
Under review as a conference paper at ICLR 2020

ERGODIC INFERENCE:
ACCELERATE CONVERGENCE BY OPTIMISATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Statistical inference methods are fundamentally important in machine learning.
Most state-of-the-art inference algorithms are variants of Markov chain Monte
Carlo (MCMC) or variational inference (VI). However, both methods struggle
with limitations in practice: MCMC methods can be computationally demanding;
VI methods may have large bias. In this work, we aim to improve upon MCMC
and VI by a novel hybrid method based on the idea of reducing simulation bias
of finite-length MCMC chains using gradient-based optimisation. The proposed
method can generate low-biased samples by increasing the length of MCMC
simulation and optimising the MCMC hyper-parameters, which offers attractive
balance between approximation bias and computational efficiency. We show that
our method produces promising results on popular benchmarks when compared to
recent hybrid methods of MCMC and VI.

1 INTRODUCTION

Statistical inference methods in machine learning are dominated by two approaches: simulation
and optimisation. Markov chain Monte Carlo (MCMC) is a well-known simulation-based method,
which promises asymptotically unbiased samples from arbitrary distributions at the cost of expensive
Markov simulations. Variational inference (VI) is a well-known method using optimisation, which
fits a parametric approximation to the target distribution. VI is biased but offers a computationally
efficient generation of approximate samples.

There is a recent trend of hybrid methods of MCMC and VI to achieve a better balance between
computational efficiency and bias. Hybrid methods often use MCMC or VI as an algorithmic
component of the other. In particular, Salimans et al. (2015) proposed a promising modified VI
method that reduces approximation bias by using MCMC transition kernels. Another technique
reduces the computational complexity of MCMC by initialising the Markov simulation from a pre-
trained variational approximation (Hoffman, 2017; Han et al., 2017). Levy et al. (2018) proposed to
improve MCMC using flexible non-linear transformations given by neural networks and gradient-
based auto-tuning strategies.

In this work, we propose a novel hybrid method, called ergodic inference (EI). EI improves over
both MCMC and VI by tuning the hyper-parameters of a flexible finite-step MCMC chain so that
its last state sampling distribution converges fast to a target distribution. EI optimises a tractable
objective function which only requires to evaluate the logarithm of the unnormalized target density.
Furthermore, unlike in traditional MCMC methods, the samples generated by EI from the last state of
the MCMC chain are independent and have no correlations. EI offers an appealing option to balance
computational complexity vs. bias on popular benchmarks in machine learning. Compared with
previous hybrid methods, EI has following advantages:

• EI’s hyperparameter tuning produces sampling distributions with lower approximation bias.
• The bias is guaranteed to decrease as the length of the MCMC chain increases.
• By stopping gradient computations, EI has less computational cost than related baselines.

We also state some disadvantages of our method:

• The initial state distribution in EI’s MCMC chain has to have higher entropy than the target.

1

Under review as a conference paper at ICLR 2020

• The computational complexity per simulated sample of EI is in general higher than in VI.

2 BACKGROUND

2.1 MONTE CARLO STATISTICAL INFERENCE

Monte Carlo (MC) statistical inference approximates expectations under a given distribution using
simulated samples. Given a target distribution π, MC estimations of an expectation Eπ[f(x)] are
defined as empirical average of the evaluation of f on samples from π. To generate samples from
π, we assume that the unnormalized density function π∗(x) can be easily computed. In a Bayesian
setting we typically work with π∗(x|y) given by the product of the prior p(x) and the likelihood
p(y|x), where y denotes observed variables and x denotes the model parameters specifying p(y|x).

2.2 MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) casts inference as simulation of ergodic Markov chains that
converge to the target π. The MCMC kernel M(x′|x) is characterised by the detailed balance (DB)
property: π(x)M(x′|x) = π(x′)M(x|x′). Given an unnormalised target density π∗, an MCMC
kernel can be constructed in three steps: first, sample an auxiliary random variable r from an auxiliary
distribution qφ1

with parameters φ1; second, create a new candidate sample as (x′, r′) = fφ2
(xt−1, r),

where fφ2
is a deterministic function with parameters φ2; finally, accept the proposal as xt = x′

with probability pMH = min {0, π∗(x′)qφ1
(r′)/[π∗(xt−1)qφ1

(r)]}, otherwise duplicate the previous
sample as xt = xt−1. The last step is well known in the literature as the Metropolis-Hastings (M-H)
correction step (Robert & Casella, 2005) and it results in MCMC kernels that satisfy the DB condition.
In the following, we denote the joint MCMC parameters (φ1, φ2) by φ. If fφ2 does not preserve
volume, then it requires a Jacobian correction factor in the ratio in pMH .

Hamiltonian Monte Carlo (HMC) is a successful MCMC method which has drawn great attention. A
few recent works based on this method are Salimans et al. (2015); Hoffman (2017); Levy et al. (2018).
In HMC, the auxiliary distribution qφ1

is often chosen to be Gaussian with zero-mean and a constant
diagonal covariance matrix specified by φ1. The most common fφ2

in HMC is a numeric integrator
called the leapfrog algorithm, which simulates Hamiltonian dynamics defined by log π∗ (Neal, 2010).
The leapfrog integrator requires the gradient of log π∗ and a step size parameter given by φ2.

