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ABSTRACT

Differentiable planning network architecture has shown to be powerful in solving
transfer planning tasks while possesses a simple end-to-end training feature. Many
great planning architectures that have been proposed later in literature are inspired
by this design principle in which a recursive network architecture is applied to em-
ulate backup operations of a value iteration algorithm. However existing frame-
works can only learn and plan effectively on domains with a lattice structure, i.e.
regular graphs embedded in a certain Euclidean space. In this paper, we pro-
pose a general planning network, called Graph-based Motion Planning Networks
(GrMPN), that will be able to i) learn and plan on general irregular graphs, hence
ii) render existing planning network architectures special cases. The proposed
GrMPN framework is invariant to task graph permutation, i.e. graph isormophism.
As a result, GrMPN possesses the generalization strength and data-efficiency abil-
ity. We demonstrate the performance of the proposed GrMPN method against
other baselines on three domains ranging from 2D mazes (regular graph), path
planning on irregular graphs, and motion planning (an irregular graph of robot
configurations).

1 INTRODUCTION

Reinforcement learning (RL) is a sub-field of machine learning that studies about how an agent
makes sequential decision making (Sutton et al., 1998) to interact with an environment. These prob-
lems can in principle be formulated as Markov decision process (MDP). (Approximate) Dynamic
programming methods such as value iteration or policy iterations are often used for policy opti-
mization. These dynamic programming approaches can also be leveraged to handle learning, hence
referred as model-based RL (Kober et al., 2013). Model-based RL requires an estimation of the
environment model hence is computationally expensive, but it is shown to be very data-efficient.
The second common RL paradigm is model-free which does not require a model estimation hence
has a lower computation cost but less data-efficiency (Kober et al., 2013). With a recent marriage
with deep learning, deep reinforcement learning (DRL) has achieved many remarkable successes on
a wide variety of applications such as game (Mnih et al., 2015; Silver et al., 2016), robotics (Levine
et al., 2016), chemical synthesis (Segler et al., 2017), news recommendation (Zhang et al., 2019) etc.
DRL methods also range from model-based (Kurutach et al., 2018; Lee et al., 2018a) to model-free
(Mnih et al., 2015; Heess et al., 2015) approaches.

On the other hand, transfer learning across tasks has long been desired because it is much more
challenging in comparison to single-task learning. Recent work (Tamar et al., 2016) has proposed
a very elegant idea that suggests to encode a differentiable planning module in a policy network
architecture. This planning module can emulate the recursive operation of value iterations, called
Value Iteration Networks (VIN). Using this network, the agent is able to evaluate multiple future
planning steps for a given policy. The planning module is designed to base on a recursive application
of convolutional neural networks (CNN) and max-pooling for value function updates. VIN not
only allows policy optimization with more data-efficiency, but also enables transfer learning across
problems with shared transition and reward structures. VIN has laid foundation for many later
differentiable planning network architectures such as QMDP-Net (Karkus et al., 2017), planning
under uncertainty(Gupta et al., 2017), Memory Augmented Control Network (MACN) (Khan et al.,
2018), Predictron (Silver et al., 2017), planning networks (Srinivas et al., 2018) etc. However,
these approaches including VIN is limited to learning with regular environment structures, i.e. the
transition function forms an underlying 2D lattice structure.

Recent works have tried to mitigate this issue by resorting to graph neural networks. These work
exploit geometric intuition in environments which have irregular structures such as generalized VIN
(Niu et al., 2018), planning on relational domains (Toyer et al., 2018; Bajpai et al., 2018), (Ma
et al., 2018), automated planning for scheduling (Ma et al., 2018), etc. The common between these
approaches are in the use of graph neural networks to process irregular data structures like graphs.
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Among these frameworks, only GVIN is able to emulate the value iteration algorithm on irregular
graphs of arbitrary sizes, e.g. generalization to arbitrary graphs. GVIN has a differentiable policy
network architecture which is very similar to VIN. GVIN can also have a zero-shot planning ability
on unseen graphs. However, GVIN requires domain knowledge to design a graph convolution which
might limit it to become a universal graph-based path planning framework.

In this paper, we aim to demonstrate different formulations for value iteration networks on irregular
graphs. These proposed formulations are based on different graph neural network models. These
models are capable of learning optimal policies on general graphs where their transition and reward
functions are not provided a priori and yet to be estimated. These models are known to be invariant
to graph isomorphism, therefore they are able to have a generalization ability to graphs of different
sizes and structures. As a result, they enjoy the ability of zero-shot learning to plan. Specifically, it
is known that Bellman equations are written as the form of message passing, therefore we propose
using message passing neural networks (MPNN) to emulate the value iteration algorithm on graphs.
We will show two most general formulations of graph-based value iteration network that are based
on two general-purpose approaches in the MPNN family: Graph Networks (GN) (Battaglia et al.,
2018) and Graph Attention Networks (GAT) (Velickovic et al., 2018). In particular, our contributions
are three-fold:

• We develop a MPNN based path planning network (GrMPN) which can learn to plan on
general graphs, e.g. regular and irregular graphs. GrMPN is an differentiable end-to-end
planning network architecture trained via imitation learning. We implement GrMPN via
two formulations that are based on GN and GAT.

• GrMPN is a general graph-based value iteration network that will render existing graph-
based planning algorithms special cases. GrMPN is invariant to graph isomorphism which
enables transfer planning on graphs of different structure and size.

