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ABSTRACT

In natural language inference, the semantics of some words do not affect the infer-
ence. Such information is considered superficial and brings overfitting. How can
we represent and discard such superficial information? In this paper, we use first
order logic (FOL) - a classic technique from meaning representation language - to
explain what information is superficial for a given sentence pair. Such explana-
tion also suggests two inductive biases according to its properties. We proposed
a neural network-based approach that utilizes the two inductive biases. We obtain
substantial improvements over extensive experiments.

1 INTRODUCTION

In natural language inference (Bowman et al., 2015), the semantics of some words do not affect the
inference. In figure 1a, if we discard the semantics of some words (e.g. Avatar, fun, adults, children)
from s1 and s2, we obtain s′1 and s′2, respectively. Without figuring out the specific meaning of these
words, one can still infer that they are contradictory. In this case, the semantics of Avatar, fun, adults,
and children are superficial for the inference.

Such superficial information brings overfitting to models. Recent studies already noticed that su-
perficial information will hurt the generalization of the model (Jia and Liang, 2017), especially in
unseen domains (Wang et al., 2019). Without distinguishing the superficial semantics, an NLI model
can learn to predict contradiction for sentence pairs with “children” or “adults” by example 1 in Fig-
ure 1a. On the other hand, if we discard the superficial information during inference, we can prevent
such overfitting.

s1: Avatar is fun for children, not adults. s2: Avatar is fun for adults, not children.
Label: contradiction

After discarding Avatar, fun, adults, children :
s′1: A is B for C, not D. s′2: A is B for D, not C.
Label: contradiction

After discarding Avatar, fun, adults, children and their correspondence information:
s′′1 : − is − for −, not −. s′′2 : − is − for −, not −.
Label: unknown

(a)

s3: Avatar is fun for all people. s4: Avatar is fun for adults only.
Common sense: People include adults and children.
Label: contradiction

(b)

Figure 1: Examples.
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Some approaches have been proposed to reduce such overfitting. HEX (Wang et al., 2019) identifies
the superficial information by projecting the textural information out. HEX defines the textural
information w.r.t. the background of images for image classification, which cannot be generalized
to other tasks (e.g. NLP). For NLP, the attention mechanism (Bahdanau et al., 2015) is able to
discard some words by assigning them low attention scores. But such mechanism is more about
the semantic similarity or relatedness of the words, not the superficial semantics. In example 1 of
figure 1, the two Avatar in the two sentences will have a high attention score, since their similarity
is 1 (Vaswani et al., 2017). But we have shown that these words are superficial for inference. So
previous approaches cannot be applied to modeling the superficial information in natural language
inference.

On top of that, a more critical issue is the lack of mathematical definition of such superficial informa-
tion in previous studies. Why do people think the semantics of adults and children are superficial?
In this paper, we tackle this question via the toolkit of first-order logic (FOL). FOL is a classic
technique of meaning representation language, which provides a sound computational basis for the
inference. We explain such superficial information from the perspective of FOL. Furthermore, such
explanation suggests two inductive biases, which are used to design our NLI model.

FOL(s1): ∀x, Fun(x,Avatar) ⇒ Adult(x) ∧
¬Child(x)
FOL(s2): ∀x, Fun(x,Avatar) ⇒ Child(x) ∧
¬Adult(x)
Label: contradiction

(a)

FOL(s3): ∀x, People(x)⇒ Fun(x,Avatar)
FOL(s4): ∀x, Fun(x,Avatar)⇒ Adult(x)
FOL(CS): ∃x, People(x) ∧ ¬Adult(x)

Label: contradiction

(b)

Figure 2: The FOLs of figure 1.

By representing natural language sentences by FOL, the sentence pair and its FOLs are logically
equivalent. The conversion of figure 1a is shown in figure 2a. The entailment (resp. contradiction)
between s1 and s2 is equivalent to FOL(s1) |= FOL(s2) (resp. FOL(s1) |= ¬FOL(s2)). Thus
we successfully convert the problem of identifying superficial information in NLI to identifying the
superficial information in FOL inference.