Given any initial state x0, MCMC can generate asymptotically unbiased samples x1:n. For this,
MCMC iteratively simulates the next sample xt through the application of the MCMC transition
kernel to the previous sample xt−1. It is well known in the literature that MCMC is computationally
demanding (MacKay, 2002; Bishop, 2006). In particular, it is often necessary to run sufficiently
long burn-in MCMC simulations to reduce simulation bias. Another drawback of MCMC is sample
correlation, which increases the variance of the MC estimator (Neal, 2010). To avoid strong sample
correlation, the common practice in MCMC to tune hyper-parameters manually using sample quality
metrics like effective sample size, (Hoffman, 2017; Robert & Casella, 2005), which has been
developed into automated gradient-based tuning strategies in recent work (Levy et al., 2018).

2.3 MC ESTIMATION USING VARIATIONAL INFERENCE

Variational inference (VI) is a popular alternative to MCMC for generating approximate samples
from π. Unlike MCMC reducing sample bias by long burn-in simulation, VI casts the sample bias
reduction as an optimisation problem, where a parametric approximate sampling distribution P is fit
to the target π. In particular, VI optimises the evidence lower bound (ELBO) given by

LELBO(P ‖ π∗) = Ep[log π∗(x)] +H(P) , (1)

whereH(P) = −Ep[log p(x)], also known as the entropy, must be tractable to compute. LELBO(PT ‖
π∗) is a lower bound on the log normalising constant logZ = log

∫
π∗(x) dx. This bound is

tight when P = π. therefore, the approximation bias in VI can be defined as the gap between
LELBO(P ‖ π∗) and logZ, that is,

∆bias(P) = logZ − LELBO(P ‖ π) = DKL(P ‖ π) ≥ 0 , (2)

where DKL(P ‖ π) denotes the Kullback-Leibler (KL) divergence.

2

Under review as a conference paper at ICLR 2020

Variational approximations often belong to simple parametric families like the multivariate Gaussian
distribution with diagonal covariance matrix. This results in computationally efficient algorithms
for bias reduction and sample generation, but may also produce highly biased samples in cases
of over-simplified approximation that ignores correlation. Designing variational approximation to
achieve low bias under the constraint of tractable entropy and efficient sampling procedures is possible
using flexible distributions parameterised by neural networks (NNs) (Rezende & Mohamed, 2015;
Kingma et al., 2016). However, how to design such NNs for VI is still a research challenge.

2.4 HYBRID METHODS AND VARIANTS OF MCMC AND VI

The balance between computational efficiency and bias is a challenge at the heart of all inference
methods. MCMC represents a family of simulation-based methods that guarantee low-bias samples
at cost of expensive simulations; VI represents a family of optimisation-based methods that generate
high-bias samples at a low computational cost.

Many recent works seek a better balance between efficiency and bias by combining MCMC and VI.
Salimans et al. (2015) proposed to reduce variational bias by optimising an ELBO specified in terms
of the tractable joint density of short MCMC chains. The idea seems initially promising, but the
proposed ELBO becomes looser and looser as the chain grows longer. Caterini et al. (2018) construct
an alternative ELBO for HMC that still has problems since the auxiliary momentum variables are
sampled only once at the beginning of the chain, which reduces the empirical performance of HMC.

Hoffman (2017) and Han et al. (2017) proposed to replace expensive burn-in simulations in MCMC
with samples from pre-trained variational approximations. This approach is effective at finding good
initial proposal distributions. However, it does not offer a solution for tuning HMC parameters
(Hoffman, 2017), which are critical for good empirical performance.

Another line of research has focused on improving inference using flexible distributions, which
are transformed from simple parametric distributions by non-linear non-volume preserving (NVP)
functions. Levy et al. (2018) proposed to tune NVP parameterised MCMC w.r.t. a variant of the
expected squared jumped distance (ESJD) loss proposed by Pasarica & Gelman (2010). Song et al.
(2017) proposed a similar auto-tuning for NVP parameterised MCMC using an adversarial loss.

3 ERGODIC INFERENCE

Ergodic inference (EI) is motivated by the well-known convergence of MCMC chains (Robert &
Casella, 2005): MCMC chains converge in terms of the total variation (TV) distance between the
marginal distribution of the MCMC chain and the target π. Inspired by the convergence property
of MCMC chains, we define an ergodic approximation PT to π with T MCMC steps as following.
Given a parametric distribution P0 with tractable density p0(x0;φ0) parameterlized by φ0 and an
MCMC kernel M(x′|x;φ) constructed using the unnormalised target density π∗ and with MCMC
hyperparameter φ, an ergodic approximation of π is the marginal distribution of the final state of an
T -step MCMC chain initialized from P0:

pT (xT ;φ0,φ) =

∫ T∏
t=1

M(xt|xt−1;φ)p0(x0;φ0)dx0:T−1. (3)

We call φ0 and φ the ergodic parameters of PT . In the following section, we show how EI can tune
the ergodic parameters to minimise the bias of PT as an approximation to the target π.

