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ABSTRACT

The mechanisms behind human visual systems and convolutional neural networks
(CNNs) are vastly different. Hence, it is expected that they have different notions
of ambiguity or hardness. In this paper, we make a surprising discovery: there
exists a (nearly) universal score function for CNNs whose correlation with human
visual hardness is statistically significant. We term this function as angular visual
hardness (AVH) and in a CNN, it is given by the normalized angular distance
between a feature embedding and the classifier weights of the corresponding
target category. We conduct an in-depth scientific study. We observe that CNN
models with the highest accuracy also have the best AVH scores. This agrees
with an earlier finding that state-of-art models tend to improve on classification of
harder training examples. We find that AVH displays interesting dynamics during
training: it quickly reaches a plateau even though the training loss keeps improving.
This suggests the need for designing better loss functions that can target harder
examples more effectively. Finally, we empirically show significant improvement
in performance by using AVH as a measure of hardness in self-training tasks.

1 INTRODUCTION

Convolutional Neural Networks (CNN) have pushed the boundaries on a wide range of computer
vision tasks. On certain large-scale benchmarks such as ImageNet [10], CNNs have even surpassed
human-level accuracy. Despite such progress, CNNs are still far from matching human vision on
many measures such as robustness, adaptability and few shot learning [22] and could suffer from
various biases. For example, CNNs pre-trained on Imagenet are biased towards textures [18]. These
biases can result in CNNs being overconfident, or prone to domain gaps and adversarial attacks.

Human and CNNs fundamentally differ in terms of uncertainty or ambiguity. CNNs suffer from
calibration problems and tend to be overconfident even if they are wrong [20, 33], which is not the
case with human vision. Thus, the two systems differ in what they view as hard examples that appear
ambiguous or uncertain. In this paper, we bridge the gap by proposing a novel score function on
CNNs that correlates closely with human visual hardness. The first piece of this puzzle starts with
the question of what is a good measure of human visual hardness. Recently, [48] argued that human
selection frequency is a good measure. This is the average number of times an image gets picked by
a crowd of annotators, when they are asked to pick an image from a pool that belongs to a certain
specified category. Intuitively, human selection frequency depends on various factors like object
sizes, poses, special filters applied to images etc. [48] collected human selection frequency scores on
ImageNet validation set using the MTurk platform. In this paper, we use this dataset to verify our
hypotheses. In addition to human selection frequencies, we also employ certain image degradation
models [36] that have been shown to correlate well with human visual hardness.

An automatic detection of examples that are hard for human vision has numerous applications. [48]
showed that state-of-art (SOTA) models perform better on hard examples (i.e., hard for humans).
This implies that in order to improve generalization, the models need to improve accuracy on hard
examples. This can be achieved through various learning algorithms such as curriculum learning [2]
and self-paced learning [31] where being able to detect hard examples is crucial. Measuring sample
confidence is also important in partially-supervised problems such as semi-supervised learning [62,
63], unsupervised domain adaptation [8] and weakly-supervised learning [57] due to their under-
constrained nature. For instance, self-training [64] can easily reach to trivial solutions if one does not
select pseudo-labels carefully based on correct measure of hardness. Moreover, by identifying hard
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examples, one can detect various biases in current CNN models. Sample hardness can also be used to
identify implicit distribution imbalance in datasets to ensure fairness and remove societal biases [4].
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Figure 1: Visualizaiton of CNN fea-
ture embeddings on MNIST.

Our contributions are summarized as follows:

Angular visual hardness (AVH): Given a CNN, we propose a
novel score function that has strong correlation with human visual
hardness. It is the normalized angular distance between the image
feature embedding and the weights of the target category (See
Figure 1). The normalization takes into account the angular dis-
tances to other categories. We argue that the semantic ambiguity
that affects human visual hardness is strongly correlated with this
score and we find strong empirical evidence to support this claim.

The AVH score is inspired by the intuition in [41] that the angle
between image feature embedding and the weights of the target
class accounts for the inter-class semantic differences while the
`2 norm of the feature embedding accounts for intra-class varia-
tion. [41] used this insight to improve the generalizability and adversarial robustness of the neural
network. On the other hand, we use it to study the correspondence with human visual hardness.

We validate that there is a statistically-significant correlation between AVH and human selection
frequency across a wide range of CNN models. Moreover, AVH is also strongly correlated with image
degradation level, which is another proxy to human visual hardness. To the best of our knowledge,
this is the first model score that correlates strongly with human visual hardness. Hence, it serves
as its proxy on datasets where such information is not available and is beneficial to a number of
downstream tasks.

We observed the evolution of AVH score during training of CNN models. It plateaus early in training
even if the training (cross-entropy) loss keeps improving. This suggests the need to design better loss
functions that can improve performance on hard examples. We also validate the argument in [48] that
improving on hard examples is the key to improve the generalization by verifying that the state-of-art
(SOTA) models have the best average AVH scores.

Finally, we empirically show the superiority of AVH with its application to self-training for un-
supervised domain adaptation. With AVH being an improved confidence measure, our proposed
self-training framework renders considerably improved pseudo-label selection and category estima-
tion, leading to state-of-the-art results with significant performance gain over baselines.

2 RELATED WORK

Example hardness measures: Recently, measuring sample hardness for deep learning models has
been widely studied with loss value [54], relative Euclidean distance [52, 58] and gradient norm [27].
On the other hand, there is a rich history in cognitive and neuroscience communities to understand
human visual perception [6, 7, 15, 43], where many of them focus on mechanisms used by the human
brain to translate visual information to mental representations. These representations are subject to
many correspondence differences and errors and thereby are not isomorphic to the real world [36].
They can be affected by the ambiguity of different semantics [26] such as occlusion, distortion,
motion blur, and inherent similarity among objects. Due to the expensive human labeling process,
such detailed semantic information is typically not present in large-scale image benchmarks used to
train the CNN models.

