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ABSTRACT

The ability to reason about temporal and causal events from videos lies at the core of
human intelligence. Most video reasoning benchmarks, however, focus on pattern
recognition from complex visual and language input, instead of on causal structure.
We study the complementary problem, exploring the temporal and causal structures
behind videos of objects with simple visual appearance. To this end, we introduce
the CoLlision Events for Video REpresentation and Reasoning (CLEVRER) dataset,
a diagnostic video dataset for systematic evaluation of computational models
on a wide range of reasoning tasks. Motivated by the theory of human casual
judgment, CLEVRER includes four types of question: descriptive (e.g., ‘what
color’), explanatory (‘what’s responsible for’), predictive (‘what will happen next’),
and counterfactual (‘what if’). We evaluate various state-of-the-art models for
visual reasoning on our benchmark. While these models thrive on the perception-
based task (descriptive), they perform poorly on the causal tasks (explanatory,
predictive and counterfactual), suggesting that a principled approach for causal
reasoning should incorporate the capability of both perceiving complex visual and
language inputs, and understanding the underlying dynamics and causal relations.
We also study an oracle model that explicitly combines these components via
symbolic representations. CLEVRER will be made publicly availableff]

1 INTRODUCTION

The ability to recognize objects and reason about their behaviors in physical events from videos
lies at the core of human cognitive development (Spelkel 2000). Humans, even young infants,
group segments into objects based on motion, and use concepts of object permanence, solidity, and
continuity to explain what has happened, infer what is about to happen, and imagine what would
happen in counterfactual situations. The problem of complex visual reasoning has been widely
studied in artificial intelligence and computer vision, driven by the introduction of various datasets on
both static images (Antol et al., 2015 Zhu et al., [2016; Hudson & Manning} 2019) and videos (Jang
et al.l2017; Tapaswi et al., 2016; Zadeh et al.|[2019). However, despite the complexity and variety
of the visual context covered by these datasets, the underlying logic, temporal and causal structure
behind the reasoning process is less explored.

In this paper, we study the problem of temporal and causal reasoning in videos from a complementary
perspective: inspired by a recent visual reasoning dataset, CLEVR (Johnson et al., |2017a), we
simplify the problem of visual recognition, but emphasize the complex temporal and causal structure
behind the interacting objects. We introduce a video reasoning benchmark for this problem, drawing
inspirations from developmental psychology (Gerstenberg et al., 2015} [UIlman, 2015). We also
evaluate and assess limitations of various current visual reasoning models on the benchmark.

Our benchmark, named CoLlision Events for Video REpresentation and Reasoning (CLEVRER), is a
diagnostic video dataset for temporal and causal reasoning under a fully controlled environment. The
design of CLEVRER follows two guidelines: first, the posted tasks should focus on logic reasoning in
the temporal and causal domain while staying simple and exhibiting minimal biases on visual scenes
and language; second, the dataset should be fully controlled and well-annotated in order to host the
complex reasoning tasks and provide effective diagnostics for models on those tasks. CLEVRER

*Demo video available at https://www.youtube.com/watch?v=644AkGbcWuY,
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(a) First collision (b) Cyan cube enters (c) Second collision (d) Video ends

1. Descriptive III. Predictive
Q: What shape is the object that collides with the cyan cylinder? A: cylinder Q: Which event will happen next
Q: How many metal objects are moving when the video ends? A:3 a) The cube collides with the red object
b) The cyan cylinder collides with the red object A:a)
1I. Explanatory IV. Counterfactual
Q: Which of the following is responsible for the gray cylinder’s colliding with the cube? Q: Without the gray object, which event will not happen?
a) The presence of the sphere a) The cyan cylinder collides with the sphere
b) The collision between the gray cylinder and the cyan cylinder A:b) b) The red object and the sphere collide A:a) b)

Figure 1: Sample video, questions, and answers from our CoLlision Events for Video REpresentation and Rea-
soning (CLEVRER) dataset. CLEVRER is designed to evaluate whether computational models can understand
what is in the video (I, descriptive questions), explain the cause of events (II, explanatory), predict what will
happen in the future (III, predictive), and imagine counterfactual scenarios (IV, counterfactual). In the four
images (a—d), only for visualization purposes, we apply stroboscopic imaging to reveal object motion. The
captions (e.g., ‘First collision’) are for the readers to better understand the frames, not part of the dataset.

includes 20,000 synthetic videos of colliding objects and more than 300,000 questions and answers
(Figure[T). We focus on four specific elements of complex logical reasoning on videos: descriptive
(e.g., ‘what color’), explanatory (‘what’s responsible for’), predictive (‘what will happen next’), and
counterfactual (‘what if”). CLEVRER comes with ground-truth motion traces and event histories
of each object in the videos. Each question is paired with a functional program representing its
underlying logic. As summarized in table [[, CLEVRER complements existing visual reasoning
benchmarks on various aspects and introduces several novel tasks.

We also present analysis of various state-of-the-art visual reasoning models on CLEVRER. While
these models perform well on descriptive questions, they lack the ability to perform casual reasoning
and struggle on the explanatory, predictive, and counterfactual questions. We therefore identify
three key elements that are essential to the task: recognition of the objects and events in the videos;
modeling the dynamics and causal relations between the objects and events; and understanding of the
symbolic logic behind the questions. As a first-step exploration of this principle, we study an oracle
model, Neuro-Symbolic Dynamic Reasoning (NS-DR), that explicitly joins these components via a
symbolic video representation, and assess its performance and limitations.

2 RELATED WORK

Our work can be uniquely positioned in the context of three recent research directions: video
understanding, visual question answering, and physical and casual reasoning.

