
Under review as a conference paper at ICLR 2020

IMPROVING ROBUSTNESS WITHOUT SACRIFICING
ACCURACY WITH PATCH GAUSSIAN AUGMENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deploying machine learning systems in the real world requires both high accuracy
on clean data and robustness to naturally occurring corruptions. While architec-
tural advances have led to improved accuracy, building robust models remains
challenging, involving major changes in training procedure and datasets. Prior
work has argued that there is an inherent trade-off between robustness and accu-
racy, as exemplified by standard data augmentation techniques such as Cutout,
which improves clean accuracy but not robustness, and additive Gaussian noise,
which improves robustness but hurts accuracy. We introduce Patch Gaussian, a
simple augmentation scheme that adds noise to randomly selected patches in an
input image. Models trained with Patch Gaussian achieve state of the art on
the CIFAR-10 and ImageNet Common Corruptions benchmarks while also main-
taining accuracy on clean data. We find that this augmentation leads to reduced
sensitivity to high frequency noise (similar to Gaussian) while retaining the ability
to take advantage of relevant high frequency information in the image (similar to
Cutout). We show it can be used in conjunction with other regularization methods
and data augmentation policies such as AutoAugment. Finally, we find that the
idea of restricting perturbations to patches can also be useful in the context of
adversarial learning, yielding models without the loss in accuracy that is found
with unconstrained adversarial training.

1 INTRODUCTION

10 8 6 4 2 0 2

Clean Accuracy Change

0.85

0.90

0.95

1.00

1.05

1.10

M
ea

n
Co

rr
up

tio
n

Er
ro

r

ResNet-200 - ImageNet

Baseline
Cutout
Gaussian
Patch Gaussian

Figure 1: Patch Gaussian augmenta-
tion overcomes the accuracy/robustness trade-
off observed in other augmentation strate-
gies. Larger σ of Patch Gaussian (→)
improves mean corruption error (mCE) and
maintains clean accuracy, whereas larger σ
of Gaussian (→) and patch size of Cutout
(→) hurt accuracy or robustness. More robust
and accurate models are down and to the right.

Modern deep neural networks can achieve impres-
sive performance at classifying images in curated
datasets (Karpathy, 2011; Krizhevsky et al., 2012;
Tan & Le, 2019). Yet, they lack robustness to var-
ious forms of distribution shift that typically occur
in real-world settings. For example, neural networks
are sensitive to small translations and changes in
scale (Azulay & Weiss, 2018), blurring and additive
noise (Dodge & Karam, 2017), small objects placed
in images (Rosenfeld et al., 2018), and even different
images from a distribution similar to the training set
(Recht et al., 2019; 2018). For models to be useful
in the real world, they need to be both accurate on
a high-quality held-out set of images, which we re-
fer to as “clean accuracy,” and robust on corrupted
images, which we refer to as “robustness.” Most of
the literature in machine learning has focused on ar-
chitectural changes (Simonyan & Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016; Zoph & Le,
2017; Szegedy et al., 2017; Han et al., 2017; Zoph
et al., 2017; Hu et al., 2017; Liu et al., 2018) to im-
prove clean accuracy but interest has recently shifted toward robustness as well.

Research in neural network robustness has tried to quantify the problem by establishing benchmarks
that directly measure it (Hendrycks & Dietterich, 2018; Gu et al., 2019) and comparing the perfor-
mance of humans and neural networks (Geirhos et al., 2018b; Elsayed et al., 2018). Others have tried

1

Under review as a conference paper at ICLR 2020

to understand robustness by highlighting systemic failure modes of current methods. For instance,
networks exhibit excessive invariance to visual features (Jacobsen et al., 2018), texture bias (Geirhos
et al., 2018a), sensitivity to worst-case (adversarial) perturbations (Goodfellow et al., 2014), and a
propensity to rely on non-robust, but highly predictive features for classification (Doersch et al., 2015;
Ilyas et al., 2019). Of particular relevance, Ford et al. (2019) has established connections between
popular notions of adversarial robustness and some measures of distribution shift considered here.

Another line of work has attempted to increase model robustness performance, either by projecting
out superficial statistics (Wang et al., 2019), via architectural improvements (Cubuk et al., 2017), pre-
training schemes (Hendrycks et al., 2019), or with the use of data augmentations. Data augmentation
increases the size and diversity of the training set, and provides a simple way to learn invariances
that are challenging to encode architecturally (Cubuk et al., 2017). Recent work in this area includes
learning better transformations (DeVries & Taylor, 2017; Zhang et al., 2017; Zhong et al., 2017),
inferring combinations of them (Cubuk et al., 2018), unsupervised methods (Xie et al., 2019), theory
of data augmentation (Dao et al., 2018), and applications for one-shot learning (Asano et al., 2019).

Despite these advances, individual data augmentation methods that improve robustness do so at the
expense of reduced clean accuracy. Further, achieving robustness on par with the human visual
system is thought to require major changes in training procedures and datasets: the current state of
the art in robustness benchmarks involves creating a custom dataset with styled-transferred images
before training (Geirhos et al., 2018a), and still incurs a significant drop in clean accuracy. The
ubiquity of reported robustness/accuracy trade-offs in the literature have even led to the hypothesis
that these trade-offs may be inevitable (Tsipras et al., 2018). Because of this, many recent works
focus on improving either one or the other (Madry et al., 2017; Geirhos et al., 2018a). In this work
we propose a simple data augmentation method that overcomes this trade-off, achieving improved
robustness while maintaining clean accuracy. Our contributions are as follows:

• We characterize a trade-off between robustness and accuracy in standard data augmentations
Cutout and Gaussian (Section 2.1).
• We describe a simple data augmentation method (which we term Patch Gaussian) that

allows us to interpolate between the two augmentations above (Section 3.1). Despite its
simplicity, Patch Gaussian achieves a new state of the art in the Common Corruptions
robustness benchmark (Hendrycks & Dietterich, 2018), while maintaining clean accuracy,
indicating current methods have not reached this fundamental trade-off (Section 4.1).
• We demonstrate that Patch Gaussian can be combined with other regularization strategies

(Section 4.2) and data augmentation policies (Section 4.3).
• We perform a frequency-based analysis (Yin et al., 2019) of models trained with Patch
Gaussian and find that they can better leverage high-frequency information in lower layers,
while not being too sensitive to them at later ones (Section 5.1).
• We show a similar method can be used in adversarial training, suggesting under-explored

questions about training distributions’ effect on out-of-distribution robustness (Section 5.2).

2 PRELIMINARIES

We start by considering two data augmentations: Cutout (DeVries & Taylor, 2017) and Gaussian
(Grandvalet & Canu, 1997). The former sets a random patch of the input image to a constant (mean
pixel in the dataset) in order to improve clean accuracy. The latter adds independent Gaussian noise
to each pixel of the input image, which directly increases robustness to Gaussian noise.