Angular distance in CNNs: [61] uses the deep features to quantify the semantic difference between
images, indicating that deep features contain the most crucial semantic information. It empirically
shows that the angular distance between feature maps in deep neural networks is very consistent
with the human in distinguishing the semantic difference. However, because of the different goal
mentioned above, they have not studied or shown any strong correlation of human visual hardness
and the angular distance on natural images. [39] proposes a hyperspherical neural network that
constrains the parameters of neurons on a unit hypersphere and uses angular similarity to replace
the inner product similarity. [41] decouples the inner product as the norm and the angle and argues
that the norm corresponds to intra-class variation, and the angle corresponds to inter-class semantic

2



Under review as a conference paper at ICLR 2020

difference. However, this work does not consider any human factors, while our goal is to bridge the
gap between CNNs and human perception. [34, 40] propose well-performing regularizations based
on angular diversity to improve the network generalization.

Image degradation: Because CNNs and humans achieve similar accuracy on a wide range of tasks
on benchmark datasets, a number of works have investigated similarities and differences between
CNNs and human vision [3, 5, 9, 12, 13, 28, 44, 47, 59]. Since human annotation data is hard to
come by, researchers have proposed an alternative measure of visual hardness on images based on
image degradation [36]. It involves adding noise or changing image properties such as contrast,
blurriness, and brightness. [17] employed psychological studies to validate the degradation method
as a way to measure human visual hardness. It should be noted that the artificial visual hardness
introduced by degradation is a different concept from the natural visual hardness. The hardness based
on degradation only reflects the hardness of a single original image with various of transformations,
while natural visual hardness based on the ambiguity of human perception across a distribution of
natural images. In this paper, we consider both as the surrogates of human visual hardness.

Deep model calibration. Confidence calibration is the problem of predicting probability estimates
representative of the true correctness likelihood [20]. It is well-known that the deep neural networks
are mis-calibrated and there has been a rich literature trying to solve this problem [20, 30]. However,
this is a somewhat different issue because the confidence calibration is a problem introduced by two
measurements of the model, which does not have any involvement of human visual hardness.

3 A DISCOVERY FROM SCIENTIFIC TESTING: ANGULAR VISUAL HARDNESS

3.1 NOTATIONS AND SETUP

In order to quantify Human Visual Hardness and Model Predictions for convenience purposes in
experiments, we use corresponding surrogates which are formally defined as the following throughout
the paper. We use the ImageNet [11] benchmark in all following experiments. Particularly, we take
advantage of the Human Selection Frequency information for validation images provided by the recent
paper [48]. Recall that such information can serve as one of the proxy for Human Visual Hardness.
To test if our findings with Human Selection Frequency hold on another proxy, image degradation, we
create an augmented validation set based on two image degradation methods, decreasing contrast and
adding noise. We label them with corresponding degradation level. Besides, in order to verify that the
our experimental results hold consistently across models instead of a particular model, we use four
popular ImageNet pre-trained models AlexNet [29], VGG19 [55], DenseNet121 [25], ResNet50 [23].
We select ResNet50 as the representative model for some experiments.

Denote Sn as the unit n-sphere, formally, Sn = {x ∈ Rn+1|‖x‖2 = 1}. Below byA(·, ·), we denote
the angular distance between two points on Sn, i.e., A(u,v) = arccos( 〈u,v〉‖u‖‖v‖ ). Let x be the feature
embeddings input for the layer before the last one of the classifier of the pretrained CNN models, eg.
FC2 for VGG19. Let C be the number of classes for a classification task. DenoteW = wi|0 < i ≤ C}
as the set of weights for all C classes in the final layer of the classifier.

Definition 1 (Angular Visual Hardness (AVH)). AVH, for any x, is defined as,

AVH(x) =
A(x,wy)∑C
i=1A(x,wi)

,

which wy represents the weights of the target class.

Definition 2 (Model Confidence). We define model confidence on a single sample as the probability
score of the true objective class output by the CNN models, formally, ewyx∑C

i=1 e
wix

.

Definition 3 (Human Selection Frequency). We define one way to measure human visual hardness
on pictures as Human Selection Frequency. Quantitatively, given m number of human workers in a
labeling process described in [48], if b out of m label a picture as a particular class and that class is
the target class of that picture in the final dataset, then Human Selection Frequency is defined as b

m .
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Figure 2: The left one presents Human Selection Frequency v.s. AVH(‖x‖), which we can see strong correlation.
The second plot presents the correlation between Human Selection Frequency and Model Confidence with
ResNet50. It is not surprising that the density is highest on the right corner. The third one presents Human
Selection Frequency v.s. ‖x‖. There are no obvious correlation between them. Note that different color indicates
the density of samples in that bin.

Table 1: presents the spearman rank correlations between human selection frequency and AVH, Model Confidence
and L2 Norm of the Embedding in ResNet50 for different visual hardness bin of samples. Noted here we show
the absolute value of the coefficient which represents the strength of the correlation. For example, [0, 0.2]
denotes the samples that have human selection frequency from 0 to 0.2.

z-score Total [0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1.0]

Number of Samples - 29987 837 2732 6541 11066 8811
AVH 0.377 0.36 0.228 0.125 0.124 0.103 0.094

Model Confidence 0.337 0.325 0.192 0.122 0.102 0.078 0.056
‖x‖ - 0.0017 0.0013 0.0007 0.0005 0.0004 0.0003

3.2 CONNECTIONS AND GAPS BETWEEN THE HUMAN VISUAL SYSTEM AND CNN

Studying the precise connection or gap between human visual hardness and model predictions is
not feasible because data collection involving human labelling or annotation requires large amount
of work. In addition, usually those human data is application or dataset specific, which makes the
scalability of this study even worse. Therefore, all the testing and experiments we design are at best
effort given the limited resources. That is exactly another motivation for us to bridge the gap between
Human and models because models predictions require minimum costs compared to human efforts.
In this section, We first provide four hypothesis and test them accordingly.
Hypothesis 1. AVH has a correlation with Human Selection Frequency.
Outcome: Null Hypothesis Rejected

Correspondingly, after evaluating each validation sample on pre-trained models, we extract feature
embeddings x and also the class weightsW to compute AVH(x). Noted that we linear scale the range
of AVH(x) to [0, 1]. Table 1 shows the overall strong correlation of AVH(x) and Human Selection
Frequency consistently (p-value is < 0.001 rejecting the null hypothesis). From the coefficients
represented for different bins of example hardness, we can see that the harder the examples, the
weaker the correlation. Noted that we also check the results across four different CNN architectures
and we found that better model has higher coefficient.

