
Under review as a conference paper at ICLR 2020

UNIVERSAL SAFEGUARDED LEARNED CONVEX OPTI-
MIZATION WITH GUARANTEED CONVERGENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Many applications require quickly and repeatedly solving a certain type of opti-
mization problem, each time with new (but similar) data. However, state-of-the-
art general-purpose optimization methods may converge too slowly for real-time
use. This shortcoming is addressed by learning to optimize (L2O) schemes, which
construct neural networks from parameterized forms of the update operations of
general-purpose methods. Inferences by each network form solution estimates,
and networks are trained to optimize these estimates for a particular distribution
of data. This results in task-specific algorithms (e.g., LISTA, ALISTA, and D-
LADMM) that can converge order(s) of magnitude faster than general-purpose
counterparts. We provide the first general L2O convergence theory by wrapping
all L2O schemes for convex optimization within a single framework. Existing
L2O schemes form special cases, and we give a practical guide for applying our
L2O framework to other problems. Using safeguarding, our theory proves, as the
number of network layers increases, the distance between inferences and the solu-
tion set goes to zero, i.e., each cluster point is a solution. Our numerical examples
demonstrate the efficacy of our approach for both existing and new L2O methods.

1 INTRODUCTION

Solving scientific computing problems often requires application of efficient and scalable optimiza-
tion algorithms. Despite the ever improving rates of convergence of state-of-the-art general purpose
algorithms, their ability to apply to real-time applications is still limited due to the relatively large
number of iterations that must be computed. To circumvent this shortcoming, a growing num-
ber of researchers use machine learning to develop task-specific algorithms from general-purpose
algorithms. For example, inspired by the iterative shrinkage thresholding algorithm (ISTA) for solv-
ing the LASSO problem, a sparse coding problem, Gregor & LeCun (2010) proposed to learn the
weights in the matrices of the ISTA updates that worked best for a given data set, rather than leave
these parameters fixed. They then truncated the method to K iterations, making their Learned
ISTA (LISTA) algorithm form a K-layer feed-forward neural network. Empirically, their examples
showed roughly a 20-fold reduction in computational cost compared to the traditional algorithms.
Several related works followed, also demonstrating numerical success (discussed below). While
classic optimization results often provide worst-case convergence rates, limited theory exists per-
taining to such instances of data drawn from a common distribution (e.g., data supported on a low-
dimensional manifold). As a step toward providing such theory, this work addresses the question:

Does there exist a universal method that encompasses all L2O algorithms and generates
iterates that approach the solution set with guarantees?

We provide an affirmative answer to this question by prescribing and proving properties of neural
networks generated within our L2O framework. Convergence is established by including any choice
among several practical safeguarding procedures, including nonmonotone options. Nonmonotone
safeguarding enables sequences to traverse portions of the underlying space where the objective
function value may increase for a few successive iterations as long as, on average, the sequence
approaches the solution set. Although counterintuitive, this ability may lead to faster convergence.
Furthermore, we provide a practical guide in our discussion for how practitioners may use our frame-
work to create and apply L2O schemes to their own problems.

1

Under review as a conference paper at ICLR 2020

The theoretical portion of this work is presented in the context of fixed point theory. This is done to
be sufficiently general and provide the desired convergence result for the wide class of optimization
methods that can be expressed as special cases of the Krasnosel’skiı̆-Mann (KM) method. For
concreteness and ease of application, we then provide the special-case results to several well-known
methods (e.g., proximal-gradient, Douglas-Rachford splitting, and ADMM).

