11)
where each k(xk,j , xk,j) − k>ZK ,xj,k

K−1Zk
kZk,xi,k

≥ 0 is a reconstruction error for an individual
training point. The above quantity appears in the ELBO in (Titsias, 2009), is also used in (Csato &
Opper, 2002) and it has deep connections with the Nystróm approximation (Williams & Seeger, 2001)
and principal component analysis. The criterion in equation 6 promotes finding inducing points Zk

14

Under review as a conference paper at ICLR 2020

that are repulsive with one another and are spread evenly in the input space under a similarity/distance
implied by the dot product of the feature vector φ(x; θk) (with θk being the current parameter values
after having trained with the k-th task). An illustration of this is given in the Figure 4.

Figure 4 in the Experiments Section illustrates the optimisation of the inducing inputs in Permuted-
MNIST. Also, Figure 6(a) shows randomly chosen (3 examples per class) for the Greek alphabet/task
in the Omniglot experiments, while Figure 6(b) shows the corresponding points after have been
optimised by using the trace criterion above.

Figure 3 shows the evolution of the performance for all selection criteria on individual tasks for
Split-MNIST and Permuted-MNIST.

(a) Randomly selected inducing points (b) Optimised inducing points

Figure 6: Inducing points for Greek alphabet of the Omniglot benchmark. The number of inducing points was
limited to 3 per character.

E TASK BOUNDARY DETECTION

In order to apply the task-boundary detection for multiple classes, we perform Welch’s t-test separately
for each function. We consider mean, median and the maximum of those t-test results to make a
decision. Furthermore, we also found that conducting the test in log-space significantly improved
robustness of the test results and thus find that tests using the max over functions in log-space allow for
higher thresholds and more robust results. In order to give justification to those conclusions we show
our experiments on Permuted-MNIST in Figure 7, once again using 10 random task permutations.

Note also that after a task boundary was detected, we do not consider a new test for the next 10
iterations.

At this point it should be said that while the boundary detection method is simple, cheap to compute,
unsupervised and general, it is not applicable when the Continual Learning faces a continuum of
tasks without clear switches or when the input distribution is constant and different tasks merely
correspond to varying labels.

F EXPERIMENTAL DETAILS

Experimental details for all experiments are shown in Tables 4, 5 and 6. Note that for the MNIST
results, we obtain final results after optimising hyperparameters on the validation set and using those
values to train on the union of training & validation set.

For Omniglot on the other hand, we report final test-set results only after training on the training set
in order to remain consistent with the results in Schwarz et al. (2018)

15

Under review as a conference paper at ICLR 2020

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

T-test in log space

Aggregator

mean

median

max

4.0 5.0 6.0 7.0 8.0

Test threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

T-test in original space

Figure 7: Ablation study comparing aggregation methods and whether tests should be conducted in log-space.
Results are shown on Permuted MNIST, 10 random task permutations.

Table 4: Hyperparameters for the experiments on Split MNIST. Optimal values (in bold) were chosen on the
validation set. Test set results were obtained by training on the union of training&validation set using those
values.

Parameter Considered range Comment
Network size (#Layers × Units) {2} × {256} Based on Zenke et al. (2017).
Activation function {f(x) : max(0, x) (ReLu)} "

Learning rate {5 · 10−4, 10−4, 5 · 10−5}
Batch size {32, 64,100, 128}
#Training steps {2500,3000, 3500}
#Inducing points optimisation steps {1000, 2000} No significant difference.

Table 5: Hyperparameters for the experiments on Permuted MNIST. Optimal values (in bold) were chosen on
the validation set. Test set results were obtained by training on the union of training&validation set using those
values.

Parameter Considered range Comment
Network size (#Layers × Units) {2} × {100} Based on Zenke et al. (2017).
Activation function {f(x) : max(0, x) (ReLu)} "

Learning rate {10−3, 5 · 10−4, 10−4, 5 · 10−5}
Batch size {32, 64,128}
#Training steps {2000, 2500} No significant difference.
#Inducing points optimisation steps {1000, 2000} No significant difference.

16

Under review as a conference paper at ICLR 2020

Table 6: Hyperparameters for the experiments on Omniglot. Optimal values (in bold) were chosen on the
validation set. Test set results were obtained by training on the union of training&validation set using those
values.

Parameter Considered range Comment
Conv. filters {[64, 64, 64, 64]} Based on Vinyals et al. (2016).
Conv. Kernel size {3× 3} "
Conv. Padding {SAME} "
Max Pool. Kernel size {3× 3} "
Max Pool. stride {2× 2} "
Max Pool. Padding {VALID} "
Activation function {f(x) : max(0, x) (ReLu)} "

Learning rate {10−3, 5 · 10−4, 10−4}
Batch size {32}
#Training steps {2500}
#Inducing points optimisation steps {1000, 2000} No significant difference.

17

	Introduction
	Functional Regularisation for Continual Learning
	Learning the first task
	Learning the second and subsequent tasks
	Accurate weight space inference for the current task
	Selection of the inducing points
	Prediction and differences with weight space methods

	Detecting task boundaries using Bayesian uncertainties
	Experiments
	Is frcl a competitive model for Continual Learning?
	Inducing point optimisation and task switch detection

	Discussion
	Task descriptions
	Extension to multi-class (or multiple-outputs) tasks
	Baseline model
	Selection of the inducing points and optimisation criteria
	Task boundary detection
	Experimental details