• We will demonstrate the efficacy of GrMPN which achieves state of the art results on vari-
ous domains including 2D maze with regular graph structures, irregular graphs, and motion
planning problems. We show that GrMPN outperforms existing approaches in terms of
data-efficiency, performance and scalability.

2 BACKGROUND

This section provides background on Markov decision process (MDP), value iteration algorithm,
value iteration networks (VIN) and graph neural networks (GNN).

2.1 MARKOV DECISION PROCESS AND VALUE ITERATION

A MDP is defined asM = (S,A,P,R), where S andA represent state and action spaces. P defines
a transition function P(s, a, s′) = P (s′|s, a), where s, s′ ∈ S, a ∈ A. A planning algorithm, e.g.
dynamic programming (Bertsekas et al., 1995), aims to find an optimal policy π : S 7→ A so that
a performance measure V π(s) = E (

∑
t γ

trt|s0 = s) is maximized, for all state s ∈ S; where
γ ∈ (0, 1) is a discount factor. The expectation is w.r.t stochasticity of P and R. Value iteration
(VI) is one of dynamic programming algorithms that can plan onM. It starts by updating the value
functions V (s),∀s ∈ S iteratively via the Bellman backup operator T , V (k) = TV (k−1) as follows:

V k(s) = max
a∈A

[
R(s, a) + γ

∑
s′

P (s′|s, a)V (k−1)(s′)

]
where k is an update iteration index. T is applied iteratively until V (k)(·) converges to optimal
values. It is proved that the operator T is a Lipschitz map with a factor of γ. In other words, as
k → ∞, V (k) converges to a fixed-point value function V ∗. As a result, the optimal policy π∗ can
be computed as, π∗(s) = arg maxa∈A [R(s, a) + γ

∑
s′ P (s′|s, a)V ∗(s′)]. Q-value functions are

also defined similarly as Q(s, a) = E (
∑
t γ

trt|s0 = s, a0 = a). In addition, we have the relation
between V and Q value functions as V (s) = maxaQ(s, a). For goal-oriented tasks, the reward
functionR(s, a) can be designed to receive low values at intermediate states and high values at goal
states s∗.

Value iteration network Planning on large MDPs might be very computationally expensive,
hence transfer-planning would be desirable, especially for tasks sharing similar structures of P and
R. Value Iteration Networks (VIN) (Tamar et al., 2016) is an differentiable planning framework that
can i) do transfer-planning for goal-oriented tasks with different goal states, ii) and learn the shared
underlying MDPM between tasks, i.e. learning the transition P and rewardR functions.
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Let’s assume that we want to find an optimal plan on a MDP M with unknown P and R. VIN’s
policy network with embedded approximate reward and transition functions R̄ and P̄ is trained end-
to-end through imitation learning. R̄ and P̄ are assumed to be from an unknown MDP M̄ whose
optimal policy can form useful features about the optimal policy inM . Based on observation feature
φ(s) on state s, the relation between M and M̄ is denoted as R̄ = fR(φ(·)) and P̄ = fP (φ(·)).
More specifically, inputs are 2D images, e.g. of the m×m maze with start and goal states; outputs
are optimal paths going from start to goal. VIN embeds value iteration as a recursive application of
convolutions and max-pooling over the feature channels. VIN consists of a convolutional layerQa ∈
<m×m with |A| channels. The trainable parameters are WR

a,i,j and WP
a,i,j with |A| channels, which

account for the reward and transition embeddings. The recursive process contains two following
convolution and max-pooling operations,

Q(k)
a = WR

a R̄+WP
a V

(k−1), V (k) = max
a

Q(k)
a (1)

where the convolution operators on R.H.S in the first equation is written as:
WR
a R̄ =

∑
i,j

WR
a,i,jR̄i′−i,j′−j , WP

a V
(k−1) =

∑
i,j

WP
a,i,j V̄

(k−1)
i′−i,j′−j

where i, j are cell index in the maze. VIN has later inspired many other differentiable planning
algorithms. For example, VIN’s idea can again be exploited for diffirentiable planning architectures
for planning on partially observable environments such as QMDP-Net (Karkus et al., 2017), (Gupta
et al., 2017), Memory Augmented Control Network (MACN) (Khan et al., 2018). A related dif-
ferentiable planning network is also used in the Predictron framework (Silver et al., 2017) where
its core planning module aims to estimate a Markov reward process that can be rolled forward for
many imagined planning steps. A notable extension of VIN is proposed by (Lee et al., 2018b),
called Gated path planning networks (GPPN), in which they use LSTM to replace the recursive VIN
update, i.e.

h
(k)
i′,j′ , c

(k)
i′,j′ = LSTM

∑
i,j

(
WR
a,i,jR̄i′−i,j′−j +WP

a,i,j V̄
(k−1)
i′−i,j′−j

)
, c

(k−1)
i′.j′

 (2)

These algorithms show great success at path planning on many different grid-based navigation tasks
in which the states are either fully or partially observable. However the underlying state space
must assume regular lattices in order to exploit local connectivity through the help of convolution
operations of CNN. This limits their applications to domains whose state spaces might be in the
forms of irregular graphs.