The superficial information exists in the non-logical symbols in FOL. From the specification of the
FOL representation (Russell and Norvig, 1995), the symbols of FOL include the logical symbols
and non-logical symbols. In figure 1a, the contradiction remains if we discard the semantics of
Avatar, fun, adults, children, which are non-logical symbols. We can surely change these non-logical
symbols to new symbols without changing the results of FOL(s1) |= FOL(s2) or FOL(s1) |=
¬FOL(s2).
However, there is a big gap between the FOL representation and the natural language: people use
common sense when understanding the natural language. For example, people are able to infer
the contradiction between s3 and s4 in figure 1b, because they have the common sense that people
include adults and children. The FOLs of s3, s4 and the common sense are shown in figure 2b.
With the common sense, the contradiction between s3 and s4 is equivalent to CS ∧ FOL(s3) |=
¬FOL(s4), where CS denotes the FOL of the common sense.

With the common sense, some non-logical symbols in the two sentences are not superficial, because
we need these non-logical symbols for joint inference with the common sense. For example, in
figure 2b, the non-logical symbols Adult and People are not superficial. This brings the major
challenge of using FOL to identify the superficial information, because the common sense can hardly
be obtained.

Since the common sense is unknown, we restrict the definition of superficial symbols. We regard
a non-logical symbol as superficial, if it is superficial for all possible common sense. We show the
necessary condition of the superficial symbols to avoid the effect of the common sense, which is
unknown. We show that the necessary condition is related to the semantical formula-variable (FV)
independence (Lang et al., 2003), which is NP-complete. Nevertheless, the properties of the FOL
suggest two inductive biases for superficial information identification: word information discard
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and correspondence information representation. We propose a neural network-based approach to
incorporate such two inductive biases.

We point out that we need to retain the correspondence information of the discarded words. From
the perspective of FOL, although the semantics of some non-logical symbols are independent for
inference, the correspondence information still affects the inference. More specifically, we need to
represent the occurrence of one word in different positions in the sentence pair. This is also intuitive
from the perspective of natural language inference. For example, in figure 1a, although adults and
children are superficial, we need to be aware that for is followed by adults in s1, while for is followed
by adults in s2. Otherwise, as illustrated in s′′1 and s′′2 , we cannot infer their relation.

We summarize our contributions in this paper below:

• We proposed the problem of identifying and discarding superficial information for robust
natural language inference. We use FOL to precisely define what information is superficial.

• We analyze the superficial information from the perspective of FOL. We show that the
superficial non-logical symbols are related to the semantical formula-variable (FV) inde-
pendence in reasoning. We give two properties of the superficial information, and design
neural networks to reflect the two inductive biases accordingly.

• We implement a neural network-based algorithm based on the two inductive biases. The ex-
perimental results over extensive settings verify the effectiveness of our proposed method.

2 RELATED WORK

Learning Robust Natural Language Representation. Noticing that traditional neural networks
for the natural language easily fail in adversarial examples (Jia and Liang, 2017; Rajpurkar et al.,
2018), learning robust representations is important for NLP tasks. A critical metric of the robustness
is whether the model can be applied to a different data distribution Wang et al. (2019). Adversarial
training (Goodfellow et al., 2014) is one way to increase the robustness for NLP models (Goodfel-
low et al., 2014). It has been applied to NLP tasks such as relation extraction (Wu et al., 2017),
sentence classification (Liu et al., 2017). The idea is to use adversarial training to learn a unified
data distribution for different domains. But the domain-specific information of the target domain
must be known. In contrast, we want to learn a robust model that can be applied without knowing
the target domain. And we learn robust representations by projecting superficial information out.
HEX (Wang et al., 2019) is a recent approach to project textural information out of images. It relies
on two models to represent the whole semantics and superficial semantics, respectively. Few studies
reveal how to do this for NLP.

Omit Superficial Information by Attention. The attention mechanism (Bahdanau et al., 2015)
gives different weights to different words according to their attention scores. Attention and its
variations are successful in many NLP tasks (Vaswani et al., 2017; Devlin et al., 2018; Cui et al.,
2019). Literally, attention also projects some words out by assigning them low attention scores.
However, the attention scores cannot be used to project superficial information of the overlapping
words out. Attention gives two words high attention scores if they are similar or equal, even if they
are superficial. So we cannot use attention to discard superficial information of overlapping words.
As illustrated in section 1, much superficial information for cross-sentence inference lies in these
overlapping words.