3.1 ERGODIC APPROXIMATION OBJECTIVE

To reduce the KL divergence DKL(PT ‖ π), one could tune the burn-in parameter φ0 and the MCMC
parameter φ by minimizing equation 2. However, this is infeasible because we cannot analytically
evaluate pT in equation 3. Instead, we exploit the convergence of ergodic Markov chains and propose
to optimise an alternative objective as the following constrained optimisation problem:

max
φ0,φ

EpT [log π∗(x)] + LELBO(P0 ‖ π∗) ≡ L(φ0,φ, π
∗) (4)

subject to H(P0) > h , (5)

3

Under review as a conference paper at ICLR 2020

Optimises objective Asymptotically Samples
Method quantifying bias of samples unbiased generated
MCMC No Yes Correlated
VI Yes No Independent
EI Yes Yes Independent

Table 1: Ergodic inference combines with pros of MCMC and VI and avoids their cons.

where h is a hyperparameter that should be close to the entropy of the target, that is, h ≈ H(π). We
call the objective in equation 4 the ergodic modified lower bound (EMLBO), denoted by L(φ0,φ, π

∗).
Note that the EMLBO is similar to LELBO(PT ‖ π∗), with the intractable entropy H(PT) replaced
by the tractable LELBO(P0 ‖ π∗). We now give some motivation for this constrained objective.

First, we explain the inclusion of the term LELBO(P0 ‖ π∗) in equation 4. If we maximised only
the first term Ep[log π∗(x)] with respect to a fully flexible distribution P , the result would be a
point probability mass at the mode of the target π. This degenerate solution is avoided in VI
by optimising the sum of Ep[log π∗(x)] and the entropy term H(P), which enforces P to move
away from a point probability mass. However, since H(PT) is intractable, we instead replace this
term with LELBO(P0 ‖ π∗) = Ep0 [log π∗(x)] + H(P0), which prevents P0 from collapsing to
the mode of π. This also prevents PT from collapsing to the mode of π since the KL divergence
DKL(Pt ‖ π) never increases after each MCMC transition step (Murray & Salakhutdinov, 2008).
That is, LELBO(Pt ‖ π∗) ≥ LELBO(Pt−1 ‖ π∗) ≥ LELBO(P0 ‖ π∗). Therefore, by maximising
LELBO(P0 ‖ π∗), we also maximise LELBO(PT ‖ π∗) and prevent PT from collapsing to a delta.

The constraint in equation 5 is necessary to eliminate the following pathology. If P0 does not satisfy
H(P0) > H(π), then Ep0 [log π∗(x)] could be higher than Eπ[log π∗(x)]. When this happens, if we
maximise EpT [log π∗(x)], we will favor PT to stay close to P0 instead of making it converge to π
faster. This is illustrated by the plot in the right part of Figure 2. To avoid this pathological case, note
that LELBO(π ‖ π∗) > LELBO(P0 ‖ π∗) leads to Eπ[log π∗(x)]− Ep0 [log π∗(x)] > H(P0)−H(π).
Therefore, when H(P0) > H(π) is satisfied, we have that Ep∞ [log π∗(x)] = Eπ[log π∗(x)] >
Ep0 [log π∗(x)] and maximising EpT [log π∗(x)] in equation 4 is expected to accelerate convergence.

It is interesting to compare the EMLBO with the objective function optimised by Salimans et al.
(2015), that is, the ELBO given by

LELBO(PT ‖ π∗)−DKL(p(x0:T−1|xT) ‖ r(x0:T−1|xT)) , (6)

where p(x0:T−1|xT) denotes the conditional density of the first T states of the MCMC chain given the
last one xT and r(x0:T−1|xT) is an auxiliary variational distribution that approximates p(x0:T−1|xT).
Note that the negative KL term in equation 6 will increase as T increases. This makes the ELBO
in equation 6 become looser and looser as the chain length increases. In this case, the optimisation
of equation 6 results in an MCMC sampler that fits well the biased inverse model r(x0:T−1|xT) but
whose marginal distribution for xT does not approximate π well. This limits the effectiveness of
this method in chains with multiple MCMC transitions. By contrast, the EMLBO does not have this
problem and its optimisation will produce a more and more accurate PT as T increases.

EI combines the benefits of MCMC and VI and avoids their drawbacks, as shown in Table 1.
In particular, the bias in EI is reduced by using longer chains, as in MCMC, and EI generates
independent samples, as in VI. Futhermore, EI optimises an objective that directly quantifies the bias
of the generated samples, as in VI. Methods for tuning MCMC do not satisfy the latter and optimise
instead indirect proxies for mixing speed, e.g. expected squared jumped distance (Levy et al., 2018).
Importantly, EI can use gradients to tune different MCMC parameters at each step of the chain, as
suggested by Salimans et al. (2015). This gives EI an extra flexibility which existing MCMC methods
do not have. Finally, EI is different from parallel-chain MCMC: while EI generates independent
samples, parallel-chain MCMC draws correlated samples from several chains running in parallel.

3.2 STOCHASTIC GRADIENT OPTIMISATION FOR THE ERGODIC OBJECTIVE

We now show how to maximise the ergodic objective using gradient-based optimisation. The gradient
∂φ0,φL(φ0,φ, π

∗) is equal to the sum of two gradient terms. The first one ∂φ0
LELBO(P0 ‖ π∗) is

affected by the constraint H(P0) > h, while the second term ∂φEpT [log π∗(xT)] is not. If we ignore
the constraint, the first gradient term can be estimated by Monte Carlo using the reparameterization

4

Under review as a conference paper at ICLR 2020

trick proposed in (D.P. Kingma, 2014; Rezende & Mohamed, 2015):

∂φ0
LELBO(P0 ‖ π∗) ≈

1

N

N∑
i=1

∂φ0
log π∗(fφ0

(εi)) + ∂φ0
H(P0) , (7)

where fφ0
(·) is a deterministic function that maps the random variable εi sampled from a simple

distribution, e.g. a factorized standard Gaussian, into the random variable xi0 sampled from p0(·;φ0).
To guarantee that our gradient-based optimiser yields a solution satisfying the constraint, we first
initialize φ0 so that H(P0) > h and, afterwards, we force the gradient descent optimiser to leave φ0

unchanged if H(P0) is to get lower than h during the optimisation process.