2.1 CUTOUT AND GAUSSIAN EXHIBIT A TRADE-OFF BETWEEN ACCURACY AND ROBUSTNESS
We compare the effectiveness of Gaussian and Cutout data augmentation for accuracy and ro-
bustness by measuring the performance of models trained with each on clean as well as corrupted
data. Here, robustness is defined as average accuracy of the model, when tested on data corrupted by
various σ (0.1, 0.2, 0.3, 0.5, 0.8, 1.0) of Gaussian noise, relative to the clean accuracy:

Relative Gaussian Robustness = E
σ
(Accuracy on Data Corrupted by σ)− Clean Accuracy

Fig. 2 highlights an apparent trade-off in using these methods. In accordance to previous work (De-
Vries & Taylor, 2017), Cutout improves accuracy on clean test data. Despite this, we find it does not
lead to increased robustness. Conversely, training with higher σ of Gaussian can lead to increased

2

Under review as a conference paper at ICLR 2020

robustness to Gaussian noise, but also leads to decreased accuracy on clean data. Therefore, any
robustness gains are offset by poor overall performance: a model with a perfect Relative Robustness
of 0, but whose clean accuracy dropped to 50% will be wrong half the time, even on clean data.

30 40 50 60 70 80 90 100

Clean Accuracy

100

80

60

40

20

0

20

40

Re
la

tiv
e

Ro
bu

st
ne

ss

Wide Resnet - CIFAR-10

Baseline
Gaussian σ 0. 1

Gaussian σ 0. 2

Gaussian σ 0. 3

Gaussian σ 0. 5

Gaussian σ 0. 8

Gaussian σ 1. 0

Gaussian σ 1. 5

Gaussian σ 2. 0

Cutout

71 72 73 74 75 76 77 78 79 80

Clean Accuracy

40

35

30

25

20

15

10

5

0

Re
la

tiv
e

Ro
bu

st
ne

ss

ModelsResnet-200 - ImageNet

Baseline
Gaussian σ 0. 1

Gaussian σ 0. 2

Gaussian σ 0. 3

Gaussian σ 0. 5

Gaussian σ 0. 8

Gaussian σ 1. 0

Gaussian σ 1. 5

Gaussian σ 2. 0

Cutout

Figure 2: The apparent robustness-accuracy trade-off between Cutout and Gaussian augmen-
tations. Each dot represents a model trained with different augmentations and hyper-parameters.
The y-axis is the change in accuracy when tested on data corrupted with Gaussian noise at vari-
ous σ (average corrupted accuracy minus clean accuracy). The diamond indicates augmentation
hyper-parameters selected by the method in Section 3.2.

At first glance, these results seem to reinforce the findings of previous work (Tsipras et al., 2018),
indicating that robustness comes at the cost of generalization, which would offset any benefits of
improved robustness. In the following sections, we will explore whether there exists augmentation
strategies that do not exhibit this limitation.

3 METHOD

Each of the two methods seen so far achieves one half of our stated goal: either improving robustness
or slightly improving/maintaining clean test accuracy, but never both. To explore whether this
observed trade-off is fundamental, we introduce Patch Gaussian, a technique that combines the
noise robustness of Gaussian with the slightly improved clean accuracy of Cutout. Our method is
intentionally simple but, as we’ll see, it’s powerful enough to overcome the limitations described and
beats complex training schemes designed to provide robustness.

3.1 PATCH GAUSSIAN

Patch Gaussian works by adding a W × W

Figure 3: Patch Gaussian is the addition of
Gaussian noise to pixels in a square patch. It
allows us to interpolate between Gaussian and
Cutout, approaching Gaussian with increas-
ing patch size and Cutout with increasing σ.

patch of Gaussian noise to the image (Figure 3).
As with Cutout, the center of the patch is sam-
pled to be within the image. By varying the size
of this patch and the maximum standard devia-
tion of noise sampled σmax, we can interpolate be-
tween Gaussian (which applies additive Gaussian
noise to the whole image) and an approximation
of Cutout (which removes all information inside
the patch). See Fig. 9 for more examples.

3.2 HYPER-PARAMETER SELECTION

Our goal is to learn models that achieve both good clean accuracy and improved robustness to
corruptions. Prior work has optimized for one or the other but, as noted before, to meaningfully
improve robustness to other distributions, a method can’t incur a significant drop in clean accuracy.
Therefore, when selecting hyper-parameters, we focus on identifying the models that are most robust
while still achieving a minimum accuracy (Z) on the clean test data. Values of Z are selected to incur
negligible decrease in clean accuracy. As such, they vary per dataset and model, and can be found in
the Appendix (Table 5). If no model has clean accuracy ≥ Z, we report the model with highest clean
accuracy, unless otherwise specified.

3

Under review as a conference paper at ICLR 2020

We find that patch sizes around 25 on CIFAR (≤250 on ImageNet, i.e.: uniformly sampled with
maximum value 250) with σ ≤ 1.0 generally perform the best. A complete list of selected hyper-
parameters for all augmentations can be found in Table 5.

We are interested in out-of-distribution robustness, and report performance of selected models on
Common Corruption (Hendrycks & Dietterich, 2018). However, when selecting hyper-parameters,
we use Relative Gaussian Robustness as a stand-in for “robustness.” Ford et al. (2019) indicates that
this metric is correlated with performance on Common Corruptions, so selected models should be
generally robust beyond Gaussian corruptions. By picking models based on robustness to Gaussian
noise, we ensure that our selection process does not overfit to the Common Corruptions benchmark.

4 RESULTS

Models trained with Patch Gaussian overcome the observed trade-off and gain robustness to
Gaussian noise while maintaining clean accuracy (Fig. 1). Because Gaussian robustness is only used
for hyper-parameter selection, we omit these results, but refer the curious reader to Appendix Fig. 7.

Instead, we report how this Gaussian robustness translates into better Common Corruption robustness,
which is in line with reports of the correlation between the two (Ford et al., 2019). In doing so, we
establish a new state of the art in the Common Corruptions benchmark (Section 4.1), despite the
simplicity of our method when compared with the previous best (Geirhos et al., 2018a). We then
show that Patch Gaussian can be used in complement to other common regularization strategies
(Section 4.2) and data augmentation policies (Cubuk et al., 2018) (Section 4.3).

4.1 TRAINING WITH PATCH GAUSSIAN IMPROVES COMMON CORRUPTION ROBUSTNESS
In this section, we look at how our augmentations impact robustness to corruptions beyond Gaussian
noise. Rather than focusing on adversarial examples that are worst-case bounded perturbations, we
focus on a more general set of corruptions (Gilmer et al., 2018) that models are likely to encounter
in real-world settings: the Common Corruptions benchmark (Hendrycks & Dietterich, 2018). This
benchmark, also referred to as CIFAR-C and ImageNet-C, is composed of images transformed with
15 corruptions, at 5 severities each. Each is designed to model transformations commonly found in
real-world settings, such as brightness, different weather conditions, and different kinds of noise.

Table 1 shows that Patch Gaussian achieves state of the art on both of these benchmarks in terms
of mean Corruption Error (mCE). A “Corruption Error” is a model’s average error over 5 severities
of a given corruption, normalized by the same average of a baseline model. However, ImageNet-C
was released in compressed JPEG format (ECMA International, 2009), which alters the corruptions
applied to the raw pixels. Therefore, we report results on the benchmark as-released (“Original
mCE”)1 as well as a version of 12 corruptions without the extra compression (“mCE”). Additionally,
because Patch Gaussian is a noise-based augmentation, we wanted to verify whether its gains
on this benchmark were solely due to improved performance on noise-based corruptions (Gaussian
Noise, Shot Noise, and Impulse Noise). To do this, we also measure the models’ average performance
on all other corruptions, reported as “Original mCE (-noise)”, and “mCE (-noise)”.