Related Works. A seminal L2O work in the context of sparse coding was by Gregor & LeCun
(2010). Numerous follow-up papers also demonstrated empirical success at constructing rapid re-
gressors approximating iterative sparse solvers, compression, `0 encoding, combining sparse coding
with clustering models, nonnegative matrix factorization, compressive sensing MRI, and other ap-
plications (Sprechmann et al., 2015; Wang et al., 2016a;b;c;d; Hershey et al., 2014; Yang et al.,
2016). A nice summary of unfolded optimization procedures for sparse recovery is given by Ablin
et al. (2019) in Table A.1. However, the majority of L2O works pertain to sparse coding and provide
limited theoretical results. Some works have interpreted LISTA in various ways to provide proofs
of different convergence properties (Giryes et al., 2018; Moreau & Bruna, 2017). Others have in-
vestigated structures related to LISTA (Xin et al., 2016; Blumensath & Davies, 2009; Borgerding
et al., 2017; Metzler et al., 2017), providing varying results dependent upon the assumptions made.
Chen et al. (2018) introduced necessary conditions for the LISTA weight structure to asymptotically
achieve a linear convergence rate. This was followed by Liu et al. (2019a), which proved linear con-
vergence of their ALISTA method for the LASSO problem and provided a result stating that, with
high probability, the convergence rate of LISTA is at most linear. The mentioned results are useful,
yet can require intricate assumptions and proofs specific to the relevant sparse coding problems.

Our Contribution. This is the first work to merge ideas from machine learning, safeguarded opti-
mization, and fixed point theory into a general framework for incorporating data-driven updates into
iterative convex optimization algorithms. In particular, given a collection of data and an update op-
erator from an established method (e.g., ADMM or proximal gradient) for solving an optimization
problem, we present procedures for creating a neural network that can be used to quickly infer solu-
tion estimates. The first novelty of this framework is the ability to incorporate several safeguarding
procedures in a general setting. The second is that we present a procedure for utilizing machine
learning methods to incorporate knowledge from particular data sets. However, our most significant
contribution to the L2O literature is to combine these results into a single, general framework for
use by practitioners on any convex optimization problem.

Outline. We first provide a brief overview of the fixed point setting of this work in Section 2. Then
we present the SKM method and convergence results in Section 3. The incorporation of the SKM
method into a neural network and subsequent training approach is presented in Section 4. This is
followed in Section 5 by numerical examples, discussion in Section 6, and conclusions in Section 7.

2 FIXED POINT METHODS

Let H be a finite dimensional Hilbert space (e.g., the Euclidean space Rn) with inner product 〈·, ·〉
and norm ‖ · ‖. Denote the set of fixed points of each operator T : H → H by Fix(T) := {x ∈ H :
Tx = x}. In this work, for an operator T with a nonempty fixed point set (i.e., Fix(T) 6= ∅), the
primary problem considered is the fixed point problem:

Find x? ∈ Fix(T). (1)

Convex minimization problems, both constrained and unconstrained, may be equivalently rewritten
as the problem (1) for an appropriate mapping T . The method chosen for solving the minimization
problem determines the operator T in (1) (e.g., see Table 1 below for examples). We focus on
the fixed point formulation to provide a general approach, given T , for creating a sequence that
converges to a solution of (1) and, thus, also of the corresponding optimization problem.

The following definitions will be used in the sequel. A mapping T : H → H is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ H. (2)

firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 , for all x, y ∈ H. (3)

An operator T : H → H is α-averaged if α ∈ (0, 1) and there is a nonexpansive operator Q :
H → H such that T = (1 − α)Id + αQ, where Id is the identity operator. If the constant α is not

2

Under review as a conference paper at ICLR 2020

Table 1: Below are the averaged operators for well-known algorithms. We assume α > 0 and,
when α is multiplied by a gradient, we also assume α < 2/L, with L the Lipschitz constant for the
gradient. The dual of a function is denoted by a superscript ∗.

Problem Method Averaged Operator T

min f(x) Gradient Descent Id− α∇f

min f(x) Proximal Point proxαf

min{g(x) : x ∈ C} Projected Gradient projC ◦ (Id− α∇g)

min f(x) + g(x) Proximal Gradient proxαf ◦ (Id− α∇g)

min f(x) + g(x) Peaceman-Rachford Rα∂f ◦Rα∂g

min f(x) + g(x) Douglas-Rachford
1

2
(Id +Rα∂f ◦Rα∂g)

min
C

f(x) + g(z)
ADMM

1

2
(Id +Rα∂F ◦Rα∂G), with

C := {x, z : Ax+Bz = b}
F (y) := f∗(AT y), G(y) := g∗(BT y)− bT y

important, then T may for brevity be called averaged. Note T is firmly nonexpansive if and only if
T is 1