Natural Language Inference uses neural networks to improve its accuracy (Bowman et al., 2016).
Recent studies (Shen et al., 2018b;a) apply attention mechanism (Bahdanau et al., 2015) to model the
word correlations. State-of-the-art approaches (Devlin et al., 2018; Liu et al., 2019) are fine-tuned
over the large-scale pre-training models.

3 PRELIMINARIES OF FIRST-ORDER LOGIC

According to the specification of FOL in (Russell and Norvig, 1995), the atoms of FOL include
logical symbols (connective, quantifier), and non-logical symbols (constant, variable, predicate, and
function). We show the context-free grammar specification of the syntax of them in Table 6. We
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omit the syntaxes of more complicated elements of FOL (e.g. formula) since they are irrelevant to
this paper. Examples of FOLs are shown in figure 2.

4 PROBLEM ANALYSIS: FROM THE FIRST-ORDER LOGIC PERSPECTIVE

4.1 FROM NATURAL LANGUAGE INFERENCE TO FIRST-ORDER LOGIC INFERENCE

Firstly, we revealed the relation between natural language inference and FOL inference. The general
purpose of NLI is to determine the contradiction, entailment, and neutral relations of two sentences.
If we convert the two sentences into two FOLs, the relation of the FOLs directly reflects the inference
label of the two sentences, as shown in Table 1.

NLI label FOL FOL with common sense
entailment FOL(s1) |= FOL(s2) CS ∧ FOL(s1) |= FOL(s2)
contradiction FOL(s2) |= ¬FOL(s1) CS ∧ FOL(s1) |= ¬FOL(s2)
neural otherwise otherwise

Table 1: NLI labels and FOL relations.

People understand natural language with external common sense. We show the mapping between
natural language inference and FOL inference with common sense in table 1.

Obviously, the conversion from a natural language sentence to a FOL sentence is not trivial. We
highlight that our paper do not require an algorithm to implement such conversion. We only use
FOL to explain the superficial information in NLI, and to suggest inductive biases for our algorithm.

4.2 SUPERFICIAL INFORMATION ANALYSIS IN FOLS

We analyze the superficial information in the entailment relation. The other two relations (i.e. con-
tradiction and neural) can be analyzed similarly. Note that the entailment relation depends on the
common sense, which is unknown for NLI. So we restrict the definition of the superficial information
in FOLs w.r.t. all possible common sense.
Definition 1. Given FOL(s1), FOL(s2), with non-logical symbol space V , we define a non-logical
symbol ns ∈ V is superficial, if replacing ns to with ns′ (s.t. ns′ 6∈ V ) in FOL(s1), FOL(s2)
satisfies that ∀CS,

CS ∧ FOL(s1) |= FOL(s2) (1)

is equivalent to
CS ∧ FOL′(s1) |= FOL′(s2) (2)

, where FOL′(s1), FOL′(s2) are the FOLs after the replacement.

Since CS can have arbitrary sentences, analyzing the superficial symbols with CS is challenging.
We first derive a necessary condition in theorem 1 to avoid the effect of CS.
Theorem 1. Given FOL(s1), FOL(s2), a non-logical symbol ns is superficial, only if

FOL(s1) |= FOL(s2) (3)

is equivalent to
FOL′(s1) |= FOL′(s2) (4)

Theorem 1 provides a necessary condition for identifying superficial non-logical symbols that only
considers FOL(s1) and FOL(s2). Thus it is feasible to address whether the necessary condition is
true by only using FOL(s1) and FOL(s2). The condition in theorem1 is similar to the semantic FV
independence problem (Lang et al., 2003) in reasoning, which is NP-complete (Lang et al., 2003).
However, we can still utilize its properties to help identify the superficial information. We show this
in theorem 2.
Theorem 2. Given two FOLs FOLA(s1) and FOLA(s2), with their non-logical symbol set A =
{a1, · · · , an}. ∀B = {b1, · · · , bn}, where each bi is a non-logical symbol, if we replace each ai
with bi in FOLA(s1) and FOLA(s2) to get FOLB(s1) and FOLB(s2) respectively, we have

FOLA(s1) |= FOLA(s2) (5)
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is equivalent to

FOLB(s1) |= FOLB(s2) (6)

. Note that both A and B contain n distinct non-logical symbols.