Video understanding. With the availability of large-scale video datasets (Caba Heilbron et al.,
2015} [Kay et al,[2017)), joint video and language understanding tasks have received much interest.

This includes video captioning (Guadarrama et al., 2013} [Venugopalan et al., 2015} 2017),
localizing video segments from natural language queries (Gao et al., 2017; [Hendricks et al.,[2017),

and video question answering. In particular, recent papers have explored different approaches to
acquire and ground various reasoning tasks to videos. Among those, MovieQA (Tapaswi et al.,

[2016), TGIF-QA 2017), TVQA (Lei et al, 2018) are based on real-world videos and
human-generated questions. Social-IQ (Zadeh et al., 2019) discusses causal relations in human

social interactions based on real videos. COG and MarioQA
use simulated environments to generate synthetic data and controllable reasoning tasks. Compared
to them, CLEVRER focuses on the causal relations grounded in object dynamics and physical
interactions, and introduces a wide range of tasks including description, explanation, prediction and
counterfactuals. CLEVRER also emphasizes compositionality in the visual and logic context.

Visual question answering. Many benchmark tasks have been introduced in the domain of visual
question answering. The Visual Question Answering (VQA) dataset (Antol et al.,[2015) marks an
important milestone towards top-down visual reasoning, based on large-scale cloud-sourced real
images and human-generated questions. The CLEVR dataset (Johnson et al.}[2017a)) follows a bottom-
up approach by defining the tasks under a controlled close-domain setup of synthetic images and
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Diagnostic =~ Temporal

Dataset Video Annotations  Relation Explanation  Prediction  Counterfactual
VQA X X X X X X
CLEVR X v X X X X
COG X v v X X X
VCR X v X v X v
GQA X v X X X X
TGIF-QA v X X X X X
MovieQA v X v v X X
MarioQA v X v v X X
TVQA v X X v X X
Social-1Q v X X v X X
CLEVRER (ours) v v v v v v

Table 1: Comparison between CLEVRER and other visual reasoning benchmarks on images and videos.
CLEVRER is a well-annotated video reasoning dataset created under a controlled environment. It introduces a
wide range of reasoning tasks including description, explanation, prediction and counterfactuals

questions with compositional attributes and logic traces. More recently, the GQA dataset (Hudson &
Manning, [2019) applies synthetic compositional questions to real images. The VCR dataset (Zellers
et al.,2019) discusses explanations and hypothesis judgements based on common sense. There have
also been numerous visual reasoning models (Hudson & Manning, 2018; [Santoro et al., 2017; Hu
et al., 2017; Perez et al., | 2018;Zhu et al.,|2017; Mascharka et al., [2018a; Suarez et al., | 2018;|Cao et al.,
2018; Bisk et al., 2018; Misra et al., 2018} |Aditya et al.| 2018)). Here we briefly review a few. The
stacked attention networks (SAN) (Yang et al.,|2016) introduce a hierarchical attention mechanism
for end-to-end VQA models. The MAC network (Hudson & Manning, 2018)) combines visual
and language attention for compositional visual reasoning. The IEP model (Johnson et al., 2017b))
proposes to answer questions via neural program execution. The NS-VQA model (Yi et al.| [2018))
disentangles perception and logic reasoning by combining an object-based abstract representation of
the image with symbolic program execution. In this work we study a complementary problem of
causal reasoning and assess the strengths and limitations of these baseline methods.

Physical and causal reasoning. Our work is also related to research on learning scene dynamics
for physical and causal reasoning (Lerer et al., 2016; |Battaglia et al., |2013; Mottaghi et al., [2016;
Fragkiadaki et al.,|2016; Battaglia et al., 2016} Chang et al.,[2017;|Agrawal et al., 2016; [Finn et al.,
20165 |Shao et al., 2014; [Fire & Zhu, 2016; |Pearl, 2009; [Ye et al.l |2018)), either directly from im-
ages (Finn et al., 2016} Ebert et al., 2017; Watters et al.,[2017; Lerer et al., 2016} Mottaghi et al.,|2016;
Fragkiadaki et al., 2016)), or from a symbolic, abstract representation of the environment (Battaglia
et al.| |2016; |Chang et al.l [2017). In this work, we investigate how the incorporation of a learned
dynamics model contributes to causal reasoning on CLEVRER.

3 THE CLEVRER DATASET

The CLEVRER dataset studies temporal and causal reasoning on videos. It is carefully designed
in a fully-controlled synthetic environment, enabling complex reasoning tasks, providing effective
diagnostics for models while simplifying video recognition and language understanding. The videos
describe motion and collisions of objects on a flat tabletop (as shown in Figure [I) simulated by a
physics engine, and are associated with the ground-truth motion traces and histories of all objects and
events. Each video comes with four types of questions generated by machine, including descriptive
(‘what color’, ‘how many’), explanatory (‘What is responsible for’), predictive (“What will happen
next’), and counterfactual (‘what if”). Each question is paired with a functional program.

3.1 VIDEOS

CLEVRER includes 10,000 videos for training, 5,000 for validation, and 5,000 for testing. All videos
last for 5 seconds. The videos are generated by a physics engine that simulates object motion plus a
graphs engine that renders the frames. Extra examples from the dataset can be found in supplementary
material

Objects and events. Objects in CLEVRER videos adopt similar compositional intrinsic attributes
as in CLEVR (Johnson et al.l 2017a), including three shapes (cube, sphere, and cylinder), two
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How many metal objects are moving when Without the gray object, which event will happen?  The cube collides with the red object.
the video ends?
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Figure 2: Sample questions and programs from CLEVRER. Left: Descriptive question. Middle and right:
multiple-choice question and choice. Each choice can pair with the question to form a joint logic trace.

materials (metal and rubber), and eight colors (gray, red, blue, green, brown, cyan, purple, and
yellow). All objects have the same size so no vertical bouncing occurs during collision. In each video,
we prohibit identical objects, such that each combination of the three attributes uniquely identifies one
object. Under this constraint, all intrinsic attributes for each object are sampled randomly. We further
introduce three types of events: enter, exit and collision, each of which contains a fixed number of
object participants: 2 for collision and 1 for enter and exit. The objects and events form an abstract
representation of the video. These ground-truth annotations, together with the object motion traces,
enable model diagnostics, one of the key advantages offered by a fully controlled environment.