The Monte Carlo estimation of ∂φEpT [log π∗(x)] can also be computed using the reparameterization
trick. For this, the Metropolis-Hastings (M-H) correction step in the MCMC transitions, as described
in Section 2.2, can be reformulated as applying the following transformation to xt−1:

xt = gφ(xt−1, rt;ut) = x′1(pMH;ut) + xt−1[1− 1(pMH;ut)], (8)

where (x′, r′) = fφ(xt−1, rt) as described in Section 2.2, rt ∼ q(r), ut ∼ Unif(0, 1), pMH =
min {1, π∗(x′)q(r′)/[π∗(xt−1)q(rt)]} and 1(pMH;u) is an indicator function that takes value one if
pMH > u and zero otherwise. In Hamiltonian Monte Carlo (HMC), fφ is the leapfrog integrator of
Hamiltonian dynamics with the leapfrog step size φ. We define the T -times composition of gφ, given
in equation 8, as the transformation xT = gTφ(x0, r1:T ;u1:T). Then, the second gradient term can be
estimated by Monte Carlo as follows:

∂φEpT [log π∗(xT)] ≈ 1

N

N∑
i=1

∂φ log π∗[gTφ(xi0, r
i
1:T ;ui1:T)] , (9)

where xi0, ri1:T and ui1:T are sampled independently from p0(x0)
∏T
t=1 q(rt)Unif(ut; 0, 1). Note that

the gradient term equation 9 is correct under the assumption fφ is volume-preserving in the joint
space of (xt−1, rt), otherwise additional gradient term of the Jacobian of fφ w.r.t. φ is required.
However, it is not a concern for many popular MCMC kernels. For example, the leapfrog integrator
in HMC fφ guarantees the preservation of volume as shown in (Neal, 2010).

The gradient in equation 9 requires computing ∂φgTφ(x0, r1:T ;u1:T), which can be done easily by
using auto-differentiation and gradient backpropagation through the transfromations gφ(·, rt;ut) with
t = T, . . . , 1. However, backpropagation in deep compositions can be computationally demanding.
We discovered a trick to accelerate the gradient computation by stopping the backpropagation of the
gradient at the input xt−1 of gφ(xt−1, rt;ut), for t = 1, . . . , T . Empirically this trick has almost no
impact on the convergence speed of the ergodic approximation, as shown in Figure 2.

3.3 THE ENTROPY CONSTRAINT AND HYPERPARAMETER TUNING

As mentioned previously, ignoring the constraint H(P0) > H(π) may lead to pathological results
when optimising the ergodic objective. To illustrate this, we consider fitting an ergodic approximation
given by a Hamilton Monte Carlo (HMC) transition kernel with T = 9. P9 denotes the initial
ergodic approximation before traing and P ∗9 denotes the same approximation after training. The
target distribution is a correlated bivariate Gaussian given by π = N (0, (2.0, 1.5; 1.5; 1.6)). Samples
from this distribution are shown in plot (a) in Figure 1. We optimise different a separate HMC
parameter φt, as described in Section 2.2, for each HMC step t. We consider two initial distributions.
The first one is P0 = N (0, 3I) which satisfies the assumption H(P0) > H(π). The second one is
P ′0 = N (0, I) with the entropy H(P ′0) < H(π), which violates the assumption. In this latter case,
we perform the unconstrained optimisation of equation 4. Plots (b) and (c) in Figure 1 show samples
from P9 and P ∗9 for the valid P0. In this first example, maximising the ergodic objective under
equation 5 significantly accelerates the chain convergence as further shown by the left plot in Figure
2. Plots (d) and (e) in Figure 1 show samples from P9 and P ∗9 for the invalid initial distribution P ′0. In
the second example, Ep0 [log π∗(x)] is higher than Eπ[log π∗(x)] and, consequently, maximising the
unconstrained ergodic objective actually deteriorates the quality of the resulting approximation. This
is further illustrated by the right plot in Figure 2 which shows how the convergence of Ept [log π∗(x)]
to Eπ[log π∗(x)] is significantly slowed down by the optimisation under the invalid P ′0.

5

Under review as a conference paper at ICLR 2020

Fortunately, it is straightforward to prevent this type of failure cases by appropriately tuning the scalar
hyperparameter h in equation 5. A value of h that is too low may result in higher bias of PT after
optimisation as illustrated by the convergence of Ept [log π∗(x)] in the blue and orange curves in Plot
(b) in Figure 2. Furthermore, in many cases, estimating an upper bound on H(π) is feasible. For
example, in Bayesian inference, the entropy of the prior distribution p(x) is often higher than the
entropy of the posterior p(x|y). Therefore, the prior entropy can be used as a reference for tuning h.