The plot on the left in Figure 2 help visualize the strong correlation between AVH(x) and Human
Selection Frequency for validation images. One intuition behind this correlation is that the class
weightsW might corresponds to human semantic for each category and thereby AVH(x) corresponds
to human semantic categorization of an image. In order to test if the strong correlation holds for all
models, we perform the same experiments on AlexNet, VGG19 and DenseNet121.
Hypothesis 2. Model Confidence has a correlation with Human Selection Frequency.
Outcome: Null Hypothesis Rejected

An interesting observation in [48] shows that Human Selection Frequency has strong influence on
the Model Confidence. Specifically, examples with low Human Selection Frequency tends to have
relatively low Model Confidence. Naturally we examine if the correlation between Model Confidence
and Human Selection Frequency is strong. Specifically, all ImageNet validation images are evaluated
by the pre-trained models. The corresponding output is simply the Model Confidence on each image.
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From table 1, we can first see that it is clear that because p-value is < 0.001, Model Confidence
does have a strong correlation with Human Selection Frequency. However, the correlation coefficient
for Model Confidence and Human Selection Frequency is consistently lower than that of AVH and
Human Selection Frequency.

The middle plot in figure 2 presents a two-dimensional histogram for the correlation visualization.
The x-axis represents Human Selection Frequency, and the y-axis represents Model Confidence.
Each bin exhibits the number of images which lie in the corresponding range. We can observe the
high density at the right corner, which means the majority of the images have both high human and
model accuracy. However, there is a considerable amount of density on the range of medium human
accuracy but either extremely low or high model accuracy. One may question that the difference of
the correlation coefficient is not large, thereby we also run statistical testing on the significance of the
gap, naturally our next step is to test if the difference is significant.
Hypothesis 3. AVH has a stronger correlation to Human Selection Frequency than Model Confidence.
Outcome: Null Hypothesis Rejected

We first apply fisher transformation for each correlation coefficient: Z score for coefficient of AVH
becomes 0.377 and that of Model Confidence becomes 0.337. Then we determined the Z value to be
4.85 from the two above-mentioned Z scores and sample sizes. According to Z table, p− value is
0.00001. Therefore, we reject the null hypothesis and conclude that AVH has statistically significant
stronger correlation with Human Selection Frequency than Model Confidence. In later section 5,
we also empirically show that such stronger correlation brings cumulative advantages in some
applications.
Hypothesis 4. ‖x‖2 has a correlation with Human Selection Frequency.
Outcome: Failure to Reject Null Hypothesis

[41] conjectures that ‖x‖2 accounts for intra-class Human/Model Confidence. Particularly, if the
norm is larger, the prediction from the model is also more confident, to some extent. Therefore,
we conduct similar experiments like previous section to demonstrate the correlation between ‖x‖2
and Human Selection Frequency. Initially, we compute the ‖x‖2 for every validation sample for all
models. Then we normalize ‖x‖2 within each class. Table 1 presents the results for the correlation
test. We omit the results for p-value in the table and report here that they are all much higher than
0.05, indicating there is no correlation between ‖x‖2 and Human Selection Frequency.

The right plot in figure 2 uses a two-dimensional histogram to show the correlation for all the
validation images. Given that the norm has been normalized with each class, naturally, there is
notable density when the norm is 0 or 1. Except for that, there is no obvious correlation between ‖x‖2
and Human Selection Frequency. We further verify if presenting all samples across 1000 different
classes affects the visualization of the correlation. According to WordNet [14] hierarchy, we map the
original 1000 fine-grained classes to 45 higher hierarchical classes. A figure in appendix exhibits the
relationship between Human Selection Frequency and ‖x‖2 for three representative higher classes
containing 58, 7, 1 fine-grained classes respectively. Noted that there is still not any visible direct
proportion between these two variables across all plots.

4 DYNAMICS OF AVH DURING TRAINING

After discovering the strong correlation of human visual hardness and AVH score, a natural question
would be: What role does AVH play during the training process? Optimization algorithms are used to
update weights and biases i.e. the internal parameters of a model to improve the training loss. Both
the angles between the feature embedding and classifiers, and the L2 norm of the embedding can
influence the loss. While it is well-known that the training loss or accuracy keeps improving but it
is not obvious what would be the dynamics of the angles and norms separately during training. we
design the experiments to observe the training dynamics of various network architectures.

Experiment Settings. For datasets and models, we use exactly the same setting as the experiments
in 3.1. Nevertheless, observing training dynamics involves training models from scratch on ImageNet
training set instead of directly using the pre-trained models. Therefore, we follow the standard training
process of AlexNet [29], VGG19 [55], ResNet50 [23] and DenseNet121 [25] (DenseNet results are
put in Appendix). For consistency, we train all four models for 90 epochs and decay the initial learning
rate by a factor of 10 every 30 epochs. The initial learning rate for AlexNet and VGG19 is 0.01 and for
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Figure 3: The top three plots show the number of Epochs v.s. Average `2 norm across ImageNet validation
samples which are split into five bins based on human selection frequency information. The middle three plots
represent number of Epochs v.s. Average AVH(x). The bottom ones present number of Epochs v.s. Model
Accuracy. From left to right, we use AlexNet, Vgg19 and ResNet50. The plots for DenseNet are in Appendix.