Theorem 2 points out that, from the perspective of FOL, the semantics about non-logical symbols
do not affect the implication of two FOLs. Note that we need to guarantee that the n non-logical
symbols in B are distinct. We need to reserve the correspondence of these symbols to reserve their
relation. The theorem is easy to prove because uniformly modifying the non-logical symbols in two
FOL does not change their implication.

4.3 FROM SUPERFICIAL INFORMATION IN FOLS TO INDUCTIVE BIAS IN NEURAL
NETWORKS

The properties of superficial information in FOLs suggests what information should be discarded in
natural language inference. In this subsection, we elaborate two types of inductive biases, and how
we use neural network to represent these inductive biases. More details of the neural network are
shown in section 4.4.

Word Information Discard From theorem 1, the necessary condition of a word being superfi-
cial is that it corresponds to a non-logical symbol, and FOL(s1) |= FOL(s2) is equivalent to
FOL′(s1) |= FOL′(s2). As we use the word embedding to represent the word information, we
use a scalar α for each word to indicate how likely the word is superficial. We multiply the word
embedding by α for each word. Note that one word in different positions should have a unique α,
since we assume they correspond to the same symbol and thereby whether they are superficial are
identical.

Correspondence Information Representation In theorem 2, although we can replace each symbol
to a new symbol, the symbols should be replaced accordingly. So for the superficial non-logical
symbols, their correspondence information affects the inference. This can be easily illustrated from
the perspective of NLI in figure 1a. If we discard the superficial symbols but reserve their correspon-
dence information, we will get s′1 and s′2, from which their contradiction can be still inferred. But
if we discard both the superficial symbols and their correspondence information to get s′′1 and s′′2 ,
their relation is infeasible to infer. In order to represent the correspondence information, we use a
graph neural network which connects the same words in different positions of the word pairs. Thus
the correspondence information is able to propagate through these positions.

4.4 NEURAL NETWORK IMPLEMENTATION

Architecture Our proposed neural network consists of three major modules, which is shown in
figure 3. The first module is the superficial information projection module, which is motivated by
the word information discard in section 4.3. For each word wi, we compute its superficial factor
αi, which is a scalar indicating how superficial the word is. αi = 1 means the word corresponds to
non-logical symbols that we want to keep the information during inference, or the word corresponds
to a logical symbol. αw = 0 means the word is totally useless. The embedding of each word is
multiplied by the αi.

The second module is a standard NLI model. We can use arbitrary NLI models (e.g. ESIM Chen
et al. (2017), MwAN Tan et al. (2018)) as this module. The output of this model is a sequence of
embeddings, indicating the states of the words.

The third module represents the correspondence information in section 4.3. We need to keep the
correspondence of the superficial symbols via a graph neural network.

Superficial information projection To discard the words with superficial information, we multiply
the embedding of each word by its superficial factor α. More specifically, the embedding of a word
wi is computed by:

e = αiEwi (7)

, where wi is in the one-hot representation, E is the embedding matrix.
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Fun for adults and children Fun for only children

word embedding for sentence1 word embedding for sentence2

standard NLI

correspondence representation

1 2 3 1 2 3

11  21  31  11  21  31 

Figure 3: Architecture of the proposed neural network.

Note that αi is the same for one word in different positions of the sentence pair. To achieve this, we
simply use a single perceptron layer over the embeddings to compute such α.

αi = σ(M [Ewi; ti] + b) (8)

, whereM is the parameter matrix for α, [; ] denotes the concatenation operation, ti denotes whether
wi is overlapped in the sentence pair (ti = 1) or not (ti = 0).