Causal structure. Objects and events in CLEVRER videos exhibit rich causal structures. An event
can be either caused by an object if the event is the first one participated by the object, or another
event if the cause event happen right before the outcome event on the same object. For example, if a
sphere collides with a cube and then a cylinder, then the first collision and the cube jointly “cause” the
second collision. To generate motion traces with complex causal structures, we start with randomly
initialized moving objects, then recursively introduce new objects whose motion traces overlap with
the existing ones. We discard simulations with repetitive collisions between the same object pair.

Video generation. CLEVRER videos are generated from the simulated motion traces, including
each object’s position and pose at each time step. We use the Bullet (Coumans, 2010) physics
engine for motion simulation. Each simulation lasts for seven seconds. The motion traces are first
down-sampled to fit the frame rate of the output video (25 frames per second). Then the motion of
the first five seconds are sent to Blender (Blender Online Community, [2016)) to render realistic video
frames of object motion and collision. The remaining two seconds are held-out for predictive tasks.
We further note CLEVRER adopts the same software and parameters for rendering as CLEVR.

3.2 QUESTIONS

Predictive

Counter-

We pair each video with machine-generated fuctual S
questions for descriptive, explanatory, predic-

tive, and counterfactual reasoning. Sample ques- Explanatory M%Lt':yial
tions of the four types can be found in Fig-

ure|l} Each question is paired with a functional
program executable on the video’s dynamical
scene. Unlike CLEVR (Johnson et al., [2017al),

our qltlest}otrllls foI;: us ;)n thg temptor'al ?}? d c.e(llusal Figure 3: Distribution of CLEVRER question types.
aspects of the objects and events 1n the videos. .. gistribution of four main questions types. Right:
We exclude all questions on static object prop-  §istribution of descriptive sub-types.

erties, which can be answered by looking at a

single frame. CLEVRER consists of 219,918 descriptive questions, 33,811 explanatory questions,
14,298 predictive questions and 37,253 counterfactual questions. Detailed distribution and split of the
questions can be found in Figure [3|and supplementary material [A]

Descriptive Query
Shape

Descriptive. Descriptive questions evaluate a model’s capability to understand and reason about
a video’s dynamical content and temporal relation. The reasoning tasks are grounded to the com-
positional space of both object and event properties, including intrinsic attributes (color, material,
shape), motion, collision, and temporal order. All descriptive questions are ‘open-ended’ and can be
answered by a single word. Descriptive questions contain multiple sub-types including count, exist,
query color, query material, and query shape. Distribution of the sub-types is shown in Figure[3] We
evenly sample the answers within each sub-type to reduce answer bias.

Explanatory. Explanatory questions query the causal structure of a video by asking whether an
object or event is responsible for another event. Event A is responsible for event B if A is among
B’s ancestors in the causal graph. Similarly, object O is responsible for event A if O participates in



Under review as a conference paper at ICLR 2020

A or any other event responsible for A. Explanatory questions are multiple choice questions with at
most four options, each representing an event or object in the video. Models need to select all options
that match the question’s description. There can be multiple correct options for each question. We
sample the options to balance the number of correct and wrong ones, and minimize text-only biases.

Predictive. Predictive questions test a model’s capability of predicting possible occurrences of
future events after the video ends. Similar to explanatory questions, predictive questions are multiple-
choice, whose options represent candidate events that will or will not happen. Because post-video
events are sparse, we provide two options for each predictive question to reduce bias.

Counterfactual. Counterfactual questions query the outcome of the video under certain hypothet-
ical conditions (e.g. removing one of the objects). Models need to select the events that would or
would not happen under the designated condition. There are at most four options for each question.
The numbers of correct and incorrect options are balanced. Both predictive and counterfactual
questions require knowledge of object dynamics underlying the videos and the ability to imagine and
reason about unobserved events.

Program representation. In CLEVRER, each question is represented by a tree-structured func-
tional program, as shown in Figure2} A program begins with a list of objects or events from the video.
The list is then passed through a sequence of filter modules, which select entries from the list and
join the tree branches to output a set of target objects and events. Finally, an output module is called
to query a designated property of the target outputs. For multiple choice questions, each question and
option correspond to separate programs, which can be jointly executed to output a yes/no token that
indicates if the choice is correct for the question. A list of all program modules can be found in the
supplementary material

4 BASELINE EVALUATION

In this section, we evaluate and analyse the performances of a wide range of baseline models for video
reasoning on CLEVRER. For descriptive questions, the models treat each question as a multi-class
classification problem over all possible answers. For multiple choice questions, each question-choice
pair is treated as a binary classification problem indicating the correctness of the choice.

4.1 MODEL DETAILS

The baseline models we evaluate fall into three families: language-only models, models for video
question answering, and models for compositional visual reasoning.