(a) π (b) P9 with P0 (c) P ∗9 with P0 (d) P9 with P ′0 (e) P ∗9 with P ′0

Figure 1: Histograms of samples from ergodic inference using HMC transition kernels. P9 denotes
the ergodic approximation before traing; P ∗9 denotes the ergodic approximation after training.

0 1 2 3 4 5 6 7 8 9

16

14

12

10

8

6

4

2

0 1 2 3 4 5 6 7 8 9

2.6

2.4

2.2

2.0

1.8

EI before training

EI after training, no stopping gradients

EI after training, stopping gradients

When sampling from

Figure 2: The plot of EpT [log π∗(x)] as a function of the length of the chain T using 10000 samples:
Left: with the valid P0 as H(P0) > H(π); Right: with invalid P ′0 as H(P ′0) < H(π). SG training
means the stop gradient is applied to the x from previous HMC step in equation 9.

4 EXPERIMENTS

We first describe the general configuration of the ergodic inference method used in our experiments.
Our ergodic approximation is constructed using HMC, one of the most successful MCMC methods
in machine learning literature. We use T HMC transitions, each one involving 5 steps of the vanilla
leapfrog integrator which was implemented following Neal (2010). The leapfrog pseudocode can be
found in the appendix. In each HMC transition, the auxiliary variables are sampled from a zero-mean
Gaussian distribution with diagonal covariance matrix. We tune the following HMC parameters: the
variance of the auxiliary variables and the leapfrog step size, as mentioned in Section 2.2. We use
and optimise a different value of the HMC parameters for each of the T HMC transitions considered.
We call our ergodic inference method Hamiltonian ergodic inference (HEI). The burn-in model P0 is
factorized Gaussian. The initial entropy of P0 is chosen to be the same as the entropy of the prior.
The stocastic optimisation algorithm is Adam (Kingma & Ba, 2015) with TensorFlow implemtation
Abadi et al. (2015) and the optimiser hyperparameter setting is (β1 = 0.9, β2 = 0.999, ε = 10−8).
The initial HMC leapfrog step sizes are sampled uniformly between 0.01 and 0.025. Additional
experiment on Bayesian neural networks is included in Appendix 6.3.

4.1 DEMONSTRATIONS

We first compare Hamiltonian ergodic inference (HEI) with previous related methods on 6 synthetic
bivariate benchmark distributions. Histograms of ground truth samples from each target distribution
using rejection sampling are shown in Figure 3. The baselines considered include: 1) Hamiltonian
variational inference (HVI) (Salimans et al., 2015); 2) generalized Hamiltonian Monte Carlo (GHMC)
using an NVP parameterized HMC kernel and gradient-based auto-tuning of MCMC parameters

6

Under review as a conference paper at ICLR 2020

w.r.t. sample correlation loss (Levy et al., 2018); 3) Hamiltonian annealed importance sampling
(HAIS) (Sohl-Dickstein & Culpepper, 2012).

HVI is the most similar method to HEI among all three baselines, because both HEI and HVI methods
generate samples from the last state of MCMC chains and use gradient-based MCMC hyperparameter
tuning to reduce bias. For a fair comparison between HVI and HEI, we consider the HMC chains with
exactly the same setting in both methods: the initial state follows a standard Gaussian distribution and
the length of HMC chain is T = 10. The key difference between HVI and HEI is the hyperparameter
tuning objective, as mentioned in Section 3.1. We trained HVI for 1000 iterations and verified the
ELBO converges to a (local) minimum (plots of the training ELBO values are included in Appendix
6.2). We trained HEI for 50 iterations. Following the setting of HAIS by Wu et al. (2017), we used
1,000 intermediate distributions with 5 leapfrog steps per HMC transition and manually tuned the
HMC parameters to have acceptance rate around 70%. GHMC1 was run using 100 parallel chains
with 5 leapfrog steps per GHMC transition, 100 burn-in steps and 1000 auto-tuned training iterations
Levy et al. (2018). The verification of the convergence of EpT [log π∗(x)] to Eπ[log π∗(x)] for HEI
is shown in plot (a) of Figure 5.

We generate 100,000 samples with each method and evaluate sample quality using two metrics: 1)
the histogram of simulated samples for visual inspection; 2) the MC estimation of Eπ[log π∗(x)].
Effective sample size (ESS) is a popular sample correlation based evaluation metric in recent MCMC
literature (Levy et al., 2018). However, we do not consider ESS in this experiment, because GHMC
is the only method among all methods generating correlated samples. Therefore, the ESS of GHMC
is guaranteed to be lower than HVI and HEI. To generate ground truth samples from benchmark
distributions, we use . The resulting sample histograms of the ground truth using rejection sampling
are shown in figures 3 and considered approximated sampling methods are shown in 4. Table
2 shows the resulting estimates of −Eπ[log π∗(x)] together with the wall-clock simulation time
for generating 100,000 samples. The left part of Table 3 shows the training time of the MCMC
parameter optimisation for all methods except HAIS, which does not support gradient-based HMC
hyperparameter tuning. HEI is faster than HVI and GHMC. Note, however, that the acceleration of
HEI over HSVI is due to the stopping gradient trick described in Section 3.2. The histograms and the
estimates of −Eπ[log π∗(x)] generated by HEI are consistent with the results of the more expensive
unbiased samplers GHMC and HAIS, which are close to the ground truth. By contrast, HVI exhibits
a clear bias in all benchmarks. Regarding the sampling time, HVI and HEI simulate HMC chains
with the same length and, consequently, perform similarly in this case while sample simulation from
HAIS and GHMC is much more expensive.