Correspondence representation To represent the cross-sentence correspondence information, we
use a graph neural network. For the same word which occurs in different positions in the sentence
pair, we use an edge between all position pairs to represent the correspondence information. Intu-
itively, for words that are superficial, we only need to retain their correspondence information, and
vice versa. As αi denotes whether the information should be retained, we set the weight of the edge
to 1 − αi for word wi. More formally, we denote the states at time as ST ∈ Rn×d, where n is the
total length of the sentence pair and d is the dimension of the hidden states. By following the graph
neural network in Kipf and Welling (2016), we update ST by:

ST = σ(AST−1WT ) (9)

, where WT is the parameter matrix, S0 is the output of the standard NLI module, and A ∈ Rn×n

is the adjacency matrix to represent such correspondence:

Ai,j =


αi if i = j

θ(1− αi) if i 6= j, wi = wj

0 otherwise.
(10)

, where θ is used to make the sum of each row in A equals to 1. Figure 3 show how we connect
the words “fun”, “for”, and “children” in different positions in the sentence pair. By using the
edges, even if the model discards the semantics of “children”, it is able to represent that the word is
behind “and” in the first sentence, and behind “only” in the second sentence. Therefore we retain
the correspondence information by the graph neural network.

5 EXPERIMENTS

5.1 SETUP

Datasets We use the datasets including MNLI (Williams et al., 2018), SNLI (Bowman et al., 2015),
QNLI (Wang et al., 2018), DNLI (Welleck et al., 2018), RTE (Dagan et al., 2005), MRPC (Dolan
and Brockett, 2005), and SciTail (Khot et al., 2018). More details are shown in appendix D.
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Competitors Since our proposed framework can use different NLI models as the second module, we
use standard NLI models for both comparison and for NLI module. These models include BiLSTM,
ESIM (Chen et al., 2017), MwAN (Tan et al., 2018), and CAFE (Tay et al., 2018). We compare with
HEX (Wang et al., 2019), which projects superficial statistics out. We also compare with the pre-
training model Elmo (Peters et al., 2018), Roberta (Liu et al., 2019), which achieves state-of-the-art
results in NLI. More details of the experimental setup are shown in appendix D and appendix E.

5.2 SINGLE DOMAIN EVALUATION

Effectiveness We evaluate the effectiveness of our proposed approaches in the single domain setting.
The training and test data are from the same domain. Table 2 shows the performances of different
models. Ours+A denotes applying algorithmA as the standard NLI module in our proposed neural
network. Our proposed method constantly outperforms the original model by a large margin.

Model MRPC RTE QNLI SciTail SNLI MNLI DNLI DNLI(gold) Avg.
HEX 73.6/82.8 53.1 49.6 84.3 52.8 60.6/60.9 69.5 70.8 65.8
BiLSTM 69.7/80.5 54.7 74.0 77.0 82.5 68.8/69 86.7 91.7 75.5
BiLSTM+ours 77.6/84.5 58.5 80.3 83.8 85.5 75.2/74.2 87.0 91.4 79.8(+4.3)
ESIM 68.7/80.8 53.4 80.9 82.8 88.1 77.4/76.7 87.9 92.8 79.0
ESIM+ours 76.9/84.1 57.6 80.8 84.1 88.3 78.5/77.5 88.7 93.2 81.0(+2.0)
MwAN 68.8/80.7 51.9 69.4 71.2 85.2 74.1/73.3 86.0 90.3 75.1
MwAN+ours 76.7/83.6 59.9 81.9 84.2 82.6 73/73 85.3 88.9 78.9(+3.8)
CAFE 69.1/80.6 53.4 82.2 81.2 86.8 76.3/76 88.1 92.8 78.7
CAFE+ours 76.5/83.8 58.4 83.6 85.6 86.4 75.2/74.7 89.0 93.3 80.7(+2.0)

Table 2: Performance over single domain NLI and single domain PI (MRPC). For MRPC, we report
the accuracy and f1-score. For MNLI, we report the accuracy on both matched and mismatched test
sets. For the rest datasets, we report the accuracy.
Ablations We evaluate the effectiveness of the two inductive biases in section 4.3, i.e., word infor-
mation discard and correspondence information representation. We use an ablation study in Table 3
to evaluate them. Here −word means no word discard (i.e. α only works in the correspondence
representation module). −correspond means no correspondence representation module. From the
results, both inductive biases improve the effectiveness. The word information discard is more cru-
cial.