Language-only models. This model family includes weak baselines that only relies on question
input to assess language biases in CLEVRER. Q-type (random) uniformly samples an answer from
the answer space or randomly select each choice for multiple-choice questions. Q-type (frequent)
chooses the most frequent answer in the training set for each question type. LSTM uses a pretrained
word embedding trained on the Google News corpus (Mikolov et al., [2013) to encode the input
question and processes the sequence with a LSTM (Hochreiter & Schmidhuber, 1997). A MLP is
then applied to the final hidden state to predict a distribution over the answers.

Video question answering. We also evaluate the following models that relies on both video and
language inputs. CNN+MLP extracts features from the input video via a convolutional neural network
(CNN) and encodes the question by taking the average of the pretrained word embeddings (Mikolov:
et al.l 2013). The video and language features are then jointly sent to a MLP for answer prediction.
CNN+LSTM relies on the same architecture for video feature extraction but uses the final state
of a LSTM for answer prediction. TVQA (Lei et al., 2018)) introduces a multi-stream end-to-end
neural model that sets the state of the art for video question answering. We apply attribute-aware
object-centric features acquired by a video frame parser (TVQA+). We also include a recent model
that incorporates heterogeneous memory with multimodal attention work (Memory) (Fan et al.,
2019) that achieves superior performance on several datasets.

Compositional visual reasoning. The CLEVR dataset (Johnson et al.,2017a)) opened up a new
direction of compositional visual reasoning, which emphasizes complexity and compositionality
in the logic and visual context. We modify several best-performing models and apply them to our
video benchmark. The IEP model (Johnson et al., [2017b) applies neural program execution for
visual reasoning on images. We apply the same approach to our program-based video reasoning
task (IEP (V)) by substituting the program primitives by the ones from CLEVRER, and applying
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Methods Descriptive Explanatory Predictive Counterfactual
peropt. perques. peropt. perques. peropt. per ques.
Q-type (random) 29.2 50.1 8.1 50.7 25.5 50.1 10.3
Q-type (frequent) 33.0 50.2 16.5 50.0 0.0 50.2 1.0
LSTM 34.7 59.7 13.6 50.6 232 53.8 3.1
CNN+MLP 48.4 54.9 18.3 50.5 13.2 552 9.0
CNN+LSTM 51.8 62.0 17.5 57.9 31.6 61.2 14.7
TVQA+ 72.0 63.3 23.7 70.3 48.9 539 4.1
Memory 54.7 53.7 13.9 50.0 33.1 54.2 7.0
IEP (V) 52.8 52.6 14.5 50.0 9.7 534 3.8
TbD-net (V) 79.5 61.6 3.8 50.3 6.5 56.1 4.4
MAC (V) 85.6 59.5 12.5 51.0 16.5 54.6 13.7
MAC (V+) 86.4 70.5 223 59.7 429 63.5 25.1

Table 2: Question-answering accuracy of visual reasoning baselines on CLEVRER. All models are trained on
the full training set. The IEP (V) model and TbD-net (V) use 1000 programs to train the program generator.

the execution modules on the video features extracted by a convolutional LSTM (Shi et al.,[2015]).
TbD-net (Mascharka et al., | 2018b)) follows a similar approach by parsing the input question into a
program, which is then assembled into a neural network that acts on the attention map over the image
features. The final attended image feature is then sent to an output layer for classification. We adopt
the same approach through spatial-temporal attention over the video feature space (TbD-net (V)).
MAC (Hudson & Manning}, 2018) incorporates a joint attention mechanism on both the image feature
map and the question, which leads to strong performance on CLEVR without program supervision.
We modify the model by applying a temporal attention unit across the video frames to generate a
latent encoding for the video (MAC (V)). The video feature is then input to the MAC network to
output an answer distribution. We study an augmented approach: we construct object-aware video
features by adding the segmentation masks of all objects in the frames and labeling them by the
values of their intrinsic attributes (MAC (V+)).

Implementation details. We use a pre-trained ResNet-50 (He et al., [2016) to extract features from
the video frames. We use the 2,048-dimensional pool5 layer output for CNN-based methods, and
the 14 x 14 feature maps for MAC, IEP and TbD-net. The program generators of IEP and TbD-net
are trained on 1000 programs. We uniformly sample 25 frames for each video as input. Object
segmentation masks and attributes are obtained by a video parser consisted of an object detector and
an attribute network. Please see supplementary materials [C|for details.

4.2 RESULTS

We summarize the performances of all baseline models in Table[2] The fact that these models achieve
different performances over the wide spectrum of tasks suggest that CLEVRER offers powerful
assessment to the models’ strength and limitations on various domains. All models are trained on the
training set until convergence, tuned on the validation set and evaluated on the test set.

Evaluation metric For descriptive questions, we calculate the accuracy by comparing the predicted
answer token to the ground-truth. For multiple choice questions, we adopt two metrics: per-option
accuracy measures the model’s overall correctness on single options across all questions; per-question
accuracy measures the correctness of the full question, requiring all choices to be selected correctly.

Descriptive reasoning Descriptive questions query the content of the video from various aspects.
In order to do well on this question type, a model needs to both accurately recognize the objects
and events that happen in the video, as well as understanding the compositional logic pattern behind
the questions. In other words, descriptive questions require strong perception and logic operations
on both visual and language signals. As shown in Table 2] the LSTM baseline that relies only on
question input performs poorly on the descriptive questions, only outperforming the random baselines
by a small margin. This suggests that CLEVRER has very small bias on the questions. Video QA
models, including the state of the art model TVQA+ (Lei et al.,2018)) achieve better performances.
But because of their limited capability of handling the compositionality in the question logic and
visual context, these models are still unable to thrive on the task. In contrast, models designed for
compositional reasoning, including TbD-net that operates on neural program execution and MAC
that introduces a joint attention mechanism, are able to achieve more competitive performances.
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Figure 4: Our model includes four components: a video frame parser that generates an object-based representation
of the video frames; a question parser that turns a question into a functional program; a dynamics predictor that
extracts and predicts the dynamic scene of the video; and a symbolic program executor that runs the program on
the dynamic scene to obtain an answer.