2 -averaged. We also denote the distance between a point x ∈ H and a set C by

dC(x) := inf{‖x− y‖ : y ∈ C}. (4)

Two operators frequently used in optimization are constructed from monotone relations. Letting
α > 0 and f : H → R be a function, the resolvent of the (possibly) multi-valued subgradient ∂f is

Jα∂f := (Id + α∂f)−1 (5)

and the reflected resolvent of ∂f is

Rα∂f := 2Jα∂f − Id. (6)

If f is closed, convex, and proper, then the resolvent is precisely the proximal operator, i.e.,

Jα∂f = proxαf (x) := arg min
z∈H

αf(z) +
1

2
‖z − x‖2. (7)

From these definitions, it can be shown thatRα∂f is nonexpansive and Jα∂f is firmly nonexpansive.
Results above may all be found in Bauschke & Combettes (2017) (e.g., see Prop. 4.4, Thm. 20.25,
Example 23.3, and Prop. 23.8). See Table 1 for examples of these operators in optimization methods.

A classic theorem states sequences generated by successively applying an averaged operator con-
verges to a fixed point. This method comes from Krasnosel’skii (1955) and Mann (1953), which
yielded adoption of the name Krasnosel’skiı̆-Mann (KM) method. This result is stated below and
can be found with various forms and proofs in many works (e.g., see (Bauschke & Combettes, 2017,
Thm. 5.14), (Byrne, 2008, Thm. 5.2), (Cegielski, 2012, Thm. 3.5.4), and (Reich, 1979, Thm. 2)).

Theorem 2.1. If an averaged operator T : H → H has a nonempty fixed point set and a sequence
{xk}k∈N with arbitrary x1 ∈ H satisfies the update relation

xk+1 = T (xk), for all k ∈ N, (8)

then there is x? ∈ Fix(T) such that {xk}k∈N converges to x?, i.e., xk → x?.

There are pathological cases where the result fails for operators that are only nonexpansive (e.g.,
when x1 6= 0 and either T = −Id or T is a rotation). However, this is easily remedied since any
convex combination of a nonexpansive operator with the identity is averaged.

3

Under review as a conference paper at ICLR 2020

3 SAFEGUARDED KM METHOD

This section generalizes the classic KM iteration in (8). We accomplish this by defining an envelope
of operators TL2O(·; ·). For a parameter ζ chosen from an appropriate set, we let TL2O(·; ζ) define
an operator on H. Changing ζ may define a new operator with different properties. We do not
impose restrictions on TL2O(·; ζ) other than it be well-defined, meaning TL2O(·; ζ) may fail to be
nonexpansive and/or fail to have a fixed point. This is illustrated by the following two examples.

Example 3.1. Let Q : H → H be nonexpansive. Then define TL2O : H× R→ R by

TL2O(x; ζ) := (1− ζ)x+ ζQ(x). (9)

For ζ ∈ (0, 1), the operator TL2O(·; ζ) defined in (9) is ζ-averaged. Although using ζ � 1 may
result in an operator that fails to be averaged, this can be useful in accelerating the convergence of a
method (e.g., see (Giselsson et al., 2016)). 4

Example 3.2. Let f : H → R be closed, convex and proper, and define TL2O : H× (0,∞)→ R by

TL2O(x; ζ) := proxζf (x). (10)

For fixed ζ ∈ (0,∞), the operator TL2O(·; ζ) is averaged. 4

The practicality of TL2O is discussed and demonstrated in Sections 4 and 5, respectively. In the
remainder of this work, each operator T : H → H is assumed to be averaged and we set S := Id−T .
Our proposed method below is called the Safeguarded Krasnosel’skiı̆-Mann (SKM) Method.