Generalized value iteration networks There is recent effort considering planning and reinforce-
ment learning whose state transitions form a general graph. Niu et. al. (Niu et al., 2018) propose
such a graph-based model-based deep reinforcement learning framework that generalizes VIN to
differentiable planning on graphs, called generalized value iteration (GVIN). GVIN takes a graph
with a certain start node and a goal node as input, and output an optimal plan. GVIN can learn
an underlying MDP and an optimal planning policy via either imitation learning or reinforcement
learning. Inspired by VIN, GVIN applies recursive graph convolution and max-pooling operators
to emulate the value iteration algorithm on general graphs. With a specially designed convolution
kernel, GVIN can also transfer planning to unseen graphs of arbitrary size.

Specifically, an input is a directed, weighted spatial graph G = (V, E) where V = {vi}i=1:Nv is a
set of nodes with node attribute vi ∈ <d

v

. E = {ek}k=1:Ne is a set of edges where ek ∈ <d
e

is
the edge attribute, e.g. edge weights; dv, de are the node and edge features’ dimension, respectively.
In addition, we denote A ∈ <Nv×Nv

as the adjacency matrix. We denote WP
a ∈ <N

v×Nv

as a
convolution operator. Each input graph with a goal state v∗ ∈ {0, 1}Nv

(one-hot vector labels the
goal state) describes one task. GVIN constructs convolution operatorsWP

a as a function of the input
graph G. The reward graph signal is denoted as R̄ = fR(G, v∗), where fR is a CNN in VIN, but an
identity function in GVIN. The value functions V (v) with v ∈ V on graph nodes can be computed
recursively as follows,

Q(k)
a = WP

a (R̄+ γV (k−1)), V (k) = max
a

Q(k)
a . (3)

While VIN uses CNN to construct WP
a that could only capture 2D lattice structures, GVIN designs

directional and spatial kernels to construct WP
a that try to capture invariant translation on irregular

graphs. However we will show that these kernels are not enough to capture invariance to graph
isomorphism, which leads to a poor performance in domains with a complex geometric structure. In
particular, though it works well on multiple navigation tasks, GVIN is shown to be sensitive to the
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choice of hyperparameters and specially designed convolution kernels, e.g. directional discretiza-
tion.

2.2 GRAPH NEURAL NETWORKS

Graph neural networks (GNN) (Scarselli et al., 2008) have received much attention recently as they
can process data on irregular domains such as graphs or sets. The general idea of GNN is to com-
pute an encoded feature hi for each node vi based on the structure of the graph, node vi and edge
eij features, and previous encoded features as hi =

∑
j∈N (i) f (hi, hj , vi, vj , eij), where f is a

parametric function, and N (i) denotes the set of neighbour nodes of node i. After computing hi
(probably apply f for k iterations), an additional function is used to compute the output at each node,
yi = g(hi, vi), where g is implemented using another neural network, called a read-out function.

Graph convolution network Many earliest work on GNN propose extending traditional CNNs to
handle convolution operations on graphs through the use of spectral methods (Bruna et al., 2013;
Henaff et al., 2015; Kipf & Welling, 2017). For example, graph convolution networks (GCN) (Kipf
& Welling, 2017) is based on fundamental convolution operations on spectral domains. GCN must
assume graphs of same size. Therefore, these methods which rely on the computation of graph
eigenvectors are either computationally expensive or not able to learn on graphs of arbitrary sizes.
Many later introduced graph convolutional networks on spatial domain such as Neural FPs (Duve-
naud et al., 2015), PATCHY-SAN (Niepert et al., 2016), DCNN (Atwood & Towsley, 2016), etc., are
able to learn on graphs of arbitrary sizes. However they are limited to either the choice of a subset of
node neighbours or random walks of k-hop neighborhouds. These drawbacks limit graph convolu-
tion based methods to applications on large-scale graphs with highly arbitrary sizes and structures,
hence not favourable for transfer planning in MDPs.

Graph attention network (GAT) GAT (Velickovic et al., 2018) is inspired by the attention mech-
anism by modifying the convolution operation in GCN in order to make learning more efficient and
scalable to domains of large graphs. Specifically, the encoding at each node is recursively com-
puted as, h(k)i = σ

(∑
j∈N (i) α

(k)
ij W

(k)h
(k−1)
j

)
, where σ is an activation function, and α(l)

ij is the
attention coefficients which are computed as

α
(k)
ij =

exp
(
LeakyReLU(a>[W (k)hi,W

(k)hj ])
)∑

k∈N (i) exp
(
LeakyReLU(a>[W (k)hi,W (k)hk])

)
where a is weight vector, and k denotes the embedding layer k whose weights are W (k).

Message passing neural network (MPNN) MPNN (Gilmer et al., 2017) uses the mechanism of
message passing to compute graph embedding. In particular, the calculation of a feature on each
node involves two phases: i) message passing and readout. The message passing operation at a node
is based on its state and all messages received from neighbor nodes. The readout is based on the
node state and the calculated message. These phases are summarised as follows

m
(k)
i =

∑
j∈N (i)

f(h
(k−1)
i , h

(k−1)
j , eij), h

(k)
i = g(h

(k−1)
i ,m

(k)
i )