DensetNet121 and ResNet50 is 0.1. For human visual hardness based on Human Selection Frequency,
we split all the validation images into 5 bins, [0.0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], [0.8, 1.0], based
on their human selection frequency respectively. For human visual hardness based on Image Degra-
dation Level, we create an augmented validation set based on two image degradation methods,
decreasing contrast and adding noise. We label them with corresponding degradation level as well.
Note that for all the figures in this section, Epoch starts from 1.

Observation 1: The norm of feature embeddings keeps increasing during training. Figure 3, 10
and 11 presents the dynamics of the average ‖x‖2 and the dynamics of the accuracy for validation
samples vary in 90 epochs during the training on three architectures. Note that we are using the
validation data for dynamics observation and therefore have never fit them into the model. The
average ‖x‖2 increases with a small initial slope but it suddenly climbs after 30 epochs when the first
learning rate decay happens. The accuracy curve is very similar to that of the average ‖x‖2. The
above observations are consistent in all models. More interestingly, we find that neural networks
with shortcut connections (e.g., ResNets and DenseNets) tend to make the norm of the images with
different human selection frequency become the same, while the neural networks without shortcuts
(e.g., AlexNet and VGG) tend to keep the gap of norm among the images with different human visual
hardness.

Observation 2: AVH hits a plateau very early even when the accuracy or loss is still improving.
Figure 3, 10 and 11 exhibits the change of average AVH for validation samples in 90 epochs of
training on three models. The average AVH for AlexNet and VGG19 decreases sharply at the
beginning and then starts to bounce back a little bit before converging. However, the dynamics of the
average AVH for DenseNet121 and ResNet50 are different. They both decrease slightly and then
quickly hits a plateau in all three learning rate decay stages. But the common observation is that
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they all stop improving even when ‖x‖2 and model accuracy are increasing. AVH is more important
than ‖x‖2 in the sense that it is the key factor deciding which class the input sample is classified
to. However, optimizing the norm under the current softmax cross-entropy loss would be easier so,
which cause the plateau of angles for easy examples. However, the plateau for the hard examples can
be caused by the limitation of the model itself. As a result, it shows the necessity and importance of
designing loss functions that focus on optimizing angles, such as [34, 38, 40].

Observation 3: AVH’s correlation with human selection frequency consistently holds across
models throughout the training process. In Figure 3, 10 and 11, we average over validation
samples in five human selection frequency bins or five degradation level bins separately , and then
compute the average embedding norm, AVH and model accuracies. We can observe that for ‖x‖2,
the gaps between the samples with different human visual hardness are not obvious in ResNet and
DenseNet, while they are quite obvious in AlexNet and VGG. However, for AVH, such AVH gaps are
very significant and consistent across every network architecture during the entire training process.
Interestingly, even if the network is far from being converged, such AVH gaps are still consistent
across different human selection frequency. Also the norm gaps are also consistent. The intuition
behind this could be that the angles for hard examples are much harder to decrease and probably
never in the region for correct classification. Therefore the corresponding norms would not increase
otherwise hurting the loss. It validates that AVH is a consistent and robust measure for visual hardness
(and even generalization).

Observation 4: AVH is an indicator of model’s generalization ability. From Figure 3, 15, 10 and
11, we observe that better models (i.e., higher accuracy) have lower average AVH throughout the
training process and also across samples under different human visual hardness. For instance, Alexnet
is the worst model, and its overall average AVH and average AVH on each of five bins are worse
than those of the other three models. This observation is aligned with the earlier observations of
[48] that better models also generalize better on samples across different human visual hardness.
Moreover, we AVH is potentially a better measure for generalization as a pretrained model. The norm
of feature embeddings is often embedded with training data prior such as data imbalance [38] and
class granularity [29]. But when extracting the features for the classes that do not exist in training set,
such training data prior is undesired. Since AVH does not consider the norm of feature embeddings,
it may better evaluate the generalization of the deep network.

Conjecture on training dynamics of CNNs. From Figure 3 and observations above, we conjecture
that the training of CNN has two phases. 1) At the beginning of the training, the softmax cross-entropy
loss will first optimize the angles among different classes while the norm will fluctuate and increase
very slowly. We argue that it is because changing the norm will not decrease the loss when the angles
are not separated enough for correct classification. As a result, the angles get optimized firstly. 2)
As the training continues, the angles become more stable and change very slowly while the norm
increases rapidly. On the one hand, for easy examples, it is because when the angles get decreased
enough for correct classification, the softmax cross-entropy loss can be well minimized by purely
increasing the norm. On the other hand, for hard examples, the plateau is caused by that the CNN is
unable to decrease the angle to correctly classify examples and thereby also unable to increase the
norms (because it may otherwise increase the loss).

5 APPLICATION TO SELF-TRAINING FOR DOMAIN ADAPTATION

(Unsupervised) domain adaptation [1] presents an important transfer learning problem with wide
applications. Deep self-training [32] recently emerged as a powerful framework towards addressing
this problem [49, 53, 64, 65]. Here we show the application of AVH as an improved confidence
measure in self-training that could significantly benefit the domain adaptation task.

Dataset: We conduct expeirments on the VisDA-17 [46] dataset which is a widely used major
benchmark for domain adaptation in image classification. The dataset contains a total number of
152, 409 2D synthetic images from 12 categories in the source training set, and 55, 400 real images
from MS-COCO [35] with the same set of categories as the target domain validation set. We follow
the protocol of previous works to train a source model with the synthetic training set, and report the
model performance on target validation set upon adaptation.
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Baseline: We choose class-balanced self-training (CBST) [64] as our starting self-training baseline
considering its good performance on domain adaptaiton. We also compare our model with confidence
regularized self-training (CRST)1 [65], a more recent state-of-the-art self-training framework im-
proved over CBST with network prediction/pseudo-label regularized with smoothness. Specifically,
our work follows the exact implementation of CBST/CRST in [65].