(a) (b) (c) (d) (e) (f)

Figure 3: Histograms of samples generated by rejection sampling on each benchmark problem.

−Eπ[log π∗(x)] estimate / time a b c d e f
HVI Salimans et al. (2015) 4.94/0.20 1.22/0.41 5.22/0.92 1.70/0.25 1.37/0.87 1.64/0.54
HEI 3.49/0.25 0.79/0.44 4.78/1.58 0.99/0.3 0.59/0.58 0.57/0.56
GHMC Neal (2001) 3.43/35.7 0.80/64.28 4.74/41.23 1.03/48.54 0.63/85.30 0.59/81.0
HAIS Levy et al. (2018) 3.38/16.62 0.78/26.94 4.70/125.32 1.00/22.61 0.60/33.07 0.49/33.69
Ground Truth 3.31/- 0.76/- 4.66/- 0.98/- 0.58/- 0.49/-

Table 2: Estimation of −Eπ[log π∗(x)] and the sampling time on CPU: Each score (a/b) above refers
to: a) −Eπ[log π∗(x)] estimated by 100k samples; b) time in seconds to generate 100,000 samples.

1The code used was obtained from https://github.com/brain-research/l2hmc

7

Under review as a conference paper at ICLR 2020

HVI HEI HAIS GHMC HVI HEI HAIS GHMC

Figure 4: Histograms of 100,000 samples generated by each method after parameter optimisation.

Training Time on Synthetic Problems
Method sec / 100 iters
HVI (Salimans et al., 2015) 2.367
HEI (stop gradient) 1.620
GHMC (Neal, 2001) 7.100

Training Time on DGM (sec / epoch)
Method T=15 T=30
HEI 257.8 551.2
HEI (stop gradient) 56.3 114.0

Table 3: Left. The training time of MCMC parameter optimisation in seconds for 100 iterations for
all candidate methods to produce the results in Figure 4. The training time of HEI is lower than
HVI because of the stop gradient trick mentioned in Section 3.2. We do not report the training time
for HAIS, because HAIS requires manual tuning of MCMC hyperparameters which is not directly
comparable to the gradient-based autotuning used by the other methods. Right. The training time in
seconds per epoch for the experiments with deep generative models (DGM).

4.2 TRAINING DEEP GENERATIVE MODELS

We now evaluate HEI in the task of training deep generative models. MNIST is a standard benchmark
problem in this case with 60,000 grey level 28× 28 images of handwritten digits. For fair comparison
with previous works, we use the 10,000 prebinarised MNIST test images2 used by Burda et al. (2015).
The architecture of the generative model considered follows the deconvolutional network from
Salimans et al. (2015). In particular, the unnormalised target pθ(x,y) consists of 32 dimensional
latent variables x with Gaussian prior p(x) = N (0, I) and a deconvolutional network pθ(y|x) from
top to bottom including a single fully-connected layer with 500 RELU hidden units, then three
deconvolutional layers with 5× 5 filters, (16, 32, 32) feature maps, RELU activations and a logistic
output layer. We consider a baseline given by a standard VAE with a factorised Gaussian approximate
posterior generated by an encoder network q(x|y) which mirrors the architecture of the decoder
(Salimans et al., 2015).

The code for HVI Salimans et al. (2015) is not publicly available. Nevertheless, we reimplemented
their convolutional VAE and were able to reproduce the marginal likelihood reported by Salimans
et al. (2015), as shown in Table 4. This verifies that our implementation of the generation network is
correct. We implemented HVI in (Salimans et al., 2015) using an auxiliary reverse model in the ELBO
parameterized by a single hidden layer network with 640 hidden units and RELU activations. We
also implemented the Hamiltonian variational encoder (HVAE) method (Caterini et al., 2018), which
is similar to HVI but without the reverse model. Unlike in the original HVAE, our implementation
does not use tempering but still produces results similar to those from Caterini et al. (2018).

For the HEI encoder, we use T = 30 HMC steps, each with 5 leapfrog steps. The initial approximation
P0 is kept fixed to be the prior p(x). We optimise the decoder and the HEI encoder jointly using
Adam. Table 4 shows the marginal test log-likelihood for HEI and the other methods, as estimated
with 1,000 HAIS samples (Sohl-Dickstein & Culpepper, 2012). Following Li et al. (2017), we also
include the effective sample size (ESS) of HAIS samples for the purpose of verifying the reliability

2https://github.com/yburda/iwae

8

Under review as a conference paper at ICLR 2020

0

100

200

300

400

500

600

0 5 10 15 20 25 5 10 15 20 25 30

0

10

20

30

40

50

60 Before training

After training

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4
a

b

c

d

e

f

Before training

After training

Figure 5: The verification of the convergence of EpT [log π∗(x)] to Eπ[log π∗(x)]: a: the targets are
2D benchmarks with the ground truth of Eπ[log π∗(x)]; b: the target π is the VAE posterior p(x|y)
each curve represents one random chosen test MNIST image y with the ground truth of Eπ[log π∗(x)]
estimated by HAIS using 100 samples; c: MMD score between HEI samples and HAIS samples.