The models used to normalize Corruption Errors are the “Baselines” trained with only flip and crop
data augmentation. The one exception is Original mCE ImageNet, where we use the AlexNet baseline
to be directly comparable with previous work (Hendrycks & Dietterich, 2018; Geirhos et al., 2018a).

On CIFAR, we compare with an adversarially-trained model (Madry et al., 2017). On ImageNet, we
compare with a model trained with Random Erasing (Zhong et al., 2017), as well as a shape-biased
model “SIN+IN ftIN” (Geirhos et al., 2018a). Finally, previous work (Yin et al., 2019) has found that
augmentation diversity is a key component of robustness gains. To confirm that Patch Gaussian’s
gains aren’t simply a result of using multiple augmentations, we also report results on training with
Cutout and Gaussian applied in sequence (“Cutout & Gaussian” and “Gaussian & Cutout”), as
well as to 50% of batches (“Gaussian or Cutout”).

We observe that Patch Gaussian outperforms all models, even on corruptions like fog where
Gaussian hurts performance (Ford et al., 2019). Scores for each corruption can be found in the

1We note that, in our implementation, Original mCE used the 299× 299 images provided by the benchmark,
which were originally intended for Inception models. Preliminary experiments indicate this does not change our
qualitative analysis, but we will update the paper with evaluations on 224× 224 when possible.

4

Under review as a conference paper at ICLR 2020

Table 1: Patch Gaussian achieves state of the art in the CIFAR-C (left) and ImageNet-C (right)
robustness benchmarks while maintaining clean test accuracy. “Original mCE” refers to the jpeg-
compressed benchmark, as used in Geirhos et al. (2018a); Hendrycks & Dietterich (2018). “mCE” is
a version of it without the extra jpeg compression. Note that Patch Gaussian improves robustness
even in corruptions that aren’t noise-based. *Cutout 16 is presented for direct comparison with
DeVries & Taylor (2017); Gastaldi (2017). For Resnet-200, we also present Gaussian at a higher σ
to highlight the accuracy-robustness trade-off. Augmentation hyper-parameters were selected based
on the method in Section 3.2 and can be found in Appendix. See text for details.

Augmentation Test
Accuracy mCE mCE

(-noise)

W
id

e
R

es
ne

t-
28

-1
0 Adversarial 87.3% 1.049 1.157

Baseline 96.2% 1.000 1.000
Cutout 96.8% 1.265 1.185
Cutout 16* 97.0% 1.002 0.953
Gaussian 94.1% 0.887 0.995
Patch Gaussian 96.6% 0.797 0.858

Sh
ak

e
11

2 Baseline 96.8% 1.000 1.000
Cutout 97.1% 0.946 0.930
Cutout 16* 97.5% 0.912 0.872
Gaussian 94.6% 0.977 1.111
Patch Gaussian 97.2% 0.713 0.776

Augmentation Test
Accuracy

Original
mCE

Original
mCE (-noise) mCE mCE

(-noise)

R
es

ne
t-

50

SIN+IN ftIN 76.7% 0.738 0.731 - -
Random Erasing 76.1% 0.785 0.795 1.035 1.037

Baseline 76.4% 0.753 0.763 1.00 1.00
Cutout 76.2% 0.758 0.766 1.007 1.005
Gaussian 75.6% 0.739 0.754 0.898 0.991
Patch Gaussian 76.0% 0.714 0.736 0.872 0.969
Cutout & Gaussian 75.8% 0.757 0.769 0.934 1.015
Gaussian & Cutout 75.8% 0.761 0.770 0.923 1.013
Gaussian or Cutout 76.0% 0.753 0.765 0.926 1.009

R
es

ne
t-

20
0 Baseline 78.6% 0.675 0.686 0.881 0.883

Cutout 78.6% 0.671 0.687 0.874 0.884
Gaussian 78.7% 0.658 0.678 0.795 0.881
Gaussian (σ ≤ 0.2) 78.1% 0.644 0.665 0.784 0.874
Patch Gaussian 78.7% 0.604 0.634 0.736 0.818

Appendix (Tables 6&7). We observe small gains on low capacity models (ResNet-50 & Wide ResNet),
but find large robustness improvements with higher capacity ones (ResNet-200 & Shake 112).

These results are surprising: achieving robustness on par with the human visual system is thought to re-
quire major changes in training procedures and datasets. Training shape-biased models (Geirhos et al.,
2018a) involves creating a custom dataset of style-transferred images, which is a computationally-
expensive operation. Even with these, the most robust model reported SIN+IN displays a significant
drop in clean accuracy. Because of this, our main comparison is with SIN+IN ftIN, which is fine-tuned
on ImageNet. A comparison with SIN+IN can be found in Appendix Table 8.

In sum, despite its simplicity, Patch Gaussian achieves a substantial decrease in mCE relative to
other models, indicating that current methods have not reached the theoretical trade-off (Tsipras et al.,
2018), and that complex training schemes (Geirhos et al., 2018a) are not needed for robustness.

4.2 PATCH GAUSSIAN CAN BE COMBINED WITH OTHER REGULARIZATION STRATEGIES

Since Patch Gaussian has a regularization effect on the models trained above, we compare it with
other regularization methods: larger weight decay, label smoothing, and dropblock (Table 2). We
find that while label smoothing improves clean accuracy, it weakens the robustness in all corruption
metrics we have considered. This agrees with the theoretical prediction from Cubuk et al. (2017),
which argued that increasing the confidence of models would improve robustness, whereas label
smoothing reduces the confidence of predictions. We find that increasing the weight decay from the
default value used in all models does not improve clean accuracy or robustness.

Here, we focus on analyzing the interaction of different regularization methods with Patch
Gaussian. Previous work indicates that improvements on the clean accuracy appear after training
with Dropblock for 270 epochs (Ghiasi et al., 2018), but we did not find that training for 270 epochs
changed our analysis. Thus, we present models trained at 90 epochs for direct comparison with other
results. Due to the shorter training time, Dropblock does not improve clean accuracy, yet it does
make the model more robust (relative to baseline) according to all corruption metrics we consider.

We find that using label smoothing in addition to Patch Gaussian has a mixed effect, it improves
clean accuracy while slightly improving robustness metrics except for the Original mCE. Combining
Dropblock with Patch Gaussian reduces the clean accuracy relative to the Patch Gaussian-only
model, as Dropblock seems to be a strong regularizer when used for 90 epochs. However, using

5

Under review as a conference paper at ICLR 2020

Table 2: Patch Gaussian can be used with other regularization methods for improved robustness.
“Original mCE” refers to the jpeg-compressed benchmark, as used in Geirhos et al. (2018a); Hendrycks
& Dietterich (2018). “mCE” is a version of it without the extra jpeg compression. All of the models
are ResNet-50 trained on ImageNet with same hyperparameters for 90 epochs.