MPNN is a unified framework for graph convolution and other existing graph neural networks back
to that time, e.g. Graph convolution network and Laplacian Based Methods (Duvenaud et al., 2015;
Bruna et al., 2013; Henaff et al., 2015; Kipf & Welling, 2017), Gated Graph Neural Networks (GG-
NN) (Li et al., 2016), Interaction Nework (IN) (Battaglia et al., 2016), Molecular Graph Convo-
lutions (Kearnes et al., 2016), Deep Tensor Neural Networks (Schütt et al., 2017). Gilmer et.al.
(Gilmer et al., 2017) has made great effort in converting these frameworks to become a MPNN vari-
ant. MPNN is designed similarly to GG-NN in which GRU is applied to implement the recursive
message operation, but different at message and output functions. Specifically, the message sent
from node j to i is implemented as f(hi, hj , eij) = A(eij)hj , where A(eij) is implemented as a
neural network that maps edge feature eij to an dv × dv operator. Another variant of the message
funcion that is additionally based on the receiver node feature hi was also implemented in the paper.
Updating message with all received information hi, hj , eij is inspired by (Battaglia et al., 2016).
MPNN has shown the state-of-the-art performance in prediction tasks on large graph dataset, e.g.
molecular properties.

Graph network (GN) Graph networks (GN) (Sanchez-Gonzalez et al., 2018; Battaglia et al.,
2018) is a general framework that combines all previous graph neural networks. The update oper-
ations of GN involve nodes, edges and global graph features. Therefore it renders MPNN, GNN,
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GCN, GAT as special cases. Specifically, if we denote an additional global graph feature as u, the
updates of GN which consist of three update functions g, and three aggregation functions f . These
functions are implemented based on the message passing mechanism. The aggregation functions are
1) mi = fe→v({eij}j∈N (i)) aggregate messages sent from edges to compute information of node
i; 2) me = fe→u({eij}j∈N (i),∀i) aggregate messages sent from all edges to the global node u; 3)
mv = fv→u({vi}∀i) aggregate messages sent from all nodes to the global node u. These aggre-
gation functions must be invariant to the order of nodes, which is critical to the Weisfeiler-Lehman
(WL) graph isomorphism test (Weisfeiler & Lehman, 1968) and regarded as an important require-
ment for graph representation learning. Using aggregated information, the three update functions to
node, edge and global features are defined as follows
e
(k+1)
ij = ge(e

(k)
ij , v

(k)
i , v

(k)
j , u(k)), v

(k+1)
i = gv(mi, v

(k)
i , u(k)), u(k+1) = gu(me,mv, u(k))

The aggregation functions could be element-wise summation, averages, or max/min operations. The
update functions could use general neural networks. The use of edge features and the global graph
node makes GN distinct from MPNN. In addition, the use of a recursive update from immediate
neighbors is in contrast to multi-hop updates of many spectral methods.

3 GRAPH-BASED MOTION PLANNING NETWORKS

In this section, we propose to use a general graph neural network to construct inductive biases for
”learning to plan”, called graph-based motion planning network (GrMPN). Similar to GVIN, our
framework is trained on a set of motion planning problems as inputs and associated optimal paths
(or complete optimal policies) as outputs. The inputs are general graphs without knowing its reward
function and transition. At test time, GrMPN takes i) a test problem defined as a general graph and
ii) a pair of starting node and a goal node. The target is to return an optimal plan for the test problem.

Problem setting: Given a dataset consists of input-output pairs D = {Gi, τ∗i }Ni=1, where Gi is a
general graph G = (V, E), and τ∗i is an optimal path (or an optimal policy) which can be generated
by an expert as a demonstration. The target is to learn an optimal policy for a new graph G with a
starting node and a goal node. This learning problem can be either formulated as imitation learning
or reinforcement learning (Tamar et al., 2016; Niu et al., 2018). While it is straightforward to train
with RL, within the scope of this paper we only focus on the formulation of imitation learning.

General GrMPN framework We propose a general framework for graph-based value iteration
that is based on the principle of message passing. First, we also design a feature-extract function to
learn a reward function r: r = fR(G; v∗) given a graph G and a goal node v∗. We use a similar
setting from GVIN (Niu et al., 2018) for fR (a more general architecture is depicted in Appendix
A.1. Second, GrMPN also consists of the following recurrent application of graph operations at all
nodes i and edges ij.
q
(k)
ai = fe→v(r, {eij , v(k−1)j }j∈N (i)), e

(k)
ij = ge(e

(k−1)
ij , v

(k−1)
i , v

(k−1)
j ), v

(k)
i = gv(q

(k)
ai )

where k is the processing step index; vi is the node feature (which also contains the node’s value
function); fe→v, ge, gv are defined as aggregation and update functions. Note that we use qai as
edge features. If the transition is stochastic, we can use |A| channels on edges.

3.1 GRMPN VIA GRAPH NETWORKS

GrMPN can be implemented based on GN (Sanchez-Gonzalez et al., 2018; Battaglia et al., 2018).
GrMPN does not represent the global node u. It consists of the representation of nodes and edges,
hence uses one aggregation function and two update functions, as described below:

mi =
∑

j∈N (i)

eij , eij = ge(rj + γeij), vi = gv(mi)

Note that for brevity the above updates assume deterministic actions, similar to the setting in VIN
and GVIN. The message aggregation is equivalent to a sum over actions

∑
a

∑
s′ p(s

′|s, a)V (s′),
similar to the implementation of GPPN (Lee et al., 2018b). The algorithm of GrMPN via Graph
Networks (GrMPN-GN) is summarized in Algorithm 1.