Training Training Test
Encoders hours Epochs log(x) ESS
Conv VAE(nh=300) Salimans et al. (2015) - - -83.20 -
HVI(T=1, 16LF, nh=800, ConvNet encoder) Salimans et al. (2015) - - -81.94 -
HVAE(T=1, 20LF, nh = 300, ConvNet encoder) Caterini et al. (2018) - - -84.78 -
Conv VAE(nh=500) (Baseline) 6.00 3000 -83.57 50
HVI(T=1, 16LF, nh=800, ConvNet encoder) 6.00 360 -83.68 48
HVAE(T=1, 16LF, nh=500, ConvNet encoder) 6.00 360 -84.22 48
HEI(T=30, 5LF, nh=500, no neural net encoder) 1.65 54 -83.17 48
HEI(T=30, 5LF, nh=500, no neural net encoder) 3.00 100 -82.76 46
HEI(T=30, 5LF, nh=500, no neural net encoder) 6.00 200 -82.65 45
HEI(T=30, 5LF, nh=500, no neural net encoder) 12.00 400 -81.43 38
HEI(T=15, 5LF, nh=500, no neural net encoder) 8.00 540 -83.30 48

Table 4: Comparisons in terms of compuational efficiency and test log-likelihood in the training of
deep generative models on the MNIST dataset. We implemented the deconvolutional decoder network
in Salimans et al. (2015) to test HVI. In Salimans et al. (2015), the test likelihood is estimated using
importence-weighted samples from the encoder network. In our experiment, we use Hamiltonian
annealled importance sampling and report the effective sample size (ESS).

of the reported test log-likelihoods. Overall, HEI outperforms HVI, HVAE and the standard VAE in
test log-likelihood when the training time of all methods is fixed to be 6 hours. HEI still produces
significant gains when the training time is extended to 12 hours and, with only 1.6 hours of training,
HEI can already outperform the convolutional VAE of Salimans et al. (2015) with 6 hours of training.

To verify the convergence of HEI, we show in plot (b) of Figure 5 estimates of EpT [log π∗(x)] −
Eπ[log π∗(x)] for T = 1, . . . , 10 on five randomly chosen test images, where the ground truth
Eπ[log π∗(x)] is estimated by HAIS, after HMC hyper-parameter tuning in HEI (blue) and without
hyper-parameter tuning in HEI (green), i.e. just using the initial hyper-parameter values. Plot (c) in
Figure 5 shows similar results, but using the maximum mean discrepancy (MMD) score (Gretton
et al., 2012) to quantify the similarity of samples from pT to samples from π, where the latter ground
truth samples are generated by HAIS. These plots suggests that shortening the HEI chain to T = 10
HMC steps will have a negligible effect on final simulation accuracy. Finally, the right part of Table 3
shows the training time of HEI with and without the stopping gradient trick. These resuls show that
the former method is up to 5 times faster.

5 SUMMARY

We have proposed Ergodic Inference (EI), a novel hybrid inference method that bridges MCMC and
VI. EI a) reduces the approximation bias by increasing the number of MCMC steps, b) generates
independent samples and c) tunes MCMC hyperparameters by optimising an objective function that
directly quantifies the bias of the resulting samples. The effectiveness of EI was verified on synthetic
examples and on popular benchmarks for deep generative models. We have shown that we can

9

Under review as a conference paper at ICLR 2020

generate samples much closer to a gold standard sampling method than similar hybrid inference
methods and at a low computational cost. However, one disadvantage of EI is that it requires the
entropy of the first MCMC step to be larger than the entropy of the target distribution.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. Hamiltonian variational auto-encoder. In
Advances in Neural Information Processing Systems, pp. 8167–8177, 2018.

M. Welling D.P. Kingma. Auto-encoding variational bayes. In The International Conference on
Learning Representations (ICLR), 2014.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13:723–773, March 2012. ISSN
1532-4435.

Tian Han, Yang Lu, Song-Chun Zhu, and Ying Nian Wu. Alternating back-propagation for generator
network. In AAAI, volume 3, pp. 13, 2017.

Matthew D. Hoffman. Learning deep latent Gaussian models with Markov chain Monte Carlo. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1510–1519,
International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved Variational Inference with Inverse Autoregressive Flow. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 29, pp. 4743–4751. Curran Associates, Inc., 2016.

Daniel Levy, Matt D. Hoffman, and Jascha Sohl-Dickstein. Generalizing Hamiltonian Monte Carlo
with neural networks. In International Conference on Learning Representations, 2018.

Yingzhen Li, Richard E Turner, and Qiang Liu. Approximate inference with amortised mcmc. arXiv
preprint arXiv:1702.08343, 2017.

David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge University
Press, New York, NY, USA, 2002. ISBN 0521642981.

Iain Murray and Ruslan Salakhutdinov. Notes on the KL-divergence between a Markov chain and its
equilibrium distribution. preprint, 2008.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125–139, 2001.

Radford M. Neal. MCMC using Hamiltonian dynamics. 2010.

10

http://tensorflow.org/

Under review as a conference paper at ICLR 2020

Cristian Pasarica and Andrew Gelman. Adaptively scaling the Metropolis algorithm using expected
squared jumped distance. Statistica Sinica, pp. 343–364, 2010.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Proceedings of the 32Nd International Conference on International Conference on Machine
Learning - Volume 37, ICML’15, pp. 1530–1538. JMLR.org, 2015.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer Texts in Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN 0387212396.