Model MRPC RTE QNLI SciTail SNLI MNLI DNLI DNLI(gold) Avg.
BiLSTM+ours 77.6/84.5 58.5 80.3 83.8 85.5 75.2/74.2 87.0 91.4 79.8
-correspond 77/84.1 60.1 79.9 77.1 86.1 75/74.3 86.7 91.2 79.2(-0.6)
-word 74.3/82.5 50.9 80.2 82.4 84.2 72.5/71.8 85.9 90.3 77.5(-2.3)
ESIM+ours 76.9/84.1 57.6 80.8 84.1 88.3 78.5/77.5 88.7 93.2 81.0
-correspond 75.1/83.3 58.6 81.5 83.8 88.1 78.6/77 88.6 93.3 80.8(-0.2)
-word 69.4/80.1 55.6 80.2 83.6 88.2 77.9/76.9 88.7 93.2 79.4(-1.6)

Table 3: Ablation over single domains.

5.3 RESULTS OVER PRE-TRAINING MODELS

State-of-the-art NLI results are from the fine-tuning of pre-training models. We use Elmo (Peters
et al., 2018) and Roberta Liu et al. (2019), a recent pre-training model, as the word embeddings
module in our architecture Liu et al. (2019). We use the pooling layer in ESIM for final classi-
fication. The results are shown in Table 4. While our proposed method outperforms the original
ESIM+ELMO by a large margin, the accuracies are slightly improved for Roberta. This makes
sense because Roberta already reached a very high accuracy.

5.4 EVALUATION FOR UNSEEN DOMAINS

We evaluate the robustness of our approaches in unseen domains. We choose one dataset as the
source domain for training, and another dataset as the target unseen domain for testing. The model
is only trained by the training data in the source domain.
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Model MRPC RTE QNLI SciTail SNLI MNLI DNLI DNLI(gold) Avg.
Elmo+ESIM 70.8/81.4 54.1 81.3 81.8 88.4 79.7/78.5 88.8 93.7 79.9
Elmo+ESIM+ours 80.0/85.8 60.8 82.5 86.3 88.7 79.8/79.2 89.2 93.5 82.6(+2.7)
Roberta 88.2/91.4 72.1 92.6 93.6 91.0 87.2/86.8 91.2 95.9 89.0
Roberta+ours 88.6/91.6 73.1 92.8 93.5 91.4 87.3/86.7 91.6 95.9 89.3(+0.3)

Table 4: Results over pre-training models.

NLI (3 classes) NLI(2 classes)
Source DNLI DNLI MNLI MNLI SNLI SNLI RTE SciTail AVG.Target SNLI MNLI SNLI DNLI Gold DNLI Gold MNLI SciTail RTE
HEX 33.3 36.9/36.5 52.8 49.6 50.9 34.4 50.9 38.0/38.5 52.9 53.4 44.0
BiLSTM 37.0 38.5/38.2 54.5 46.5 48.9 39.4 40.4 54.3/56.1 47.3 54.1 46.3
BiLSTM+ours 36.4 37.4/37.9 64.1 56.2 58.7 46.9 48.3 60.7/60.2 63.5 56.7 52.3(+6.0)
ESIM 36.7 37.2/37.5 68.1 61.4 64.8 47.5 48.8 62.9/62.6 55.8 55.6 53.2
ESIM+ours 37.7 38.5/39.6 69.2 62.2 65.3 48.8 49.9 63.4/63.5 57.3 58.4 54.5(+1.3)
MwAN 38.0 38.4/38.2 63.6 55.5 58.7 39.7 40.3 58.2/58.9 55.1 49.7 49.5
MwAN+ours 36.9 38.9/39.9 62.0 57.4 60.3 48.1 49.3 59.3/59.3 54.2 58.6 52.0(+2.5)
CAFE 37.9 38.5/39.2 67.5 60.1 63.5 48.2 49.7 62.1/61.4 41.4 56.1 52.1
CAFE+ours 38.0 37.6/38.4 67.8 59.6 63.1 48.0 49.4 62.3/62.2 60.1 56.3 53.6(+1.5)

Table 5: Performance in unseen domains. “Gold” denotes the gold-standard test set of DNLI.