Specifically, given the labeled source domain training set xs ∈ XS and the unlabeled target domain
data xt ∈ XT , with known source labels ys = (y

(1)
s , ..., y

(K)
s ) ∈ YS and unknown target labels

ŷt = (ŷ
(1)
t , ..., ŷ

(K)
t ) ∈ ŶT from K classes, CBST performs joint network learning and pseudo-label

estimation by treating pseudo-labels as discrete learnable latent variables with the following loss:

min
w,ŶT

LCB(w, Ŷ) = −
∑
s∈S

K∑
k=1

y(k)s log p(k|xs;w)−
∑
t∈T

K∑
k=1

ŷ
(k)
t log

p(k|xt;w)

λk

s.t. ŷt ∈ EK ∪ {0}, ∀t

(1)

where the feasible set of pseudo-labels is the union of {0} and the K dimensional one-hot vector
space EK , and w and p(k|x;w) represent the network weights and the classifier’s softmax probability
for class k, respectively. In addition, λk serves as a class-balancing parameter controlling the pseudo-
label selection of class k, and is determined by the softmax confidence ranked at portion p (in
descending order) among samples predicted to class k. Therefore, only one parameter p is used to
determine all λk’s. The optimization problem in (1) can be solved via minimizing with respect to w

and Ŷ alternatively, and the solver of Ŷ can be written as:

ŷ
(k)∗
t =

1, if k = argmax
k
{p(k|xt;w)

λk
} and p(k|xt;w) > λk

0, otherwise

(2)

The optimization with respect to w is simply normal network re-training with source labels and
estimated pseudo-labels. And the complete self-training process involves alternatively repeat of
network re-training and pseudo-label estimation.

CBST+AVH: We seek to improve the pseudo-label solver with better confidence measure from AVH.
To this end, we propose the following definition of angular visual confidence (AVC) to represent the
predicted probability of class c:

AV C(c|x;w) =
π −A(x,wc)∑K

k=1(π −A(x,wk))
, (3)

and the pseudo-label estimation in CBST+AVH is accordingly defined as:

ŷ
(k)∗
t =

1, if k = argmax
k
{AV C(k|xt;w)

λk
} and AV C(k|xt;w) > λk

0, otherwise

(4)

where λk is differently determined by referring to AV C(k|xt;w) ranked at portion p among samples
predicted to class k by AVH, following a similar definition of λk in CBST. In addition, network
re-training in CBST+AVH follows the softmax self-training loss in (1).

One could see that AVH changes the self-training behavior from two ways with the conditions in (4):
Improved selection: This is determined by AV C(k|xt;w) > λk.
Improved classification: This is determined by k = argmaxk{

AV C(k|xt;w)
λk

}.
Specifically, the former determines which samples are not ignored during self-training based on AVC,
whereas the latter determines the pseudo-label class by taking argmax over normalized AVC scores.
With calibrated confidence that better resembles human visual hardness, both aspects are likely to
considerably influence the performance of self-training.

Experimental Results: We present the results of the proposed method in Table 3, and also show its
performance with respect to different self-training epochs in Figure 4. One could see that CBST+AVH
outperforms both CBST and CRST by a very significant margin. We would like to emphasize that
this is a very compelling result under “apples to apples” comparison with the same source model,
implementation and hyper-parameters.

1We consider MRKLD+LRENT which is reported to be the highest one in [65].
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Table 2: Statistics of the examples selected by CBST+AVH and CBST/CRST.

TP Rate AVH (avg) Model Confidence(avg) Norm ‖x‖ (avg)
CBST+AVH 0.844 0.118 0.961 20.84
CBST/CRST 0.848 0.117 0.976 21.28

Table 3: Experimental results on VisDA17.

Method Aero Bike Bus Car Horse Knife Motor Person Plant Skateboard Train Truck Mean
Source [51] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
MMD [42] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN [16] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
ENT [19] 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0
MCD [50] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
ADR [51] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

Source [65] 68.7 36.7 61.3 70.4 67.9 5.9 82.6 25.5 75.6 29.4 83.8 10.9 51.6
CBST [65] 87.2 78.8 56.5 55.4 85.1 79.2 83.8 77.7 82.8 88.8 69.0 72.0 76.4
CRST [65] 88.0 79.2 61.0 60.0 87.5 81.4 86.3 78.8 85.6 86.6 73.9 68.8 78.1
Proposed 93.3 80.2 78.9 60.9 88.4 89.7 88.9 79.6 89.5 86.8 81.5 60.0 81.5

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epoch

55

60

65

70

75

80

Ac
cu

ra
cy
AVH+CBST
CRST
CBST

Figure 4: Experimental results of com-
parison among AVH+CBST, CBST and
CRST on VisDA2017 dataset.

Analysis: A major challenge of self-training is the amplifica-
tion of error due to misclassified pseudo-labels. Therefore, tra-
ditional self-training methods such as CBST often use model
confidence as the confidence measure to select confidently
labeled examples. The hope is that higher confidence poten-
tially implies lower error rate. While this in generally proves
useful, the model tends to focus on the “less informative” sam-
ples, whereas ignoring the “more informative”, harder ones
near classier boundaries that could be essential for learning a
stronger classifier.

An advantage we observe from AVH is that the improved cal-
ibration leads to more frequent sampling of harder samples,
whereas the pseudo-label classification on these hard samples
generally outperforms softmax results. Table 2 shows some
statistics of the examples selected with AVH and Model Confi-
dence respectively at the beginning of the training process. The true postive rate (TP Rate) for of
CBST+AVH remains similar to CBST/CRST, indicating AVH is not overall introducing more noisy
examples compare to model confidence. On the other hand, it is observed that the average model
confidence of AVH selected samples is lower, indicating there are more selected hard samples that
are closer to the decision boundary. It is also observed that the average sample norm by AVH is also
lower, confirming the influence of sample norm on ultimate model confidence.