Regularization Test
Accuracy

Original
mCE

Original
mCE (-noise) mCE mCE (-noise)

R
es

ne
t-

50

Label Smoothing 76.7% 0.760 0.765 1.01 1.01
Larger Weight Decay (0.001) 74.9% 0.766 0.777 1.02 1.03
Dropblock 76.3% 0.734 0.743 0.971 0.974
Patch Gaussian + Label Smoothing 76.5% 0.720 0.734 0.868 0.966
Patch Gaussian + Dropblock 75.7% 0.708 0.726 0.870 0.961

Dropblock and Patch Gaussian together leads to the best robustness performance. These results
indicate that Patch Gaussian can be used in conjunction with existing regularization strategies.

4.3 PATCH GAUSSIAN CAN BE COMBINED WITH AUTOAUGMENT FOR IMPROVED RESULTS

Knowing that Patch Gaussian can be combined with other regularizers, it’s natural to ask whether
it can also be combined with other data augmentation policies. Previous work has found that varied
augmentation policies have a large positive impact on model robustness (Yin et al., 2019). In this
section, we verify that Patch Gaussian can be added to these policies for further gains.

Table 3 highlights models trained with AutoAugment (Cubuk et al., 2018). For fair comparison
of mCE scores, we train all models with the best AutoAugment policy, but without contrast and
Inception color pre-processing, as those are present in the Common Corruptions benchmark. This
process is imperfect since AutoAugment has many operations, some of which could be correlated with
corruptions. Regardless, we find that Patch Gaussian improves robustness over AutoAugment.

Because AutoAugment leads to state of the art accuracies, we are interested in seeing how far it can
be combined with Patch Gaussian to improve results. Therefore, and unlike previous experiments,
models are trained for 180 epochs to yield best results possible.

Table 3: Patch Gaussian can be combined with AutoAugment (Cubuk et al., 2018) data augmen-
tation policy for improved results. “Original mCE” refers to the jpeg-compressed benchmark, as used
in Geirhos et al. (2018a); Hendrycks & Dietterich (2018). “mCE” is a version of it without the extra
jpeg compression. All of the models are ResNet-50 trained on ImageNet with best AutoAugment
policy for 180 epochs, to highlight improvements.

Model
(trained with AutoAugment)

Test
Accuracy

Original
mCE

Original
mCE (-noise) mCE mCE (-noise)

R
es

N
et 50

Baseline 77.0% 0.674 0.697 0.855 0.882
Patch Gaussian (W=150, σ ≤ 0.5) 77.3% 0.656 0.682 0.779 0.863

5 DISCUSSION

In an attempt to understand Patch Gaussian’s performance, we perform a frequency-based analysis
of models trained with various augmentations using the method introduced in Yin et al. (2019).

First, we perturb each image in the dataset with noise sampled at each orientation and frequency in
Fourier space. Then, we measure changes in the network activations and test error when evaluated
with these Fourier-noise-corrupted images: we measure the change in `2 norm of the tensor directly
after the first convolution, as well as the absolute test error. This procedure yields a heatmap, which
indicates model sensitivity to different frequency and orientation perturbations in the Fourier domain.
Each image in Fig 4 shows first layer (or test error) sensitivity as a function of frequency and
orientation of the sampled noise, with the middle of the image containing the lowest frequencies, and
the edges of the image containing highest frequencies.

For CIFAR-10 models, we present this analysis for the entire Fourier domain, with noise sampled
with norm 4. For ImageNet, we focus our analysis on lower frequencies that are more visually salient
add noise with norm 15.7.

6

Under review as a conference paper at ICLR 2020

Note that for Cutout and Gaussian, we chose larger patch sizes and σs than those selected with the
method in Section 3.2 in order to highlight the effect of these augmentations on sensitivity. Heatmaps
of other models can be found in the Appendix (Figure 11).

5.1 FREQUENCY-BASED ANALYSIS OF MODELS TRAINED WITH PATCH GAUSSIAN

We confirm findings by Yin et al. (2019) that Gaussian encourages the model to learn a low-pass
filter of the inputs. Models trained with this augmentation, then, have low test error sensitivity at high
frequencies, which could help robustness. However, valuable high-frequency information (Brendel &
Bethge, 2019) is being thrown out at low layers, which could explain the lower test accuracy.

We further find that Cutout encourages the use of high-frequency information, which could help
explain its improved generalization performance. Yet, it does not encourage lower test error sensitivity,
which explains why it doesn’t improve robustness either.

Patch Gaussian, on the other hand, seems to allow high-frequency information through at lower
layers, but still encourages relatively lower test error sensitivity at high frequencies. Indeed, when we
measure accuracy on images filtered with a high-pass filter, we see that Patch Gaussian models
can maintain accuracy in a similar way to the baseline and to Cutout, where Gaussian fails to. See
Figure 4 for full results.

Wide Resnet - CIFAR-10 Resnet-50 - ImageNet Wide Resnet - CIFAR-10

1st Layer
Fourier

Sensitivity

Test Error
Fourier

Sensitivity

Selected
1st Layer

Filters

Test Error
Fourier

Sensitivity

0π 2π 4π 6π 8π 10π 12π

Area of High Pass Filter

0.10

0.25

0.40

0.55

0.70

0.85

1.00

Ac
cu

ra
cy

Effective Use of
High Frequency Information

Baseline
Cutout
Patch Gaussian
Gaussian

B
a
s
e
l
i
n
e

C
u
t
o
u
t

*
G
a
u
s
s
i
a
n

*
P
a
t
c
h

G
a
u
s
s
i
a
n

Figure 4: (left) Fourier analysis of various models, using method from Yin et al. (2019). Heatmaps
depict model sensitivity to various sinusoidal gratings. Cutout encourages the use of high frequencies
in earlier layers, but its test error remains too sensitive to them. Gaussian learns low-pass filtering
of features, which increases robustness at later layers, but makes lower layers too invariant to high-
frequency information (thus hurting accuracy). Patch Gaussian allows high frequencies to be
used in lower layers, and its test error remains relatively robust to them. This can also be seen by the
presence of high-frequency kernels in the first layer filters of the models (or lack thereof, in the case
of Gaussian). (right) Indeed, Patch Gaussian models match the performance of Cutout and
Baseline when presented with only the high frequency information of images, whereas Gaussian
fails to effectively utilize this information (see Appendix Fig. 12 for experiment details). This pattern
of reduced sensitivity of predictions to high frequencies in the input occurs across all augmentation
magnitudes, but here we use larger patch sizes and σ of noise to highlight the differences in models
indicated by *. See text for details.

Understanding the impact of data distributions and noise on representations has been well-studied in
neuroscience (Barlow et al., 1961; Simoncelli & Olshausen, 2001; Karklin & Simoncelli, 2011). The
data augmentations that we propose here alter the distribution of inputs that the network sees, and
thus are expected to alter the kinds of representations that are learned. Prior work on efficient coding
(Karklin & Simoncelli, 2011) and autoencoders (Poole et al., 2014) has shown how filter properties

7

Under review as a conference paper at ICLR 2020

change with noise in the unsupervised setting, resulting in lower-frequency filters with Gaussian,
as we observe in Fig. 4. Consistent with prior work on natural image statistics (Torralba & Oliva,
2003), we find that networks are least sensitive to low frequency noise where spectral density is
largest. Performance drops at higher frequencies when the amount of noise we add grows relative to
typical spectral density observed at these frequencies. In future work, we hope to better understand
the relationship between naturally occurring properties of images and sensitivity, and investigate
whether training with more naturalistic noise can yield similar gains in corruption robustness.