Table 5 shows the performance of different models. From the results, we see that by using our
proposed method, the accuracy improves significantly.

5.5 VISUALIZATION OF THE PROJECTION

We visualize the α to deeply analyze its performance in Figure 4. Each grid of a word represent its
α. Our approach successfully projects superficial words out. For example, in figure 4a, the words
“women” and “bar” are mostly discarded, while both words do not affect the inference. The same
intuitive discarding happens in the words “man” and “shirt” in figure 4b. We also visualize and
analyze the attention mechanism in appendix G.
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Figure 4: α for two sentence pairs.

6 CONCLUSION

In this paper, we study the problem of projecting superficial information out for NLI. The projection
prevents models from overfitting and makes them more robust. Specially, we explain the superficial
information from the perspective of FOL, and project them out in a neural network-based architec-
ture. We conduct extensive experiments to verify the effectiveness of our proposed approach. The
results verify that our proposed approaches increase the baselines by a large margin.
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A FORMAL PROBLEM SETUP FOR THE SINGLE DOMAIN AND THE UNSEEN
DOMAIN

Single domain In the single domain setting, the training data and the test data have the same dis-
tribution PX , y. More formally, given training data Train = {xn, yn ∼ PX,y}Nn=1, the goal is to
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predict the labels of the test data Test = {xm, ym ∼ PX,y}Mm=1. Each xi consists of two sen-
tences s1i , s2i . For example, in NLI, each yi ∈ {neutral, contradiction, entailment} indicates the
relation between s1i and s2i . Each sentence is a sequence of words.

Unseen domains To evaluate the generality of the model after discarding superficial information,
we also consider its effectiveness in an unseen domain. More formally, suppose the source domain
and the target domain have distribution P (s)

X , y and P (t)
X , y, respectively. We evaluate the model

that is trained on the source domain Train(s) = {x(s)n , y
(s)
n ∼ P

(s)
X,y}Nn=1 and is tested on the

target domain Test(t) = {x(t)m , y
(t)
m ∼ P

(t)
X,y}Mm=1. Note that in the unseen domain NLI, P (t)

X , y

and Test(t) are unknown during training. This setting is more challenging than traditional domain-
adaptation (Ajakan et al., 2014; Cui et al., 2019) and domain generalization (Muandet et al., 2013)
from the perspective that the test domain is unknown during training.

B THE SYNTAX OF FOL

Syntax of the atoms in FOL Symbol type
Connective→ ∨| ∧ | ⇒ logical
Quantifier → ∀|∃ logical
Constant→ A|V egetarianFood| · · · non-logical
V araible→ x|y| · · · non-logical
Predicate→ Serves|Near| · · · non-logical
Function→ LocationOf |CuisineOf | · · · non-logical

Table 6: The syntax of FOL, specified in Backus-Naur form (Russell and Norvig, 1995).

C PROOF OF THEOREM 1

Proof. For a non-logical symbol ns, since ∀CS,

CS ∧ FOL(s1) |= FOL(s2) (11)

is equivalent to
CS ∧ FOL′(s1) |= FOL′(s2) (12)

For CS = True, CS ∧ FOL(s1) = FOL(s1), CS ∧ FOL′(s1) = FOL′(s1). Thus for a non-
logical symbol ns, we have

FOL(s1) |= FOL(s2) (13)

is equivalent to
FOL′(s1) |= FOL′(s2) (14)

D EXPERIMENTAL SETTINGS AND DATASETS

All the experiments run over a computer with Intel Core i7 4.0GHz CPU, 32GB RAM, and a
GeForce GTX 1080 Ti GPU. For SNLI, we remove the ”the other” category to make its labels
comparable with MNLI. We evaluate the accuracy and f1-score for MRPC, since its labels are im-
balanced. We list the statistics of the datasets in Table 7.