Causal reasoning Results on the descriptive questions demonstrate the power of models that
combine visual and language perception with compositional logic operations. However, the causal
reasoning tasks (explanatory, predictive, counterfactual) require further understanding beyond per-
ception. Our evaluation results (Table[2) show poor performance of most baseline models on these
questions. The compositional reasoning models that performs well on the descriptive questions (MAC
(V) and TbD-net (V)) only achieve marginal improvements over the random and language-only
baselines on the causal tasks. However, we do notice a reasonable gain in performance on models
that inputs object-aware representations: TVQA+ achieves high accuracy on the predictive questions,
and MAC (V+) improves upon MAC (V) on all tasks.

We identify the following messages suggested by our evaluation results. First, object-centric repre-
sentations are essential for the causal reasoning tasks. This is supported by the large improvement on
MAC (V+) over MAC (V) after using features that are aware of object instances and attributes, as
well as the strong performance of TVQA+ on the predictive questions. Second, all baseline models
lack a component to explicitly model the dynamics of the objects and the causal relations between the
collision events. As a result, they struggle on the tasks involving unobserved scenes and in particular
performs poorly on the counterfactual tasks. The combination of object-centric representation and
dynamics modeling therefore suggests a promising direction for approaching the causal tasks.

5 NEURO-SYMBOLIC DYNAMIC REASONING

Baseline evaluations on CLEVRER have revealed two key elements that are essential to causal
reasoning: an object-centric video representation that is aware of the temporal and causal relations
between the objects and events; and a dynamics model able to predict the object dynamics under
unobserved or counterfactual scenarios. However, unifying these elements with video and language
understanding posts the following challenges: first, all the disjoint model components should operate
on a common set of representations of the video, question, dynamics and causal relations; second, the
representation should be aware of the compositional relations between the objects and events. In this
section we investigate an oracle framework that joins these components via a symbolic representation.

Model. We draw inspirations from [Yi et al.|(2018)) and study an oracle model that operates on a
symbolic representation to join video perception, language understanding with dynamics modeling.
Our model Neuro-Symbolic Dynamic Reasoning (NS-DR) combines neural nets for pattern recogni-
tion and dynamics prediction, and symbolic logic for causal reasoning. As shown in Figure[d NS-DR
consists of a video frame parser, a neural dynamics predictor, a question parser, and a program
executor. Given an input video, the video frame parser (Figure [4}I) first detects all objects in the
scene and extracts their masks and intrinsic attributes (i.e. position, color, shape, material). The
extracted traces and attributes of the objects form an abstract representation of the video. Then the
abstract representation is sent to the neural dynamics predictor (Figure dHI) to predict the motions
and collisions of the objects. The input question is sent to the question parser (Figure B}HII) to obtain
a functional program representing its compositional logic. Finally, the symbolic program executor
(Figure 3}1V) explicitly runs the program on the dynamic scene and outputs an answer. Details of the
model can be found in the supplementary material [C|
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Methods Descriptive Explanatory Predictive Counterfactual
peropt. perques. peropt. perques. peropt. per ques.

NS-DR 88.1 87.6 79.6 82.9 68.7 74.1 422

NS-DR (NE) 85.8 85.9 74.3 754 54.1 76.1 42.0

Table 3: Quantitative results of NS-DR on CLEVRER. We evaluate our model on all four question types. We
also study a variation of our model NS-DR (NE) with “no events” but only motion traces from the dynamics
predictor. Our question parser is trained with 1000 programs.

Results. We summarize the performance 100 Descriptive 100 Explanatory

of NS-DR on CLEVRER in Table[3] Onde- = ————————
scriptive questions, our model achieves an 3. 75/ 75|e—e—tr
88.1% accuracy when the question parser %

. . 8 50 50

is trained under 1,000 programs, outper- &

forming other baseline methods. On ex- & 55 25| == peropt.  =e= per ques.
planatory, predictive, and counterfactual 200500 1000 2000 200500 1000 2000
questions, our model achieves a more sig- 100 Predictive 100 Counterfactual
nificant gain. We also study a variation of &

our model, NS-DR (No Events/NE), which g 7° 75| o=

uses the dynamics predictor to generate § 50 50

only the predictive and counterfactual mo- ¢ —

tion traces, and collision events are identi- & 2520-;;0”;”’”;600* perq“;oo 2520'(;0”5 °p1t'000-°- perq“;')oo
fied by the velocity change of the colliding # Programs # Programs

objects. NS-DR (NE) performs compara-
bly to the full model, showing that our dis-
entangled system is adaptable to alternative
methods for dynamics modeling. We also conduct ablation study on the number of programs for
training the question parser. As shown in Figure[5] NS-DR reaches full capability at 1,000 programs
for all question types.

Figure 5: Performance of our model under different number
of programs used for training the question parser.

We highlight the following contributions of the model. First, NS-DR incorporates a dynamics
planner into the visual reasoning task, which directly enables predictions of unobserved motion
and events, and enables the model for the predictive and counterfactual tasks. This suggests that
dynamics planning has great potential for language-grounded visual reasoning tasks and NS-DR
takes a preliminary step towards this direction. Second, symbolic representation provides a powerful
common ground for vision, language, dynamics and causality. By design, it empowers the model to
explicitly capture the compositionality behind the video’s causal structure and the question logic.