5.2 PATCHING ADVERSARIAL TRAINING ALSO LEADS TO IMPROVED ROBUSTNESS
Our results indicate that patching a transformation can prevent overfitting to that particular trans-
formation and maintain clean accuracy. To further confirm this, we train a model with adversarial
training applied only to a patch of the training input. Adversarial training is a method of achieving
robustness to worst-case perturbations. Models trained in this setting notoriously exhibit decreased
clean accuracy, so it is a good candidate to verify whether our robustness gains come from patching.

We train our models with PGD, in a setting equivalent to Madry et al. (2017). For Patch PGD, the
adversarial perturbation is calculated on the whole image for all steps, and patched after the fact. We
also tried calculating PGD on a patch only and found similar results. We select hyper-parameters
based on PGD performance on validation set, while maintaining accuracy above 90%. However, in
this section we are not interested in improving adversarial robustness performance, but on seeing its
effect on robustness to Common Corruptions, to evaluate out-of-distribution (o.o.d.) robustness. We
leave an analysis of the effect of patching on adversarial robustness to future work.

Indeed, Table 4 shows that training with Patch PGD obtains similar PGD accuracy to training with
PGD, but maintains most of the clean accuracy of the baseline model. Surprisingly, Patch PGD
also improves robustness to unseen Common Corruptions, when compared to the baseline without
adversarial training, indicating that patching is a generally powerful tool. This also suggests there are
unexplored questions regarding the training distribution and how that translates into i.i.d and o.o.d
generalization. We hope to explore these in future work.

Table 4: Patching also helps models trained adversarially to maintain clean accuracy and gain
Common Corruption robustness. All are Wide-ResNet models trained on CIFAR with PGD with eps
8 for 7 steps, with step size 2), just like in Madry et al. (2017).

Test Accuracy PGD Accuracy mCE mCE (-noise)
Baseline 96.2% 00.3% 1.000 1.000
PGD 85.7% 50.0% 1.390 1.581
Patch PGD (W=19) 93.5% 50.8% 0.814 0.894

6 CONCLUSION

In this work, we introduced a simple data augmentation operation, Patch Gaussian, which im-
proves robustness to common corruptions without incurring a drop in clean accuracy. For models that
are large relative to the dataset size (like ResNet-200 on ImageNet and all models on CIFAR-10),
Patch Gaussian improves clean accuracy and robustness concurrently. We showed that Patch
Gaussian achieves this by interpolating between two standard data augmentation operations Cutout
and Gaussian. Finally, we analyzed the sensitivity to noise in different frequencies of models trained
with Cutout and Gaussian, and showed that Patch Gaussian combines their strengths without
inheriting their weaknesses. Our method is much simpler than previous state of the art, and can
be used in conjunction with other regularization and data augmentation strategies, indicating it is
generally useful. We end by showing that applying perturbations in patches can be a powerful method
to vary training distributions in the adversarial setting. Our results indicate current methods have not
reached a fundamental robustness/accuracy trade-off, and that future work is needed to understand
the effect of training distributions in o.o.d. robustness.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Yuki M. Asano, Christian Rupprecht, and Andrea Vedaldi. Surprising effectiveness of few-image unsupervised
feature learning, 2019.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small image
transformations? arXiv preprint arXiv:1805.12177, 2018.

Horace B Barlow et al. Possible principles underlying the transformation of sensory messages. Sensory
communication, 1:217–234, 1961.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models works surprisingly
well on imagenet. arXiv preprint arXiv:1904.00760, 2019.

Ekin D Cubuk, Barret Zoph, Samuel S Schoenholz, and Quoc V Le. Intriguing properties of adversarial examples.
arXiv preprint arXiv:1711.02846, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning
augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

Tri Dao, Albert Gu, Alexander J Ratner, Virginia Smith, Christopher De Sa, and Christopher Ré. A kernel theory
of modern data augmentation. arXiv preprint arXiv:1803.06084, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with cutout.
arXiv preprint arXiv:1708.04552, 2017.

Samuel Dodge and Lina Karam. A study and comparison of human and deep learning recognition performance
under visual distortions. In 2017 26th international conference on computer communication and networks
(ICCCN), pp. 1–7. IEEE, 2017.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context
prediction. In Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430, 2015.

ECMA International. JPEG Interchange Format (JFIF). 2009.

Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin, Ian Goodfellow, and
Jascha Sohl-Dickstein. Adversarial examples that fool both computer vision and time-limited humans. In
Advances in Neural Information Processing Systems, pp. 3910–3920, 2018.

Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are a natural consequence of
test error in noise. arXiv preprint arXiv:1901.10513, 2019.

Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland Brendel.
Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness.
arXiv preprint arXiv:1811.12231, 2018a.

Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and Felix A Wichmann.
Generalisation in humans and deep neural networks. In Advances in Neural Information Processing Systems,
pp. 7538–7550, 2018b.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolutional networks.
In Advances in Neural Information Processing Systems, pp. 10727–10737, 2018.

Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivating the rules of the
game for adversarial example research. arXiv preprint arXiv:1807.06732, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

Yves Grandvalet and Stéphane Canu. Noise injection for inputs relevance determination. Advances in intelligent
systems, 41:378, 1997.

Keren Gu, Brandon Yang, Jiquan Ngiam, Quoc Le, and Jonathan Shlens. Using videos to evaluate image model
robustness. arXiv preprint arXiv:1904.10076, 2019.

9

Under review as a conference paper at ICLR 2020

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6307–6315. IEEE, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016.

Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common corruptions and
surface variations. arXiv preprint arXiv:1807.01697, 2018.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness and
uncertainty. arXiv preprint arXiv:1901.09960, 2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507, 2017.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. arXiv preprint arXiv:1905.02175, 2019.

Jörn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and Matthias Bethge. Excessive invariance causes
adversarial vulnerability. arXiv preprint arXiv:1811.00401, 2018.

Yan Karklin and Eero P Simoncelli. Efficient coding of natural images with a population of noisy linear-nonlinear
neurons. In Advances in neural information processing systems, pp. 999–1007, 2011.

Andrej Karpathy. Lessons learned from manually classifying cifar-10. Published online at http://karpathy.
github. io/2011/04/27/manually-classifying-cifar10, 2011.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems, 2012.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer
vision, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection.
In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. Analyzing noise in autoencoders and deep networks,
2014.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers generalize to
cifar-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize
to imagenet? arXiv preprint arXiv:1902.10811, 2019.

Amir Rosenfeld, Richard Zemel, and John K Tsotsos. The elephant in the room. arXiv preprint arXiv:1808.03305,
2018.

Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation. Annual review of
neuroscience, 24(1):1193–1216, 2001.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
Advances in Neural Information Processing Systems, 2015.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, Andrew Rabinovich, et al. Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning. In AAAI, 2017.