6 EXTENSIONS AND APPLICATIONS

Adversarial Example: A Counter Example? Our claim about the strong correlation between AVH
score and human visual hardness does not apply on non-natural images such as adversarial examples.
For such examples, the human can not tell the difference visually, but the adversarial example has a
worse AVH than the original image, which runs counter to our claim that AVH has strong correlation
with human visual hardness. So this claim is limited to distribution of natural images. However, on a
positive note, we do find that AVH is slower to change compared to the embedding norm during the
dynamics of adversarial training. See Appendix for details.

Connection to deep metric learning: Measuring the hardness of samples is also of great importance
in the field of deep metric learning [45, 56, 58]. For instance, objective functions in deep metric
learning consist of e.g., triplet loss [52] or contrastive loss [21], which requires data pair/triplet
mining in order to perform well in practice. One of the most widely used data sampling strategies is
semi-hard negative sample mining [52] and hard negative sample mining. These negative sample
mining techniques highly depend on how one defines the hardness of samples. AVH can be potentially
useful in this setting.

Connections to fairness in machine learning: Easy and hard samples can implicitly reflect im-
balances in latent attributes in the dataset. For example, the CASIA-WebFace dataset [60] mostly

9
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contains white celebrities, so the neural network trained on CASIA-WebFace is highly biased against
the other races. [4] demonstrates a performance drop of faces of darker people due to the biases in
the training dataset. In order to ensure fairness and remove dataset biases, the ability to identify hard
samples automatically can be very useful. We would like to test if AVH is effective in these settings.

Connections to knowledge transfer and curriculum learning: The efficiency of knowledge trans-
fer [24] is partially determined by the sequence of input training data. [37] theoretically shows
feeding easy samples first and hard samples later (known as curriculum learning) can improve the
convergence of model. [2] also show that the curriculum of feeding training samples matters in terms
of both accuracy and convergence. We plan to investigate the use of AVH metric in such settings.

7 CONCLUDING REMARKS

Human perception and deep neural networks in general have different notions of visual hardness. Our
paper studies the gap between them, and attempts to bridge this gap by proposing a novel measure for
CNN models known as angular visual hardness. Our comprehensive empirical studies show that AVH
has many nice properties. First, AVH has a strong correlation with human selection frequency and
image degradation level. Second, this holds across different network architectures and throughout the
training process. Third, AVH can serve as an indicator of generalization abilities of neural networks,
and improving SOTA accuracy entails improving accuracy on hard examples. Then we empirically
show the huge advantage of AVH over Model Confidence in self-training for domain adaptation task.
It is still an open problem of designing an appropriate loss function that can focus on improving AVH
during training. AVH can be very useful in other applications such as deep metric learning, fairness,
knowledge transfer, etc. and we plan to investigate them in future.
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Felix A Wichmann. Generalisation in humans and deep neural networks. In Advances in Neural
Information Processing Systems, pp. 7538–7550, 2018. 3

[18] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias
improves accuracy and robustness. 2019. 1

[19] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In
NeurIPS, 2005. 9

[20] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1321–1330. JMLR. org, 2017. 1, 3

[21] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an
invariant mapping. In CVPR, 2006. 9

[22] Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrinking and hallucinat-
ing features. In ICCV, 2017. 1

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016. 3, 5

[24] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015. 10

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017. 3, 5

[26] Martina Jakesch, Helmut Leder, and Michael Forster. Image ambiguity and fluency. PLoS One,
8(9):e74084, 2013. 2

[27] Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning
with importance sampling. arXiv preprint arXiv:1803.00942, 2018. 2

[28] Saeed Reza Kheradpisheh, Masoud Ghodrati, Mohammad Ganjtabesh, and Timothe Masque-
lier. Deep networks can resemble human feed-forward vision in invariant object recogni-
tion. Scientific Reports, 6(1), Sep 2016. ISSN 2045-2322. doi: 10.1038/srep32672. URL
http://dx.doi.org/10.1038/srep32672. 3

11

http://dx.doi.org/10.1109/iccvw.2017.329
http://dx.doi.org/10.1109/iccvw.2017.329
http://dx.doi.org/10.1109/ICCCN.2017.8038465
http://dx.doi.org/10.1038/srep32672


Under review as a conference paper at ICLR 2020

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pp.
1097–1105, 2012. 3, 5, 7

[30] Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable calibration measures for neural
networks from kernel mean embeddings. In International Conference on Machine Learning, pp.
2810–2819, 2018. 3

[31] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In NeurIPS, 2010. 1

[32] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In ICML Workshop on Challenges in Representation Learning, 2013. 7

[33] Zhizhong Li and Derek Hoiem. Reducing over-confident errors outside the known distribution.
arXiv preprint arXiv:1804.03166, 2018. 1

[34] Rongmei Lin, Weiyang Liu, Zhen Liu, Chen Feng, Zhiding Yu, James M Rehg, Li Xiong, and
Le Song. Compressive hyperspherical energy minimization. arXiv preprint arXiv:1906.04892,
2019. 3, 7

[35] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014. 7

[36] Peter H Lindsay and Donald A Norman. Human information processing: An introduction to
psychology. Academic press, 2013. 1, 2, 3

[37] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith, James M
Rehg, and Le Song. Iterative machine teaching. In ICML, 2017. 10

[38] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface:
Deep hypersphere embedding for face recognition. In CVPR, 2017. 7

[39] Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, and Le Song.
Deep hyperspherical learning. In NeurIPS, 2017. 2