3.2 GRMPN VIA GRAPH ATTENTION NETWORKS

In general, many graph neural networks can be used to represent the graph-based value iteration
module. As MPNN, GGNN and other similar approaches are special cases of GN, therefore we can
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Algorithm 1 GrMPN via Graph Networks (GrMPN-GN)

Input: graph G = {V,E}, a goal node v∗
Extract rewards: r = fR(G, v

∗)
for k iterations do

for each edge {eij} do
Compute edge update: eij = ge(rj + γeij)

end for
for each node {vi} do

Compute node aggregation: mi =
∑

j∈N (i) eij
Compute node update: vi = gv(mi)

end for
end for
Output: {v(k)i }

Nv

i=1

easily rewrite GrMPN to become an application of these approaches. In this section, we draw a con-
nection of GrMPN to GAT, and show how GAT can also be used to represent a graph-based VI mod-
ule. We use multi-heads to represent |A| channels for the Q value functions. Each head represents
a value function corresponding to an action Qa, V (k)

i = σ
(∑

j∈N (i) α
a
ijW

a(rij + γV
(k−1)
j )

)
,

where σ is a Maxout activation function or
∑
a over possible actions (in our implementation we

chose the latter); and αaij is the attention coefficients of channel a which are computed as

αaij =
exp

(
LeakyReLU(β>[W aVi,W

aVj ])
)∑

k∈N (i) exp (LeakyReLU(β>[W aVi,W aVk]))

We denote this formulation as GrMPN-GAT. We can also make a connection between GrMPN-GN
and GrMPN-GAT by reformulating the updates and coefficients of GATPPN to message passing in
which edge attentions become edge updates. The edge feature now have the attention coefficients α
as additional information. GrMPN-GAT is rewritten as a GN module with attentions as:

eij = (αij , qij) = ge (rj + γeij) , mi =
1∑

j∈N (i) αij

∑
j∈N (i)

αijqij , vi = gv(mi)

where eij is the feature of the edge i-j that contains attention coefficients and qij (equivalently to
the Q-value function qai). The algorithm of GrMPN-GAT can be described similar to GrMPN-GN
in Algorithm 1.

4 EXPERIMENTS

We evaluate the proposed framework GrMPN-GAT and GrMPN-GN on 2D mazes, irregular graphs,
and motion planning problems. These problems range from simple regular graphs (2D mazes)
to irregular graphs of simple (irregular grid) and complex geometric structures (motion planning).
Through these experiments we want to confirm the following points:

1. GrMPN frameworks based on general graph neural networks can not only perform compa-
rably to VIN for lattice structures, but also with more data-efficiency, because GrMPN-GAT
and GrMPN-GN are invariant to graph isomorphism.

2. GrMPN is able to generalize well to unseen graphs of arbitrary sizes and structures, because
they exploit graph isomorphism in a principled way. In particular, GrMPN handles long-
range planning well by providing a great generalization ability a) across nodes in graphs b)
across graphs. Therefore they are able to cope with planning on larger problems with high
complexity, hence significantly improve task performance and data-efficiency.

3. GrMPN-GAT exploiting attended (weighted) updates for value functions, i.e. non-local up-
dates (Battaglia et al., 2018), would outperform GrMPN-GN which only based on uniform
sum over actions.

Settings: In all experiments, we follow the standard encode-decode graph network design. Firstly,
each graph component (node, edge) feature is passed through a two-layered MLP encoder with
ReLu activation and 16 hidden units each. To increase the robustness, this two-layered network is
also used in other graph network components, include both the graph block module (GrMPN-GAT
or GrMPN-GN) and the decoder network. Notably, in the lattice 20× 20 experiment, as the number
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of nodes is significantly large, we instead increase the hidden units up to 32. We use an additional
node encoding fv , to compute note features v in the motion planning problems (see Appendix A.1 a
full policy network architecture). Finally, we use the standard RMSProp algorithm with a learning
rate of 0.001 in all experiments. The numbers of message passing step k, is set differently in different
experiments. Specifically, k is set respectively equal to 10, 15, 20 for 12× 12, 16× 16 and 20× 20
2D mazes. Meanwhile, k = 20 in all other irregular graph experiments, except for the last motion
planing task tested on a roadmap of 500 configuration where we set k = 40 to handle large graphs.
We use other standard settings as used in the papers of VIN and GVIN (Note that VIN set the
recurrent parameter as: k=40 on 2D mazes, k=200 on irregular graphs, and motion planning).

Metrics: We use three different metric which are also used in different work: i) %Accuracy (Acc)
is the percentage of nodes whose predicted actions are optimal, ii) %Success (Succ) is the percentage
of nodes whose predicted path reach the goal, and iii) path difference is the Euclidean distance over
all nodes between a predicted path vs. optimal path.

Training: While extensions to RL training is straightforward, we are only focused on imitation
learning. Therefore we use the same objective function used by VIN and GVIN, i.e. a cross-entropy
loss for the supervised learning problem with dataset {v, a∗ = π∗(v)} where v is a state node with
an optimal action a∗ demonstrated by an expert.

4.1 DOMAIN I: 2D MAZES

Table 1: 2D Mazes: Test performance with varying training data size
{200, 1000, 5000} and different graph sizes. GrMPN-GN and GrMPN-GN use
a smaller training size of 200.