10

Under review as a conference paper at ICLR 2020

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

Antonio Torralba and Aude Oliva. Statistics of natural image categories. Network: computation in neural
systems, 14(3):391–412, 2003.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness
may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Haohan Wang, Zexue He, Zachary C Lipton, and Eric P Xing. Learning robust representations by projecting
superficial statistics out. arXiv preprint arXiv:1903.06256, 2019.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data augmentation,
2019.

Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D. Cubuk, and Justin Gilmer. A fourier perspective on
model robustness in computer vision. ICML Workshop on Uncertainty and Robustness in Deep Learning,
2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation. arXiv
preprint arXiv:1708.04896, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International Conference
on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable
image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017.

11

Under review as a conference paper at ICLR 2020

APPENDIX

GAUSSIAN ROBUSTNESS

Fig. 5 shows the accuracy/robustness trade-off of models trained with various hyper-parameters
of Cutout and Gaussian. Fig. 6 shows clean accuracy change of models trained with various
hyper-parameters of Patch Gaussian. Fig. 7 shows how Patch Gaussian can overcome the
observed trade-off and gain Gaussian robustness in various models and datasets.

64 66 68 70 72 74 76 78

Clean Accuracy

40

35

30

25

20

15

10

5

0

Re
la

tiv
e

Ro
bu

st
ne

ss

Resnet-50 - ImageNet

Baseline
Gaussian σ 0. 1

Gaussian σ 0. 2

Gaussian σ 0. 3

Gaussian σ 0. 5

Gaussian σ 0. 8

Gaussian σ 1. 0

Gaussian σ 1. 5

Gaussian σ 2. 0

Cutout

Figure 5: Accuracy/robustness trade-off observed for Cutout and Gaussian on Resnet-50 models.
See Figure 2 for details.

Wide-Resnet - CIFAR-10 Resnet-50 - ImageNet

0 10 20 30 40

50 60

Patch Size

4

3

2

1

0

1

2

3

4

Ch
an

ge
 in

 A
cc

ur
ac

y

↓
Cutout 16

↓
Gaussian

0 100 200 300 400

Patch Size

6

5

4

3

2

1

0

1

2

Ch
an

ge
 in

 A
cc

ur
ac

y

↓
Cutout 60

↓
Gaussian

Figure 6: Patch Gaussian hyper-parameter sweep for Wide-Resnet on CIFAR-10 (left) and
RN50 on Imagenet (right). Patch Gaussian approaches Gaussian with increasing patch size and
Cutout with increasing σ. Each dot is a model trained with different hyper parameters. Colors
indicate different σ.

12

Under review as a conference paper at ICLR 2020

96.0 96.5 97.0

Clean Accuracy

10

20

30

40

50

60

70

Ab
so

lu
te

 R
ob

us
tn

es
s

Wide Resnet - CIFAR-10
Baseline
Patch Gaussian σ 0. 1

Patch Gaussian σ 0. 2

Patch Gaussian σ 0. 3

Patch Gaussian σ 0. 5

Patch Gaussian σ 0. 8

Patch Gaussian σ 1. 0

Patch Gaussian σ 1. 5

Patch Gaussian σ 2. 0

95.0 95.5 96.0 96.5 97.0 97.5

Clean Accuracy

10

20

30

40

50

60

70

Ab
so

lu
te

 R
ob

us
tn

es
s

Wide Resnet - CIFAR-10
Baseline
Patch Gaussian 1
Patch Gaussian 5
Patch Gaussian 9
Patch Gaussian 13
Patch Gaussian 17
Patch Gaussian 21
Patch Gaussian 25
Patch Gaussian 29
Patch Gaussian 32

75.5 76.0 76.5

Clean Accuracy

35

40

45

50

55

60

65

70

Ab
so

lu
te

 R
ob

us
tn

es
s

Resnet-50 - Imagenet
Baseline
Patch Gaussian σ 0. 1

Patch Gaussian σ 0. 2

Patch Gaussian σ 0. 3

Patch Gaussian σ 0. 5

Patch Gaussian σ 0. 8

Patch Gaussian σ 1. 0

Patch Gaussian σ 1. 0

Patch Gaussian σ 2. 0

75.5 76.0 76.5

Clean Accuracy

35

40

45

50

55

60

65

70

75

Ab
so

lu
te

 R
ob

us
tn

es
s

Resnet-50 - Imagenet

Baseline
Patch Gaussian 100
Patch Gaussian 150
Patch Gaussian 200
Patch Gaussian 250
Patch Gaussian 300
Patch Gaussian 350
Patch Gaussian 400

78.2 78.4 78.6 78.8 79.0 79.2

Clean Accuracy

40

45

50

55

60

65

70

75

Ab
so

lu
te

 R
ob

us
tn

es
s

Resnet-200 - Imagenet
Baseline
Patch Gaussian σ 0. 1

Patch Gaussian σ 0. 2

Patch Gaussian σ 0. 3

Patch Gaussian σ 0. 5

Patch Gaussian σ 0. 8

Patch Gaussian σ 1. 0

Patch Gaussian σ 1. 0

Patch Gaussian σ 2. 0

78.5 78.6 78.7 78.8 78.9 79.0

Clean Accuracy

40

45

50

55

60

65

70

75

Ab
so

lu
te

 R
ob

us
tn

es
s

Resnet-200 - Imagenet

Baseline
Patch Gaussian 100
Patch Gaussian 150
Patch Gaussian 200
Patch Gaussian 250
Patch Gaussian 300
Patch Gaussian 350
Patch Gaussian 400

Figure 7: Training with Patch Gaussian improves clean data accuracy and Gaussian robustness
simultaneously. Each dot represents a model trained with various σ (left) or patch sizes (right), while
keeping the other fixed at the value indicated by the diamond. The y-axis is the average absolute
accuracy when tested on data corrupted by Gaussian noise at various σ. The diamond indicates the
augmentation hyper-parameters selected by the method in Section 3.2.

13

Under review as a conference paper at ICLR 2020

MODELS, DATASETS, & IMPLEMENTATION DETAILS

We run our experiments on CIFAR-10 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al.,
2009) datasets. On CIFAR-10, we use the Wide-ResNet-28-10 model (Zagoruyko & Komodakis,
2016), as well as the Shake-shake-112 model (Gastaldi, 2017), trained for 200 epochs and 600 epochs
respectively. The Wide-ResNet model uses a initial learning rate of 0.1 with a cosine decay schedule.
Weight decay is set to be 5× 10−4 and batch size is 128. We train all models, including the baseline,
with standard data augmentation of horizontal flips and pad-and-crop. Our code uses the same hyper
parameters as Cubuk et al. (2018)

On ImageNet, we use the ResNet-50 and Resnet-200 models (He et al., 2016), trained for 90 epochs.
We use a weight decay rate of 1×10−4, global batch size of 512 and learning rate of 0.2. The learning
rate is decayed by 10 at epochs 30, 60, and 80. We use standard data augmentation of horizontal flips
and crops. All CIFAR-10 and ImageNet experiments use the listed hyper-parameters above, unless
specified otherwise.