We further discuss limitations of NS-DR and suggest possible directions for future research. First,
training of the video and question parser relies on extra supervisions such as object masks, attributes,
and question programs. Even though the amount of data required for training is minimal compared
to end-to-end approaches (i.e. thousands of annotated frames and programs), these data is hard to
acquire in real-world applications. This constraint could be relaxed by applying unsupervised/weakly-
supervised methods for scene decomposition and concept discovery (Burgess et al., 2019; Mao et al.|
2019). Second, our model performance decreases on tasks that require long-term dynamics prediction
such as the counterfactual questions. This suggests that we need a better dynamics model capable of
generating more stable and accurate trajectories. CLEVRER provides a benchmark for assessing the
predictive power of such dynamics models.

6 CONCLUSION

We present a systematic study of temporal and casual reasoning in videos. This profound and
challenging problem deeply rooted to the fundamentals of human intelligence has just begun to be
studied with ‘modern’ Al tools. We introduce a set of benchmark tasks to better facilitate the research
in this area. We also believe video understanding and reasoning should go beyond passive knowledge
extraction, and focus on building an internal understanding of the dynamics and causal relations,
which is essential for practical applications such as dynamic robot manipulation under complex causal
conditions. Our newly introduced CLEVRER dataset and the NS-DR model are preliminary steps
toward this direction. We hope with recent advances in graph networks, visual predictive models,
and neuro-symbolic algorithms, the deep learning community can now revisit this classic problem in
more realistic setups in the future, capturing true intelligence beyond pattern recognition.
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SUPPLEMENTARY MATERIAL

A DESCRIPTIVE QUESTION SUB-TYPES AND STATISTICS

Descriptive questions in CLEVRER consists of five sub-types. When generating the questions, we
balance the frequency of the answers within each question sub-type to reduce bias. The sub-types
and their answer space distribution are shown in Figure[]

Sub-type Answers
Count 0,1,2,3,4,5
Exist yes, no

Query material rubber, metal
Query_shape sphere, cube, cylinder

[ Count
[ Exist
[ Shape
[] Material
[ Color

gray, brown, green, red,

Query-color blue, purple, yellow, cyan

Figure 6: Descriptive question sub-type and answer space statistics.

B EXTRA EXAMPLES FROM CLEVRER

We show extra examples from CLEVRER in Figure[/| The full dataset will be made available for
download.

C NS-DR MODEL DETAILS

Here we present the details of the NS-DR model. A running example of the model can be found in
figure[§]

Video frame parser. The video frame parser serves as a perception module that is disentangled
from the other components of the model, from which we obtain an object-based representation of
the video frames. The parser is a Mask R-CNN (He et al., 2017) that performs object detection and
scene de-rendering on each video frame (Wu et al., 2017). We use a ResNet-50 FPN (Lin et al.,
2017 He et al.;,|2016) as the backbone. Given an input frame, the network generates object proposals,
each of which comes with a mask, a class label, and a score. The mask represents the proposed
object segment; the class label corresponds to a combination of the intrinsic attributes (color, material,
shape); the score represents the confidence level of the proposal and is used for filtering. Please refer
to He et al. (He et al.,|2017) for more details. The question parser is trained on 4000 video frames
randomly sampled from the training set with object masks and attribute annotations.

Neural dynamics predictor. We apply the Propagation Network (PropNet) (Li et al., 2019) for dy-
namics modeling, which is a learnable physics engine that, extending interaction networks (Battaglia
et al., 2016), performs object- and relation-centric updates on a dynamic scene. The model learns the
dynamics of the objects across the frames for observing and predicting motion traces and collision
events. PropNet represents a dynamic system as a directed graph, G = (O, R), where the vertices
O = {o;} represent objects and edges R = {r\} represent relations. Each object (vertex) o; and
relation (edge) 7, can be further written as o; = (s;, a?), ', = (uk, Uk, a},), where s; is the state of
object ¢; af denotes its intrinsic attributes; uy, vy, are the receiver and sender vertices joined by edge
15 ar, represents the state of edge 7y, indicating whether there is collision between the two objects.
In our case, s; is a concatenation of tuple {(c;, m;, p;) over a small history window to encode motion
history, where c; and m; are the corresponding image and mask patches cropped at p;, which is the
z-y position of the mask in the original image (please see the cyan metal cube in Figure [] for an
example). PropNet handles the instantaneous propagation of effects via multi-step message passing.

The object encoder f&'° and the relation encoder 7' in PropNet are instantiated as convolutional
neural networks and output a D.n.-dim vector as the representation. We add skip connections between
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the object encoder f3'° and the predictor fgred for each object to generate higher quality images. We

also include a relation predictor fged to determine whether two objects will collide or not in the next

time step.

At time ¢, we first encodes the objects and relations ¢, = f&5(0i,t), ¢}, = [R(Ouy,ts Ovy s af)s
where o, ; denotes object 7 at time ¢. We then denotes the propagating influence from relation k at
propagation step [ as eﬁc_t, and the influence from object 7 as hﬁyt. For step 1 <[ < L, propagation
can be described as

Step 0:

hiy =0, i=1...]0|, )
Stepl=1,...,L:

o= frlch Wit b Y, k=1...|R)|,

Ukt vkt
hé,t :fo(cg,t’ Z ef’c,tvhé,_tl)7 i = 1""O|’ 2)
kEN;
Output:
N d
Tkit+1 = ;@_{re (Cz,ta eé,t)v k=1... ‘R|7 3)

Oiip1 = [5G hEy), i=1...]0]

where fo denotes the object propagator, fr denotes the relation propagator, and N; denotes the
relations where object ¢ is the receiver. The neural dynamics predictor is trained by minimizing the
L, distance between the predicted 7', 11, 0; ++1 and the real future observation r, +41, 0; +41 using
stochastic gradient descent.