12× 12 16× 16 20× 20
Acc Succ Acc Succ Acc Succ

VIN-200 81.0 86.9 74.5 82.1 66.3 74.5
VIN-1000 85.0 87.6 78.1 83.8 79.0 84.0
VIN-5000 93.8 95.0 90.9 93.5 90.2 91.6
GPPN-200 80.1 87.6 75.6 83.4 69.7 85.0
GPPN-1000 85.8 90.1 85.0 89.5 84.1 90.9
GPPN-5000 93.4 95.7 91.5 94.5 90.0 94.4
GVIN-200 73.6 77.7 68.2 74.3 77.0 80.3

GVIN-1000 89.8 91.0 87.3 89.2 88.7 90.3
GVIN-5000 92.8 93.9 93.7 94.2 90.1 91.4

GrMPN-GAT-200 94.90 94.92 95.72 95.74 95.67 95.68
GrMPN-GAT-1000 94.85 94.88 95.71 95.72 95.67 95.68
GrMPN-GAT-5000 94.96 94.99 95.73 95.75 95.67 95.68
GrMPN-GN-200 93.17 93.50 94.48 94.77 95.35 95.42

GrMPN-GN-1000 95.78 95.87 95.88 95.89 96.07 96.12
GrMPN-GN-5000 96.34 96.46 96.34 96.39 95.83 95.84

In this experiment we
carry out evaluations on
2D mazes which have a
regular graph structure.
We compare GrMPN
against VIN, GVIN, and
GPPN. The environment
and experiment settings
are set similar to VIN,
GVIN, and GPPN. We
use the same script
used in VIN, GVIN, and
GPPN to generate graphs.
For each each graph, we
generated seven optimal
trajectories correspond-
ing to different start and
goal nodes. Note that
only GPPN requires a
complete optimal policy
which gives an optimal
action at every graph node. This setting makes GPPN have a little advantage. We train and test on
the same graph with sizes 12× 12, 16× 16, 20× 20. The number of generated graphs for training is
chosen from small to large with values {200, 1000, 5000}. The size of testing data is fixed to 1000
graphs of corresponding size.

The results shown in Table 1 tells that GrMPN-GAT and GrMPN-GN not only outperform other
baselines but also more data-efficient. GPPN has a slightly better performance with a large amount
of data. We note that GPPN must assume the data consists of optimal policies instead of a small
set of optimal demonstration trajectories as in VIN, GVIN and ours. GVIN is a graph-based VIN
but it relies on specially designed convolution kernels that are based on the choice of discretised
directions. Therefore GVIN is not able to perform as well as GrMPN-GAT and GrMPN-GN which
are based on principled graph networks and known to be invariant to graph isomorphism. GrMPN-
GAT and GrMPN-GN show significant better in terms of data-efficiency on large domains 20× 20.
On these large domains, learning algorithms often require a large amount of data. However GrMPN-
GAT and GrMPN-GN can still learn well with a limited amount of data. This shows how important
invariance to graph isormophism is for learning on graphs. Performance of GrMPN-GAT on bigger
domain is better than small domains, because the amount of nodes involved in training is bigger in
large graphs. We show more ablation results in Appendix.

4.2 DOMAIN II: IRREGULAR GRAPHS
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Table 2: Irregular Dense Graphs: Test performance with varying num-
ber of nodes used in training {10, 100}.

Dense (100 nodes) Dense (150 nodes)
Acc Succ Diff Acc Succ Diff

GVIN-10 58.3 99.9 0.046 53.4 99.8 0.042
GrMPN-GAT-10 63.1 99.2 0.030 58.4 99.5 0.028
GrMPN-GN-10 55.8 95.0 0.057 50.4 94.4 0.062

GVIN-100 56.6 97.3 0.064 52.9 99.2 0.059
GrMPN-GAT-100 62.7 97.7 0.032 58.6 98.8 0.029
GrMPN-GN-100 61.5 97.7 0.038 56.6 98.4 0.037

This experiment uses the same
script used by GVIN, which is
based on Networkx (Hagberg
et al., 2008), to create synthetic
graphs that are with random co-
ordinates from box [0, 1]2 in 2D
space. We vary the parame-
ters of the generation program
to create three types of irregular
graphs: Dense, Sparse, and Tree-
like. For Tree-like graphs, we
use use the Networkx’s function,
geographical threshold graph by setting the connectedness probability between nodes to a small
value. We create Tree-like graphs which are not considered in GVIN, because there are two main
challenges on these graphs. First, with the same number of nodes and amount of generated graphs,
tree-like graphs would have much fewer nodes for training. Second, Tree-like graphs result in a
major issue which are ideal to evaluate generalization for long-range planning which requires prop-
agation of value functions across nodes in graphs well. We generate 10000 graphs, with varying
number of nodes {10, 100}. The label for each graph is an optimal policy, i.e. an optimal action at
every graph node. Training is 6/7 of the generated data, while testing is 1/7.

The comparing results are described in Tables 2 (on Dense), 3 (on Sparse), and 7 (on Tree-like).
Testing is performed on irregular graphs of different size: 100 and 150 nodes on Dense, 100 nodes
on Sparse. The results show that GrMPN methods perform comparably with GVIN on Dense graphs
in terms of Success rate, but slightly better in terms of Accuracy and Distance difference. On Sparse
graphs, GrMPN-GAT and GrMPN-GN based on the principled of message passing are able to have
fast updates across nodes.

4.3 DOMAIN III: MOTION PLANNING

Table 3: Irregular Sparse Graphs: Test perfor-
mance with varying number of nodes used in
training {10, 100}.