[40] Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and Le Song. Learning
towards minimum hyperspherical energy. In NeurIPS, 2018. 3, 7

[41] Weiyang Liu, Zhen Liu, Zhiding Yu, Bo Dai, Rongmei Lin, Yisen Wang, James M Rehg, and
Le Song. Decoupled networks. In CVPR, 2018. 2, 5

[42] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features
with deep adaptation networks. In ICML, 2015. 9

[43] Tiago Marques, Julia Nguyen, Gabriela Fioreze, and Leopoldo Petreanu. The functional
organization of cortical feedback inputs to primary visual cortex. Nature neuroscience, 21(5):
757, 2018. 2

[44] Radoslaw Martin Cichy, Aditya Khosla, Dimitrios Pantazis, and Aude Oliva. Dynamics of scene
representations in the human brain revealed by magnetoencephalography and deep neural net-
works. NeuroImage, 153:346358, Jun 2017. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2016.
03.063. URL http://dx.doi.org/10.1016/j.neuroimage.2016.03.063. 3

[45] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In CVPR, 2016. 9

[46] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko.
Visda: The visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017. 7

[47] R. T. Pramod and S. P. Arun. Do computational models differ systematically from human object
perception? 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun
2016. doi: 10.1109/cvpr.2016.177. URL http://dx.doi.org/10.1109/CVPR.2016.
177. 3

12

http://dx.doi.org/10.1016/j.neuroimage.2016.03.063
http://dx.doi.org/10.1109/CVPR.2016.177
http://dx.doi.org/10.1109/CVPR.2016.177


Under review as a conference paper at ICLR 2020

[48] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? arXiv preprint arXiv:1902.10811, 2019. 1, 2, 3, 4, 7

[49] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-training for unsupervised
domain adaptation. In ICML, 2017. 7

[50] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier
discrepancy for unsupervised domain adaptation. 2017. 9

[51] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate Saenko. Adversarial dropout
regularization. In ICLR, 2018. 9

[52] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In CVPR, 2015. 2, 9

[53] Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised
domain adaptation. 2018. 7

[54] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and Francesc
Moreno-Noguer. Discriminative learning of deep convolutional feature point descriptors. In
ICCV, 2015. 2

[55] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014. 3, 5

[56] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In NeurIPS,
2016. 9

[57] Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu. Multiple instance detection network
with online instance classifier refinement. In CVPR, 2017. 1

[58] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters
in deep embedding learning. In ICCV, 2017. 2, 9

[59] D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo.
Performance-optimized hierarchical models predict neural responses in higher visual cortex.
Proceedings of the National Academy of Sciences, 111(23):86198624, May 2014. ISSN 1091-
6490. doi: 10.1073/pnas.1403112111. URL http://dx.doi.org/10.1073/pnas.
1403112111. 3

[60] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch.
arXiv preprint arXiv:1411.7923, 2014. 9

[61] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In CVPR, 2018. 2

[62] Yan Zhou, Murat Kantarcioglu, and Bhavani Thuraisingham. Self-training with selection-by-
rejection. In 2012 IEEE 12th international conference on data mining, pp. 795–803. IEEE,
2012. 1

[63] Xiaojin Zhu. Semi-supervised learning tutorial. 1

[64] Yang Zou, Zhiding Yu, BVK Kumar, and Jinsong Wang. Domain adaptation for semantic
segmentation via class-balanced self-training. arXiv preprint arXiv:1810.07911, 2018. 1, 7, 8

[65] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence regularized
self-training. arXiv preprint arXiv:1908.09822, 2019. 7, 8, 9

13

http://dx.doi.org/10.1073/pnas.1403112111
http://dx.doi.org/10.1073/pnas.1403112111


Under review as a conference paper at ICLR 2020

Appendix

A ADDITIONAL EXPERIMENTS
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Figure 5: The three plots present the correlation between Noise Degradation Level and ‖x‖ using AlexNet,
VGG19 and ResNet50 (DenseNet121 in Appendix). Noted here, the larger the Noise Level is, the harder human
can visualize the image.

0.0 0.2 0.4 0.6 0.8

Contrast Level
0.0

0.2

0.4

0.6

0.8

1.0

AV
H(

x)

0

2000

4000

6000

8000

# of Sam
ples

0.0 0.2 0.4 0.6 0.8

Contrast Level
0.0

0.2

0.4

0.6

0.8

1.0

AV
H(

x)

0

1000

2000

3000

4000

5000

6000

# of Sam
ples

0.0 0.2 0.4 0.6 0.8

Contrast Level
0.0

0.2

0.4

0.6

0.8

1.0

AV
H(

x)

0

1000

2000

3000

4000

5000

# of Sam
ples

Figure 6: The three plots present the correlation between Contrast Degradation Level and ‖x‖ using AlexNet,
VGG19 and ResNet50 (DenseNet121 in Appendix). Noted here, the larger the Contrast Level is, the easier
human can visualize the image.
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Figure 7: The three plots present the correlation between Human Selection Frequency and ‖x‖ using AlexNet,
VGG19 and ResNet50 (DenseNet121 in Appendix).

A.1 ADDITIONAL PLOTS FOR THE PREDICTIONS FOR THE HYPOTHESIS

Definition 4 (Image Degradation Level). We define another way to measure human visual hardness on
pictures as Image Degradation Level. We consider two degradation methods in this paper, decreasing
contrast and adding noise. Quantitatively, Image Degradation Level for decreasing contrast is
directly the contrast level. Image Degradation Level for adding noise is the amount of pixel-wise
additive uniform noise.