The output of the neural dynamics predictor is <{Ot}t:1mT7 {Rt}tzl,,,ﬂ, the collection of object
states and relations across all the observed and rollout frames. From this representation, one can
recover the full motion and event traces of the objects under different rollout conditions and generate
a dynamic scene representation of the video. For example, if we want to know what will happen if
an object is removed from the scene, we just need to erase the corresponding vertex and associated
edges from the graph and rollout using the learned dynamics to obtain the traces.

Question parser. We use an attention-based seq2seq model (Bahdanau et al., 2015)) to parse the
input questions into their corresponding functional programs. The model consists of a bidirectional
LSTM encoder plus an LSTM decoder with attention, similar to the question parser in (Yi et al.
2018)). For multiple choice questions, we use two networks to parse the questions and choices
separately.

Given an input word sequence (x1,x2,...21), the encoder first generates a bi-directional latent
encoding at each step:

el h] = LSTM(®1(x;), h{_)), )
el h? = LSTM(®(x;), bl ), (3)
€; = [e{, ef]. (6)

The decoder then generates a sequence of program tokens (y1, y2, ..., ys) from the latent encodings
using attention:

v; = LSTM(®0o(y;-1)), ™
aji cexp(v]es), o= ajies, ®
Z)j ~ softmaX(W' [Qja Cj])' ©

At training time, the input program tokens {y; } are used for generating the predicted labels y;_1 — §;
ateach step j = 1,2, 3, ..., J. The generated label §j; is then compared with y; to compute a loss for
training. At test time, the decoder rolls out by feeding the sampled prediction at the previous step
to the input of the current step ¢; = ;. The roll-out stops when the end token appears or when the
sequence reaches certain maximal length. For both the encoder and decoder LSTM, we use the same
parameter setup of two hidden layers with 256 units, and a 300-dimensional word vector.
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Program executor. The program executor explicitly runs the program on the motion and event
traces extracted by the dynamics predictor and output an answer to the question. It consists of a
collection of functional modules implemented in Python. Given an input program, the executor first
assembles the modules and then iterate through the program tree. The output of the final module is the
answer to the target question. There are three types of program modules: input module, filter module,
and output module. The input modules are the entry points of the program trees and can directly
query the output of the dynamics predictor. For example, the Events and Ob ject s modules that
commonly appear in the programs of descriptive questions indicate inputting all the observed events
and objects from a video. The filter modules perform logic operations on the input objects/events
based on a designated intrinsic attribute, motion state, temporal order, or causal relation. The output
modules return the answer label. For open-ended descriptive questions, the executor will return a
token from the answer space. For multiple choice questions, the executor will first execute the choice
program and then send the result to the question program to output a yes/no token. A comprehensive
list of all modules in the NS-DR program executor is summarized in Table @ and Table 5} input/output
data type of the modules are summarized in Table[d]

D NS-DR TRAINING PARADIGM

Video frame parser. Our frame parser is trained on 4,000 frames randomly selected from the
training videos plus ground-truth masks and attribute annotations of each object in the frames. We
train the model for 30,000 iterations with stochastic gradient decent, using a batch size of 6 and
learning rate 0.001. At test time, we keep the object proposals with a confidence score of > 0.9 and
use those to form the object-level abstract representation of the video.

Neural dynamics predictor. Our neural dynamics predictor is trained on the proposed object
masks and attributes from the frame parser. We filter out inconsistent object proposals by matching
the object intrinsic attributes across different frames and keeping the ones that appear in more than
10 frames. For a video of length 125, we will sample 5 rollouts, where each rollout contains 25
frames that are uniformly sampled from the original video. We normalize the input data to the range
of [—1, 1] and concatenate them over a time window of size 3. We set the propagation step L to 2,
and the dimension of the propagating effects De,. to 512. We use the Adam optimizer (Kingma &
Ba, 2015) with an initial learning rate of 10~#, and a decay factor of 0.3 per 3 epochs. The model is
trained for 9 epochs with batch size 2.

Question parser. For open-ended descriptive questions, the question parser is trained on various
numbers of randomly selected question-program pairs. For multiple choice questions, we separately
train the question parser and the choice parser. Training with n samples means training the question
parser with n questions randomly sampled from the multiple choice questions (all three types
together), and then training the choice parser with 4n choices sampled from the same pool. All
models are trained using Adam (Kingma & Bal 2015) for 30,000 iterations with batch size 64 and
learning rate 7 x 1074,
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Descriptive Predictive

Q1: What shape is the first object to collide with the gray sphere? Al: sphere Q: Which event will happen next

Q2: How many collisions happen? A2:2 a) The gray sphere and the cube collide

Q3: Are there any metal spheres that enter the scene before the b) The cube collides with the cylinder A:a)
brown object enters the scene? A3: no Counterfactual

Explanatory Q: What will happen without the gray sphere?

Q: Which of the following is not responsible for the collision between the gray a) The cube collides with the cyan sphere

sphere and the brown object? b) The green sphere and the cyan sphere collide

a) The collision between the gray sphere and the green sphere ¢) The brown object and the cyan sphere collide

b) The presence of the green rubber sphere d) The brown object collides with the cube A:d)
¢) The presence of the cyan metal sphere A:¢)

Descriptive Predictive

Q1: Are there any moving red objects when the video ends? Al: no Q: Which event will happen next

Q2: What color is the object that enters the scene? A2: purple a) The green cylinder and the sphere collide

Q3: What is the color of the first object to collide with the rubber b) The green cylinder collides with the cube A:b)
sphere? A3: green Counterfactual

Explanatory Q: Without the green cylinder, what will not happen?