Sparse (100 nodes)
Acc Succ Diff

GVIN-10 57.9 80.5 0.053
GrMPN-GAT-10 61.7 91.2 0.048
GrMPN-GN-10 59.0 85.1 0.052

GVIN-100 60.3 85.7 0.053
GrMPN-GAT-100 74.5 98.1 0.027
GrMPN-GN-100 73.9 98.3 0.027

Sampling-based methods such as probabilistic
roadmaps (PRM) (LaValle, 2006) have been shown to
be every efficient in practice. PRM is one of the most
widely used techniques in robotic motion planning,
especially for applications in navigation. In such an
application, a motion planning algorithm must find
an optimal path that must satisfy i) the environment’s
geometry constraints, i.e. collision-free path, and
ii) the robot system constraint, e.g. differential
constraints. PRM is multiple-query methods that are
very useful in highly structured environments such as
large buildings.

We evaluate GrMPN on two motion planning prob-
lems: 2D navigation with a holonomic mobile robot
and manipulation with a simulated 7-DoF Baxter robot arm. We aim to improve PRM by bringing it
closer to an online-planning method through transfer planning. In this section, we show that GrMPN
would outperform GVIN under such tasks of a complex geometric structure.

Setting: Note that the input of the simulated 7-DoF Baxter robot forms a kinematic tree. Therefore
we propose to use three alternative encoding layers fv to comppute node features: GN, GCN or
MLP. For the 2D navigation with a mobile robot, we only use a MLP to encode robot locations. In
addition, we use a simple MLP layer of 16 nodes to encode the one-hot goal value. Then, the outputs
from these two encoders are concatenated and used as node features. This architecture renders our
implementation a hierarchical graph-based planning method.

Data generation: For the mobile robot navigation, we use a standard PRM algorithm to construct
2000 roadmaps for training, each with 200 robot configurations. A graph node is represented as a
robot configuration which is a generalized coordinate (x, y) where x, y are 2D translation coordi-
nates. We generate two different test sets consisting of 1000 roadmaps: 200 and 500 configurations.
Each generation time uses a different setting of environment obstacles. For each generated graph,
we use the Dijkstra algorithm to provide one optimal trajectory corresponding to one random pair
of start and goal states.

8
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For the simulated 7-DoF Baxter robot arm, we use the same scrift as in Qureshi et al. (2018) to
generate different environment settings (with different obstacles), and set different start and goal
configurations. For each environment setting, the roadmap and the optimal trajectories from 20
randomly selected start nodes to the goal are then found by using PRM∗(Karaman & Frazzoli, 2011)
and the Dijkstra algorithm provided by the OMPL library (Şucan et al., 2012). In total, we generate
280 roadmaps, each with 300 configurations. The test set contains 80 roadmaps, each with about
1200 configurations.

Table 4: 2D Navigation motion planning problems: Test perfor-
mance with varying number of configurations {200, 500}. Note
that algorithms with suffix -T denote trained models using tree-like
graph data.

200 configurations 500 configurations
Acc Succ Diff Acc Succ Diff

GVIN-T 62.2 58.6 0.210 - - -
GrMPN-GAT-T 82.2 83.8 0.172 61.3 72.5 0.523
GrMPN-GN-T 80.0 79.6 0.181 57.1 59.3 0.650

GVIN 53.9 40.6 1.3260 - - -
GrMPN-GAT 82.2 84.4 0.164 62.3 73.1 0.504
GrMPN-GN 82.7 81.2 0.176 61.0 68.4 0.575

Analysis: Table 4 show test per-
formance results on 2D navigation
with a mobile robot. It shows that
GrMPN methods not only outper-
form GVIN but also possess a great
generalization ability.We addition-
ally evaluate the generalization abil-
ity of GrMPN methods by using the
trained model using Tree-like data
as described in Irregular Graphs sec-
tion to test on the created roadmap
test set. The distance difference
(Diff) computes the cost difference
between the predicted path and the
optimal path planned by Dijkstra.
We skip reporting on GVIN on large testing graphs (500 configuration nodes) due to its degraded
performance. The trained model using Tree-like graph data could also generalize well on unseen
graphs generated by PRM on different environments. In addition, they can generalize to much big-
ger graphs (with 500 nodes). This suggests GrMPN is able to do zero-shot learning to plan.

Table 5 show the test performance results on the motion planning task with a simulated 7-DoF
Baxter arm. We skip reports on GVIN due to its poor performance and scalability to learning on
large graphs. The results show that GrMPN methods are able to do motion planning on this complex
geometric domain with high accuracy and success rates.

5 CONCLUSION

Table 5: Simulated 7-DoF Baxter arm mo-
tion planning: Test performance with differ-
ent uses of node encoding (MLP-, GCN-, GN-
) and graph-based planning (GrMPN-GAT and
GrMPN-GN).