Tim Salimans, Diederik Kingma, and Max Welling. Markov chain Monte Carlo and variational
inference: Bridging the gap. In International Conference on Machine Learning, pp. 1218–1226,
2015.

Jascha Sohl-Dickstein and Benjamin J Culpepper. Hamiltonian annealed importance sampling for
partition function estimation. arXiv preprint arXiv:1205.1925, 2012.

Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-NICE-MC: Adversarial training for MCMC.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 30, pp. 5140–5150. Curran Associates,
Inc., 2017.

Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian Optimization
with Robust Bayesian Neural Networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 4134–4142. Curran
Associates, Inc., 2016.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Grosse Roger. On the Quantitative Analysis of
Deep Belief Networksnalysis of Decoder-based Generative Models. In ICLR. 2017.

6 APPENDIX

6.1 LEAPFROG ALGORITHM

Here is the code for the vanilla leapfrog algorithm we used in HVI, HEI and HAIS.

Algorithm 1: Leapfrog
Input: x: state, r: momenta, φ1: r variance, φ2: step size, m: number of steps
Result: x′: new state, r′: new momentum
x̄ = x;
r̄ = r;
for t← 1 to m do

r̄ = r̄− 0.5φ2∂xU(x̄);
x̄ = x̄ + φ2/φ1r̄;
r̄ = r̄− 0.5φ2∂xU(x̄);

end
x′ = x̄;
r′ = r̄;
return x′ and r′;

6.2 RESULTS OF HVI ON SYNTHETIC BENCHMARKS

The plots in Figure 6 show training loss (negative ELBO) of HVI and the training expected log likeli-
hood EpT [log π∗(x)] with T = 10 HMC steps with Adam with hyperparameter setting described in
Section 4. It is clear that HVI is well trained but the approximation is biased, because EpT [log π∗(x)]
does not converge to the true loss (the red line on the right plots). In comparison, in Figure 6(Left) in
our paper, EpT [log π∗(x)] of HEI converges to the ground true by optimising our ergodic loss.

11

Under review as a conference paper at ICLR 2020

a b

c d

e f

Figure 6: histograms of samples from benchmarks by rejection sampling

0 10 20 30 40
Chain length T

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

E p
T[l

og
*]

Boston_init
Boston_trained
Yacht_init
Yacht_trained
Concrete_init
Concrete_trained
Wine_init
Wine_trained

Figure 7: The convergence of sample likelihood from ergodic approximation on Bayesian NN

6.3 BAYESIAN INFERENCE WITH NEURAL NETWORKS

In this additional experiment we approximate the posterior distribution of Bayesian neural networks
with standard Gaussian priors. We consider four UCI datasets and compare HEI with the stochastic
gradient Hamilton Monte Carlo (SGHMC) method from Springenberg et al. (2016). The networks
used in this experiment have 50 hidden layers and 1 real valued output unit, as stated in Springenberg
et al. (2016). The HEI chain contains 50 HMC transformation with 3 Leapfrog steps each. The
initial proposal distribution P0 is a factorised Gaussian distribution with mean values obtained by

12

Under review as a conference paper at ICLR 2020

running standard mean-field VI using Adam for 200 iterations. We do not use in P0 the variance
values returned by VI because these are unlikely to result in higher entropy than the exact posterior
since VI tends to understimate uncertainty. Instead, we choose the marginal variances to be n−0.5
where n is the number of inputs to the neural network layer for the weight. To reduce computational
cost, we use in this case stochastic gradients in the leapfrog integrator. For this, we split the training
data into 19 mini-batches and only use one random sampled mini-batch for computing the gradient in
each leapfrog iteration. We train our HEI for 10 epochs and the stationary distribution is chosen as
approximate posterior on a random sampled mini-batch. The resulting test log-likelihoods are shown
in Table 5. Overall, HEI produce significantly better results than SGHMC. We also show in the right
plot of Figure 7 estimates of Ept [log p(x,y)] for t = 1, . . . , 50 after HMC hyper-parameter tuning
and without hyper-parameter tuning.

Method/Dataset Boston Yacht Concrete Wine
SGHMC (best average) Springenberg et al. (2016) -3.47±0.51 -13.58±0.98 -4.87±0.05 -1.82±0.75
SGHMC (tuned per dataset) Springenberg et al. (2016) -2.49±0.15 -1.75±0.19 -4.16±0.72 -1.29±0.28
SGHMC (scale-adapted) Springenberg et al. (2016) -2.54±0.04 -1.11±0.08 -3.38±0.24 -1.04±0.17
HEI -2.17±0.07 -0.47±0.06 -2.71±0.03 -0.71±0.03

Table 5: The log likelihood on UCI datasets averaged over 20 splits.

13

	Introduction
	Background
	Monte Carlo Statistical Inference
	Markov Chain Monte Carlo
	MC Estimation using Variational Inference
	Hybrid Methods and Variants of MCMC and VI

	Ergodic Inference
	Ergodic Approximation Objective
	Stochastic Gradient Optimisation for the Ergodic Objective
	The Entropy Constraint and Hyperparameter Tuning

	Experiments
	Demonstrations
	Training Deep Generative Models

	Summary
	Appendix
	Leapfrog Algorithm
	Results of HVI on Synthetic Benchmarks
	Bayesian inference with Neural Networks