E NEURAL NETWORK DETAILS

We use a pooling layer over our proposed architecture for sentence pair classification. For ESIM,
MwAN and CAFE, we use the pooling layer in their original papers. For BiLSTM, we follow (Wang
et al., 2018). We use a max pooling layer to produce the vectors u, v of each sentence, and pass
[u; v; |u − v|;u ∗ v] to an MLP classifier which has a hidden layer with tanh activation. We apply
softmax over the output layer.
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#Train #Dev #Test Avg.L Vocab.
MNLI 392702 9815/9832 9796/9847 17.0 95871
SNLI 549367 9842 9824 11.2 40257
MRPC 4076 - 1725 22.3 18765
QNLI 104743 5463 5463 21.2 89686
RTE 2490 277 3000 29.5 26751
DNLI 310110 16500 16500/12376 9.4 15568
SciTail 23596 1304 2126 16.4 28169

Table 7: Statistics of datasets. Avg.L denotes the average length of each review. Vocab. denotes the
vocabulary size. We show the size of the matched/mismatched test sets for MNLI.

For Roberta, we split the outputs of Roberta into va, vb according to the 〈SEP 〉 separator. Then we
use the pooling layer in ESIM. We use our proposed method and its ablations, and choose the best
model w.r.t. the developing dataset.

Hex (Wang et al., 2019) relies on a textural model to generate superficial information, and a raw
model to generate all information. We use a two-layer BiLSTM over the overlapping words to
generate the superficial information. And we use another BiLSTM over the raw sentence to generate
all information.

Hyper-parameters For BiLSTM, the dimension of the hidden states is set to 300. For other models,
we use the dimension of the hidden states as their original papers. For ESIM, CAFE, and MwAN,
their dimensions are set to 300, 300, 75, respectively. We use the AMSGrad (Reddi et al., 2018)
optimizer except Roberta, in which we use AdamW (Loshchilov and Hutter, 2019). We use 300d
GloVe vectors (Pennington et al., 2014) as the initialization for the word embedding except Roberta.
For the T -layer graph neural network, to achieve the best performance, we set T = 3 for BiLSTM,
ESIM and Roberta, T = 2 for MwAN, and T = 1 for CAFE.

F ABLATIONS OVER UNSEEN DOMAINS

We show the ablations over unseen domains in table 8.

NLI (3 classes) NLI(2 classes)
Source DNLI DNLI MNLI MNLI SNLI SNLI RTE SciTail AVG.Target SNLI MNLI SNLI DNLI Gold DNLI Gold MNLI SciTail RTE
BiLSTM+ours 36.4 37.4/37.9 64.1 56.2 58.7 46.9 48.3 60.7/60.2 63.5 56.7 52.3
-correspond 36.0 38.2/38.1 65.2 57.2 60.2 46.3 47.9 60.7/60.3 60.9 55.4 52.2(-0.1)
-word 37.8 40.1/39.3 61.2 50.1 52.3 40.6 40.7 57.6/57.1 48.5 53.5 48.2(-4.1)
ESIM+ours 37.7 38.5/39.6 69.2 62.2 65.3 48.8 49.9 63.4/63.5 57.3 58.4 54.5
-correspond 37.0 38.2/38.5 68.8 61.0 64.1 50.0 51.5 64.9/64.0 56.3 59.0 54.4(-0.1)
-word 36.0 37.3/38.1 67.3 59.8 62.7 46.7 47.7 62.5/62.5 49.7 55.6 52.2(-2.3)

Table 8: Ablations over unseen domains. For MNLI, we report the accuracy on both matched and
mismatched test sets. “Gold” denotes the gold-standard test set of DNLI.

G EFFECT OF THE SUPERFICIAL INFORMATION IN ATTENTION

We further investigate what is projected and what is reserved from the attention perspective. Figure 5
show the attention matrix w/o discarding superficial information in ESIM. Clearly, the attention
matrix after discarding superficial information is more intuitive. It concentrates on “usual” and
“slightly lower”, which imply the contradiction relation. In contrast, the matrix of the standard
ESIM focus on the repeated words (e.g. “Toronto”, “stock”), which are not critical for the inference.
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(a) Attention matrix in standard ESIM.
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(b) Attention matrix in our method.

Figure 5: Attention matrix visualization. The x-axis and the y-axis denote words in the two sen-
tences.
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