To apply Gaussian, we uniformly sample a standard deviation σ from 0 up to some maximum value
σmax, and add i.i.d. noise sampled from N (0, σ2) to each pixel. To apply Cutout, we use a fixed
patch size W , and randomly set a square region with size W ×W to the constant mean of each RGB
channel in the dataset. As in DeVries & Taylor (2017), the patch location is randomly sampled and
can lie outside of the 32× 32 CIFAR-10 (or 224× 224 ImageNet) image but its center is constrained
to lie within it. Patch sizes and σmax are selected based on the method in Section 3.2.

All image transformations, including Patch Gaussian, are performed on images with unnormalized
pixel values in [0, 1] range. For all images, standard random flipping and cropping are applied
immediately after any augmentations mentioned on CIFAR-10 (before, on ImageNet). After noise-
based augmentations, images are clipped to the [0, 1] range. Augmentation hyper-parameters are
selected based on the method in Sec. 3.2 and shown in Tab. 5.

Table 5: Augmentation hyper-parameters selected with the method in Section 3.2 for each
model/dataset. *Indicates manually-chosen stronger hyper-parameters, used to highlight the ef-
fect of the augmentation on the models. “≤” indicates that the value is uniformly sampled up to the
given maximum value.

Z Augmentation W σ Other

C
IF

A
R

-1
0

W
id

e
R

es
ne

t-
28

-1
0

96.5%

Cutout = 12 -
Gaussian - ≤ 0.1
Patch Gaussian = 25 ≤ 1.0

Cutout* = 22 -
Gaussian* - ≤ 1.0

Sh
ak

e
11

2 97.0%
Cutout = 7 -
Gaussian - ≤ 0.1
Patch Gaussian = 26 ≤ 1.0

Im
ag

eN
et R
es

ne
t-

50

76.0%

Random Erasing = 120 -

Baseline - - includes weight decay = 0.0001
Cutout = 60 -
Gaussian - ≤ 0.1
Patch Gaussian ≤ 250 ≤ 1.0

Cutout* = 200 -
Gaussian* - ≤ 1.0

Larger Weight Decay - - 0.001
Dropblock - - groups = 3,4; keep prob = 0.9
Label Smoothing - - 0.1

R
es

ne
t

20
0 78.5%

Baseline - - includes weight decay = 0.0001
Cutout = 30 -
Gaussian - ≤ 0.1
Patch Gaussian ≤ 350 ≤ 1.0

14

Under review as a conference paper at ICLR 2020

PATCH GAUSSIAN

Fig. 8 shows an implementation of Patch Gaussian, highlighting its simplicity. Fig. 9 shows
the effect of applying Patch Gaussian at various settings to an ImageNet image. Figs. 6 and 7
show full Original Corruption Errors and Corruption Errors for ImageNet models. Fig. 8 shows a
comparison of Patch Gaussian with SIN+IN.

def _get_patch_mask(patch_size):
randomly sample location in the image
x = tf.random.uniform([], minval=0, maxval=224, dtype=tf.int32)
y = tf.random.uniform([], minval=0, maxval=224, dtype=tf.int32)
x, y = tf.cast(x, tf.float32), tf.cast(y, tf.float32)

compute where the patch will start and end
startx, starty = x - tf.floor(patch_size/2), y - tf.floor(patch_size/2)
endx, endy = x + tf.ceil(patch_size/2), y + tf.ceil(patch_size/2)
startx, starty = tf.maximum(startx, 0), tf.maximum(starty, 0)
endx, endy = tf.minimum(endx, 224), tf.minimum(endy, 224)

now let’s convert these into how much we need to pad the patch
lower_pad, upper_pad = 224 - endy, starty
left_pad, right_pad = startx, 224 - endx
padding_dims = [[upper_pad, lower_pad], [left_pad, right_pad]]

create mask
mask = tf.pad(tf.zeros([endy - starty, endx - startx]),

padding_dims, constant_values=1)
mask = tf.expand_dims(mask, -1)
mask = tf.tile(mask, [1, 1, 3])
return tf.equal(mask, 0)

def patch_gaussian(image, patch_size, max_scale, sample_up_to):
"""Returns image with Patch Gaussian applied."""

if sample_up_to:
patch_size = tf.random.uniform([], 1, patch_size, tf.int32)
otherwise, patch_size is fixed.

make image (which is [0, 255]) be [0, 1]
image = image / 255.0

uniformly sample scale from 0 to given scale
scale = max_scale * tf.random.uniform([], minval=0, maxval=1)

apply gaussian to copy of image. Will be used to replace patch in image
gaussian = tf.random.normal(stddev=scale, shape=image.shape)
image_plus_gaussian = tf.clip_by_value(image + gaussian, 0, 1)

create mask and apply patch
image = tf.where(_get_patch_mask(patch_size),

image_plus_gaussian, image)

scale back to [0, 255]
return image * 255

Figure 8: TensorFlow implementation of Patch Gaussian

15

Under review as a conference paper at ICLR 2020

Patch Size W
= 20 = 30 = 50 = 100 = 150 = 448

σ
=

0.
1

σ
=

0.
2

σ
=

0.
3

σ
=

0.
5

σ
=

0.
8

σ
=

1.
0

Figure 9: Images modified with Patch Gaussian, with centered patch, at various W &σ.

16

Under review as a conference paper at ICLR 2020

Table 6: Full original corruption errors (Original CEs) for ImageNet models trained with different
augmentation strategies.

Noise Blur
Augmentation Gaussian Shot Impulse Defocus Glass Motion Zoom

R
es

ne
t-

50 Baseline 0.705 0.722 0.716 0.815 0.915 0.810 0.817
Cutout 0.720 0.727 0.720 0.798 0.923 0.821 0.813
Gaussian 0.677 0.681 0.677 0.781 0.864 0.813 0.808
Patch Gaussian 0.623 0.633 0.624 0.751 0.898 0.782 0.783

R
es

ne
t-

20
0 Baseline 0.622 0.641 0.629 0.735 0.867 0.722 0.739

Cutout 0.594 0.619 0.600 0.714 0.870 0.713 0.737
Gaussian 0.573 0.583 0.575 0.723 0.814 0.737 0.741
Patch Gaussian 0.486 0.498 0.478 0.649 0.805 0.693 0.687

Weather Digital
Augmentation Snow Frost Fog Bright Contrast Elastic Pixel JPEG

R
es

ne
t-

50 Baseline 0.827 0.756 0.589 0.582 0.748 0.753 0.799 0.747
Cutout 0.839 0.764 0.599 0.586 0.747 0.752 0.803 0.752
Gaussian 0.821 0.726 0.597 0.592 0.754 0.720 0.805 0.763
Patch Gaussian 0.806 0.739 0.566 0.592 0.714 0.736 0.743 0.722

R
es

ne
t-

20
0 Baseline 0.754 0.694 0.497 0.520 0.658 0.669 0.696 0.681

Cutout 0.741 0.684 0.507 0.516 0.671 0.670 0.751 0.672
Gaussian 0.731 0.653 0.525 0.514 0.699 0.641 0.693 0.660
Patch Gaussian 0.697 0.633 0.476 0.506 0.627 0.625 0.613 0.593

Table 7: Full corruption errors (CEs) for ImageNet models trained with different augmentation
strategies.