Hypothesis: AVH has a strong correlation with Image Degradation Level

In order to test if the results from Prediction 1 hold on another proxy to human visual hardness, Image
Degradation Level, we perform the similar experiments but on the augmented ImageNet validation
set. The plots in Figure 5 show the strong correlation between AVH(x) and Noise Degradation Level
while the plots in Figure 6 present the strong correlation between AVH(x) and Contrast Degradation
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Figure 8: The left, middle and right plots respectively present the correlation between Human Selection frequency,
Noise Degradation Level, Contrast Degradation Level and ‖x‖ using DenseNet121.
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Figure 9: `2 norm of the embedding v.s. human selection frequency under different class granularity (according
to WordNet hierarchy). From left to right, there are 58, 7, 1 classes respectively. The human selection frequency
is therefore computed based on the new class granularity.

Level. They, along with Figure 7, demonstrate that AVH(x) strongly correlates with Human Visual
Hardness. Additional Plots for DenseNet121 is shown in Figure 8.

Hypothesis: ‖x‖2 has a correlation with Human Selection Frequency

We further verify if presenting all samples across 1000 different classes affects the visualization of the
correlation. According to WordNet [14] hierarchy, we map the original 1000 fine-grained classes to
45 higher hierarchical classes. Figure 9 exhibits the relationship between Human Selection Frequency
and ‖x‖2 for three representative higher classes containing 58, 7, 1 fine-grained classes respectively.
Noted that there is still not any visible direct proportion between these two variables across all plots.

Hypothesis: AVH has a correlation with Human Selection Frequency Additional Plots for
DenseNet121 is shown in Figure 8.
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Figure 10: The top three plots show the number of Epochs v.s. Average `2 norm across ImageNet validation
samples which are split into five bins based on image contrast degradation level information. The middle three
plots represent number of Epochs v.s. Average AVH(x). The bottom ones present number of Epochs v.s. Model
Accuracy. From left to right, we use AlexNet, Vgg19 and ResNet50. The plots for DenseNet are in Appendix.
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Figure 11: The top three plots show the number of Epochs v.s. Average `2 norm across ImageNet validation
samples which are split into five bins based on image noise degradation level information. The middle three plots
represent number of Epochs v.s. Average AVH(x). The bottom ones present number of Epochs v.s. Model
Accuracy. From left to right, we use AlexNet, Vgg19 and ResNet50. The plots for DenseNet are in Appendix.
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A.2 ADDITIONAL EXPERIMENTS FOR OBSERVING DYNAMICS ON MNIST

Figure 12 illustrates how the average norm of the feature embedding and angles between feature and
class embedding for testing samples vary in 60 iterations during the training process. The average
norm increases with a large initial slope but it flattens slightly after 10 iterations. On the other hand,
the average angle decreases sharply at the beginning and then becomes almost flat after 10 iterations.

Moreover, we explore the difference between norm and angle change for easy and hard human
examples in more details. Figure 13 also plots the angle and norm changes for two examples, which
are hard and easy for human visualization, in the training phase. Note that both examples are testing
data and thereby have never fit into the model. We can see that for the angle, both of them drop largely
initially and then the angle for the easy one converges to a much lower value. For the norm, both of
them are increasing drastically at an early stage but that for the harder example keeps climbing even
when that for the easy one saturates.
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Figure 12: Average `2 norm and angle of the embedding across all testing samples v.s. iteration number.
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Figure 13: `2 norm and angle of the embedding of an easy sample and a hard sample v.s. iteration number.
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A.3 ADDITIONAL EXPERIMENTS FOR TRAINING DYNAMICS ON IMAGENET

Figure 14 presents the dynamics of the average ‖x‖2 and the dynamics of the accuracy for validation
samples vary in 90 epochs during the training on AlexNet, VGG19, DenseNet121 and ResNet50. In
figure 15, we average over validation samples in five human selection frequency bins separately, and
then compute the average embedding norm, AVH and model accuracies. In figure 15, we average over
validation samples in five image noise degradation level bins separately, and then compute the average
embedding norm, AVH and model accuracies. In figure 15, we average over validation samples in
five image contrast degradation level bins separately, and then compute the average embedding norm,
AVH and model accuracies.
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Figure 14: Average `2 norm and angle of the embedding across testing samples with different level of hardness
v.s. iteration number on DenseNet121.
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Figure 15: The left plot shows the number of Epochs v.s. Average `2 norm across ImageNet validation samples
which are split into five bins based on human selection frequency information. The middle plot represent
number of Epochs v.s. Average AVH(x). The bottom ones present number of Epochs v.s. Model Accuracy on
DenseNet121.
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Figure 16: The left plot shows the number of Epochs v.s. Average `2 norm across ImageNet validation samples
which are split into five bins based on image noise degradation level information. The middle plot represent
number of Epochs v.s. Average AVH(x). The bottom ones present number of Epochs v.s. Model Accuracy on
DenseNet121.
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Figure 17: The left plot shows the number of Epochs v.s. Average `2 norm across ImageNet validation samples
which are split into five bins based on image contrast degradation level information. The middle plot represent
number of Epochs v.s. Average AVH(x). The bottom ones present number of Epochs v.s. Model Accuracy on
DenseNet121.
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B A SPECIAL CASE: ADVERSARIAL EXAMPLES

We show a special case in Figure 18 to illustrate how the norm and the angle change when one sample
switches from one class to another. Specifically, we change the sample from one class to another
using adversarial perturbation. It is essentially performing gradient ascent to the ground truth class.
In Figure 18, the purple line denotes the trajectory of an adversarial sample switching from one class
to another. We can see that the sample will first shrink its norm towards origin and then push its angle
away from the ground truth class. Such a trajectory indicates that the adversarial sample will first
approach to the origin in order to become a hard sample for this class. Then the sample will change
the angle in order to switch its label. This special example fully justifies the importance of both norm
and angle in terms of the hardness of samples.
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(a) Trajectory of an adversarial example (b) Successful adversarial examples in CNN (c) Successful adversarial examples in D-SphereNet
Figure 18: Trajectory of an adversarial example switching from one class to another. The purple line denotes the
trajectory of the adversarial example.
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