Q: Which of the following is responsible for the sphere's exiting the scene? a) The sphere and the cube collide

a) The presence of the cyan object b) The sphere and the cyan cylinder collide

b) The presence of the purple rubber cube ¢) The cube and the cyan cylinder collide A:b) c)
c) The presence of the green metal cylinder

d) The collision between the sphere and the cyan cylinder A:a) ¢, d)

Descriptive Predictive

Q1: How many blue objects enter the scene? Al: 2 Q: Which event will happen next

Q2: What shape is the last object to collide with the cylinder? A2: sphere a) The cube and the blue sphere collide

Q3: What color is the object that is stationary when the video ends? ~ A3: blue b) The metal object collides with the blue sphere A:a)
Explanatory Counterfactual

Q: Which of the following is responsible for the collision between the cylinder Q: What will happen if the metal object is removed?

and the metal object? a) The cylinder and the blue sphere collide

a) The cube's entering the scene b) The cube collides with the blue sphere

b) The presence of the blue rubber cube ¢) The cube and the cylinder collide A:b),c)
¢) The cube's colliding with the cylinder

d) The presence of the blue rubber sphere A:a), b), ¢

Figure 7: Sample videos and questions from CLEVRER. Stroboscopic imaging is applied for motion visualiza-
tion.

16



Under review as a conference paper at ICLR 2020

Module Type Name / Description Input Type Output Type
Objects - objects
Returns all objects in the video
Events - events
Returns all events that happen in the video
UnseenEvents - events
Input Returns all future events after the video ends
Modules AllEvents - events
Returns all possible events on / between any objects
Start - event
Returns the special “start” event
End - event
Returns the special “end” event
Filter_color (objects, color) objects
Selects objects from the input list with the input color
Filtermaterial (objects, material) objects
Selects objects from the input list with the input material
Object Filter_shape (objects, shape) objects
Filter Selects objects from the input list with the input shape
Modules Filter_move (objects, frame) objects
Selects all moving objects in the input frame
Filter_stationary (objects, frame) objects
Selects all stationary objects in the given frame
Filter_in (events, objects) events
Selects all incoming events of the input objects
Filter_out (events, objects) events
Selects all exiting events of the input objects
Filter_collision (events, objects) events
Selects all collisions that involve any of the input objects
Filter before (events, event) events
Selects all events before the target event
Filter_after (events, event) events
Selects all events after the target event
Event Filter_order (events, order) event
Filter Selects the event at the specific time order
Modules Filter_ancestor event events
Returns all ancestors of the input event in the causal graph
Get_frame event frame
Returns the frame of the input event in the video
Get_counterfact object events
Returns all events after removing the input object
Get_col_partner (event, object) object
Returns the collision partner of the input object
(the input event must be a collision)
Get_object event object
Returns the object that participates in the input event
(the input event must be a incoming / outgoing event)
Unique events/ event /
Returns the only event / object in the input list objects object

Table 4: Functional modules of NS-DR’s program executor.
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Module Type Name / Description Input Type Output Type

Query_color object color
Returns the color of the input object
Query.material object material
Returns the material of the input object
Query._shape object shape

Output Returns the shape of the input object

Modules Count objects int

Returns the number of the input objects
Exist objects bool
Returns “yes” if the input objects is not empty
Belong_to (event, events) bool
Returns “yes” if the input event belongs to the input set of events
Negate bool bool

Returns the negation of the input boolean

Table 5: Functional modules of NS-DR’s program executor (continued).

Data type Description

object A dictionary storing the intrinsic attributes of an object in a video

objects A list of objects

event A dictionary storing the type, frame, and participating objects of an event

events A list of events

color A string indicating a color out of “gray”, “brown”, “green”, “red”, “blue”, “purple”, “yellow”, “cyan”
material A string indicating a material out of “metal”, “rubber”

shape A string indicating a shape out of “cube”, “cylinder”, “sphere”

frame An integer representing the frame number of an event

Table 6: Input/output data types of modules in the program executor.

C

a

Objects Events
1D 1 2 3 4 5 Mode Observation Pred. CF.
Color Cyan Gray Yellow Red Red Frame 50 65 70 155 70
Material Rubber Metal Rubber Rubber Metal Type Collision Enter Collision | Collision | Collision
Shape Cylinder ~ Cylinder Sphere Sphere Sphere Object ID 1,4 5 1,2 4,5 2,4

Question: What shape is the first object to collide with the cyan object?

Program: query_shape(get_col_partner(filter_order(filter_collision(Events, filter_color(Objects, Cyan)),
First), filter_color(Objects, Cyan)))

Answer: Sphere

Question: Which event will happen next?  Choice: The red rubber sphere collides with the metal sphere

Program: belong_to(filter_collision(filter_collision(Events, filter_shape(filter_material(filter_color( Answer:
Objects, Red), Rubber), Sphere)), filter_shape(filter_material(Objects, Metal), Sphere)), UnseenEvents)

Question: Which event will happen without the cyan cylinder? Choice: The red rubber sphere collides with the yellow sphere

Program: belong_to(filter_collision(filter_collision(Events, filter_shape(filter_material(filter_color(
Objects, Red), Rubber), Sphere)), filter_shape(filter_color(Objects, Yellow), Sphere)), get_counterfact(
filter_shape(filter_color(Objects, Cyan), Cylinder)))

Answer: X

Figure 8: Sample results of NS-DR on CLEVRER. ‘Pred.’ and ‘CF. indicate predictive and counterfactual
events extracted by the model’s dynamics predictor. The counterfactual condition shown in this example is to
remove the cyan cylinder.
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