Noise Blur
Augmentation Gaussian Shot Impulse Defocus Zoom

R
es

ne
t-

50 Baseline 1.000 1.000 1.000 1.000 1.000
Cutout 1.015 1.013 1.008 0.979 1.000
Gaussian 0.620 0.625 0.618 0.950 0.999
Patch Gaussian 0.585 0.577 0.577 0.922 0.963

R
es

ne
t-

20
0 Baseline 0.872 0.883 0.864 0.880 0.896

Cutout 0.841 0.862 0.833 0.866 0.892
Gaussian 0.533 0.538 0.538 0.855 0.910
Patch Gaussian 0.490 0.488 0.490 0.767 0.820

Weather Digital
Augmentation Frost Fog Bright Contrast Elastic Pixel JPEG

R
es

ne
t-

50 Baseline 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cutout 1.005 1.017 0.991 1.008 1.009 1.026 1.011
Gaussian 0.919 1.073 1.019 1.051 0.967 0.974 0.966
Patch Gaussian 0.976 0.978 0.990 0.956 0.982 0.957 0.998

R
es

ne
t-

20
0 Baseline 0.912 0.862 0.888 0.861 0.882 0.848 0.922

Cutout 0.915 0.868 0.877 0.877 0.871 0.875 0.911
Gaussian 0.830 0.948 0.889 0.960 0.848 0.836 0.855
Patch Gaussian 0.818 0.851 0.862 0.832 0.812 0.765 0.835

Table 8: Comparison with SIN+IN (Geirhos et al., 2018a). By using Z=74.6%, Patch Gaussian
can match SIN+IN’s og mCE and test accuracy. Understandably, however, our gains are more
concentrated in noise-based corruptions, whereas shape-biased models get gains in other corruptions.

Augmentation Test Accuracy Original mCE Original mCE (-noise)

Resnet-50 SIN+IN 74.6% 0.693 0.699
Patch Gaussian (W ≤ 400, σ ≤ 0.8) 75.6% 0.693 0.718

17

Under review as a conference paper at ICLR 2020

PATCH GAUSSIAN IMPROVES PERFORMANCE IN OBJECT DETECTION

Since Patch Gaussian can be combined with both regularization strategies as well as data aug-
mentation policies, we want to see if it is generally useful beyond classification tasks. We train
a RetinaNet detector (Lin et al., 2017) with ResNet-50 backbone (He et al., 2016) on the COCO
dataset (Lin et al., 2014). Images for both baseline and Patch Gaussian models are horizontally
flipped half of the time, after being resized to 640 × 640. We train both models for 150 epochs
using a learning rate of 0.08 and a weight decay of 1× 10−4. The focal loss parameters are set to be
α = 0.25 and γ = 1.5.

Despite being designed for classification, Patch Gaussian improves detection performance accord-
ing to all metrics when tested on the clean COCO validation set (Table 9). On the primary COCO
metric mean average precision (mAP), the model trained with Patch Gaussian achieves a 1%
higher accuracy over the baseline, whereas the model trained with Gaussian suffers a 2.9% loss.

Table 9: Mean average precision (mAP) on COCO with baseline augmentation of horizontal flips and
Patch Gaussian. mAPS, mAPM, and mAPL refer to mAP for small, medium, and large objects,
respectively. mAP50 and mAP75 refer to mAP at intersection over union values of 50 and 75,
respectively. mAP in the final column is the averaged mAP over IoU=0.5:0.05:0.95.

Tested on mAPS mAPM mAPL mAP50 mAP75 mAP

Clean
Data

Baseline 15.6 36.9 48.3 50.8 35.6 33.2
Gaussian (σ ≤ 1.0) 13.1 32.6 44.0 45.7 31.2 29.3
Patch Gaussian (W=200, σ ≤ 1.0) 16.1 37.9 50.3 51.9 36.5 34.2

Gaussian Noise
(=0.25)

Baseline 4.5 12.7 17.6 19.3 11.7 11.6
Gaussian (σ ≤ 1.0) 9.9 28.1 41.0 41.7 26.8 26.1
Patch Gaussian (W=200, σ ≤ 1.0) 10.1 28.2 40.4 41.3 27.2 26.1

Next, we evaluate these models on the validation set corrupted by i.i.d. Gaussian noise, with σ = 0.25.
We find that model trained with Gaussian and Patch Gaussian achieve the highest mAP of 26.1%
on the corrupted data, whereas the baseline achieves 11.6%. It is interesting to note that Patch
Gaussian model achieves a better result on the harder metrics of small object detection and stricter
intersection over union (IoU) thresholds, whereas the Gaussian model achieves a better result on
the easier tasks of large object detection and less strict IOU threshold metric.

Overall, as was observed for the classification tasks, training object detection models with Patch
Gaussian leads to significantly more robust models without sacrificing clean accuracy.

FOURIER ANALYSIS

Fig. 10 shows a fourier analysis of selected models reported. Fig. 11 shows complete filters for
ResNet-50 models. Fig. 12 shows high-pass filters used in high-pass experiment in Fig. 4.

Wide Resnet
CIFAR-10

Resnet-50
ImageNet

1st Layer
Fourier

Sensitivity

Test Error
Fourier

Sensitivity

Test Error
Fourier

Sensitivity

C
u
t
o
u
t

G
a
u
s
s
i
a
n

Figure 10: Fourier analysis for Cutout and Gaussian models selected by the method in Section 3.2.
See Figure 4 for details.

18

Under review as a conference paper at ICLR 2020

Baseline Cutout Gaussian

Patch Gaussian Cutout* Gaussian*

Figure 11: Complete filters for Resnet-50 models trained on ImageNet. * Indicates augmentations
with larger patch sizes and σ. See Figure 4 for details. We again note the presence of filters of
high fourier frequency in models trained with Cutout* and Patch Gaussian. We also note that
Gaussian* exhibits high variance filters. We posit these have not been trained and have little
importance, given the low sensitivity of this model to high frequencies. Future work will investigate
the importance of filters on sensitivity.

0.1 1.9 3.6 5.4 7.2

8.9 11 12 14 16

Figure 12: Examples of high pass filters at various radii, in fourier space centered at the zero-frequency
component, used in the high-pass experiment of Figure 4.

NOTE ON PGD COMMON CORRUPTION ROBUSTNESS

Ford et al. (2019) reports that PGD training helps with corruption robustness. However, they fail to
report mCE values for their models. We find that, indeed, PGD helps with some corruptions, and
when all corruption severities’ errors are averaged, it mostly maintains performance (23.8% error,
compared to baseline error of 23.51%). However, as table 4 shows, when we properly calculate
mCE by normalizing with a baseline model, PGD displays much worse robustness, while Patch PGD
improves performance.

19

	Introduction
	Preliminaries
	Cutout and Gaussian exhibit a trade-off between accuracy and robustness

	Method
	Patch Gaussian
	Hyper-parameter selection

	Results
	Training with Patch Gaussian improves Common Corruption robustness
	Patch Gaussian can be combined with other regularization strategies
	Patch Gaussian can be combined with AutoAugment for improved results

	Discussion
	Frequency-based analysis of models trained with Patch Gaussian
	Patching adversarial training also leads to improved robustness

	Conclusion