Acc Succ Diff
MLP-GrMPN-GAT 78.5 89.1 0.466
GCN-GrMPN-GAT 70.4 83.4 0.875
GN-GrMPN-GAT 77.4 90.3 0.561
MLP-GrMPN-GN 77.9 89.0 0.503

GCN-GrMPN-GAT 67.7 76.1 1.024
GN-GrMPN-GN 76.6 89.4 0.552

In this paper we have proposed a general graph-
based motion planning network, GrMPN. The pro-
posed framework leverages the idea of graph neural
networks to handle planning with graphs. The main
idea is to integrate Graph processing modules into a
differentiable planning network with the aim to cap-
ture graph isomorphism in order to achieve i) gener-
alization for transfer planning to graphs of arbitrary
structures and ii) data-efficiency when dealing with
complex graphs across task instances. Through var-
ious experiments on 2D mazes, irregular graphs and
motion planning tasks, we have shown that GrMPN
is able to improve data-efficiency significantly and im-
prove planning task performance in comparisons to ex-
isting approaches. GrMPN outperform baselines for
regular graphs and existing approaches for irregular graphs in terms of data-efficiency and general-
ization ability. For future researches, there is a promising direction in combining GrMPN with other
powerful graph networks in order to further exploit the factored structure in planning problems, e.g.
factored MDP planning or planning on high-ordered Markov models.
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Figure 1: GrMPN based on graph neural networks.

Table 6: Information on irregular graphs.

# Edges %Sparsity Regularity
Sparse (100 nodes) 285 0.057 1.63
Dense (100 nodes) 1097 0.219 3.37
Dense (150 nodes) 2493 0.221 3.77

A APPENDIX

A.1 GRAPH-BASED MOTION PLANNING NETWORKS

Our proposed graph-based motion planning network is inspired by VIN and GVIN, and depicted in
Fig. 1.

A.2 DOMAIN I: 2D MAZES

The results in Figs. 2 and 3 show ablation of GrMPN-GAT and GrMPN-GN on different number
of graph processing steps. The figure show the value function maps after training. The results
show how value functions on a test graph (after training) are computed depending on the value k
of processing steps. More nodes would be updated with a larger number of processing step which
corresponding to more batches of value iterations updates. This ablation also shows that GrMPN-
GAT is able to generalize across nodes better than GrMPN-GN. This generalization ability would
significantly help with long-range planning problems.

A.3 DOMAIN II: IRREGULAR GRAPHS

The information on generated graphs is summarized in Table 6.

As seen in Fig. 4, GVIN is not able to spread the update to nodes that are far from the goal node.
This figure also shows that GrMPN-GAT has a slightly better generalization ability across nodes
than GrMPN-GN. The value functions of GrMPN-GN have more un-updated nodes (see the color
of nodes that are far from the goal node as labeled in black) than that of GrMPN-GAT. This explains
why GrMPN-GAT performs slightly better than GrMPN-GN.

The results in Table 7 tell that VIN is not able to cope with very sparse graphs and long-range
planning. This shows GVIN has a weak generalization ability.

Table 7: Irregular Tree-like Graphs: Test performance on graphs of 150 nodes. Training uses tre-like graphs of
50 nodes.

Tree-like (150 nodes)
Acc Succ Diff

GVIN 66.5 44.67 1.6263
GrMPN-GAT 88.2 98.25 0.0270
GrMPN-GN 87.1 94.8 0.032
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Figure 2: 2D mazes: Value functions of GrMPN-GAT on 16 × 16 domains w.r.t the different number of
processing step k. The left-most figure shows an initial map with a goal state.
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Figure 3: 2D mazes: Value functions of GrMPN-GN on 16×16 domains w.r.t the different number of process-
ing step k. The left-most figure shows an initial map with a goal state.

Figure 4: Value functions on tree-like graphs: left) GVIN, middle) GrPN-GN; right) GrMPN-GAT.
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Figure 5: An environment instance generated for the simulated 7-DoF Baxter arm.

Figure 6: An environment instance with a sampled graph (the roadmap) using PRM.

A.4 DOMAIN III: MOTION PLANNING

Data generation: We use a standard PRM algorithm to construct 2000 graph maps for training,
each with 200 robot configurations. A graph node is represented as a robot configuration which is a
generalized coordinate (x, y) where x, y are 2D translation coordinates. We generate two different
test sets consisting of 1000 roadmaps: 200 and 500 configurations. Each generation time uses a
different setting of environment obstacles. For each generated graph, we use the Dijkstra algorithm
to provide one optimal trajectory corresponding to one random pair of start and goal states, for an
example in Fig. 6.

For the simulated 7-DoF Baxter robot arm, we use the same scrift as in Qureshi et al. (2018) to
generate different environment settings (with different obstacles), and set different start and goal
configurations. An example of a generated environment is depicted in Fig. 5.

Analysis: Further ablation results in Figures 7 and 8 show that GVIN is not able to update value
functions of nodes far from the goal, while GrMPN-GAT and GrMPN-GN can generalize value
updates well to such nodes. The color map in Figure 8 also suggests that GrMPN-GAT slightly has

Figure 7: Value functions on PRM graphs of 200 configurations: left) GVIN, middle) GrPN-GN; right)
GrMPN-GAT.
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Figure 8: Value functions on PRM graphs of 500 configurations: left) GrPN-GN; right) GrMPN-GAT.

wider value propagation, which means better generalization for long-range planning and across task
graphs.

16


	Introduction
	Background
	Markov Decision Process and Value Iteration
	Graph Neural Networks

	Graph-based Motion Planning Networks
	GrMPN via Graph Networks
	GrMPN via Graph Attention Networks

	Experiments
	Domain I: 2D Mazes
	Domain II: Irregular Graphs
	Domain III: Motion Planning

	Conclusion
	Appendix
	Graph-based Motion Planning Networks
	Domain I: 2D Mazes
	Domain II: Irregular Graphs
	Domain III: Motion Planning