Method 1 Safeguarded Krasnosel’skiı̆-Mann (SKM)

1: Choose x1 ∈ H and δ ∈ (0, 1)

2: for k = 1, 2, . . . do
3: Choose parameter ζk

4: Choose µk ∈ (0,∞)

5: yk = TL2O(xk; ζk)

6: if ‖S(yk)‖ ≤ (1− δ)µk then
7: xk+1 = yk

8: else
9: xk+1 = T (xk)

10: end if
11: end for

Explanation of the SKM Method is as follows. In Line 1, the initial iterate and parameter δ are
initialized. A common choice for the initial iterate is x1 = 0. The for loop on Lines 2 to 11
generates each update xk+1 in the sequence {xk}k∈N. The choice of parameter ζk in Line 3 may be
any value that results in a well-defined operator TL2O(·; ζk) in Line 5. The choice of µk in Line 4
defines the safeguarding procedure that is used to ensure convergence. Safeguarding is implemented
through a descent condition inequality in Line 6. When the inequality in Line 6 holds, TL2O(xk; ζk)
is used to update xk via Line 7. Otherwise, a KM update is used to update xk via Line 9. Notice
also the iteration indexed parameters may all be chosen dynamically (rather than precomputed).

Below are several standard assumptions used to prove our convergence result in Theorem 3.1.
Assumption 1. The operator T is nonexpansive with a nonempty fixed point set. �

The following assumption ensures boundedness of sequences generated by the SKM method.
Assumption 2. The operator S is coercive, i.e.,

lim
‖x‖→∞

‖S(x)‖ =∞. (11)

�

4

Under review as a conference paper at ICLR 2020

Table 2: Choices for µk updates that ensure Assumption 3 holds. Here α ∈ (0, 1) and, for fixed
m ∈ N, Ξk is the set of the most recent min{m, k} indices for which the inequality in Line 6 holds.

NAME UPDATE FORMULA

Geometric Sequence µk+1 =

{
(1− α)µk if Line 6 holds,

µk otherwise.
GS(α) Decrease µk by geometric factor whenever Line 6 holds.

Arithmetic Average

mk+1 :=

{
mk + 1 if Line 6 holds,
mk otherwise.

AA

µk+1 :=

1

mk + 1

(
‖S(xk+1)‖+mkµk

)
if Line 6 holds,

µk otherwise.

Use mk to count how many times Line 6 holds and
µk is the average of the residuals among those times.

Exponential
Moving Average µk+1 :=

{
α‖S(xk+1)‖+ (1− α)µk−1 if Line 6 holds,

µk otherwise.
EMA(α) Average µk with the latest residual whenever Line 6 holds.

Recent Term

RT
µk+1 =

{
‖S(xk)‖ if Line 6 holds,
µk otherwise.

Take µk to be most recent residual for which Line 6 holds.

Recent Max µk+1 = max
`∈Ξk

‖S(x`)‖

RM(m) Take µk to be max of the most recent residuals for which Line 6 holds.

Remark 3.1. Assumption 2 does not hold, in general, for nonexpansive operators. For example, if
T is the gradient operator (Id− α∇f) for some α > 0 and f is a constant function, then S(x) = 0
for all x ∈ H. However, a minor perturbation to the f enables Assumption 2 to hold. In this
example, if one fixes small ε > 0 and sets f̃(x) := f(x) + ε

2‖x‖
2, then the associated S̃ satisfies

‖S̃(x)‖ = ε‖x‖. This idea generalizes and, since this works for arbitrarily small ε, in practice it
may be reasonable to assume Assumption 2 holds when applying the SKM Method.
Assumption 3. Either the inequality in Line 6 is satisfied finitely many times or the sequence
{µk}k∈N converges to zero. �
Remark 3.2. Assumption 3 may be enforced by using various choices that are dependent upon
combinations of the previous residuals. This is illustrated by Table 2 and Corollary 3.1 below.

Our main convergence result is Theorem 3.1 below (proven in the Appendix).
Theorem 3.1. If {xk}k∈N is a sequence generated by the SKM method and Assumptions 1 to 3 hold,
then

lim
k→∞

dFix(T)

(
xk
)

= 0. (12)

And, if {xk}k∈N contains a single cluster point, then {xk}k∈N converges to a point x? ∈ Fix(T).

We propose several methods for choosing the sequence {µk}k∈N in Table 2. These methods are
adaptive in the sense that each update to an iterate µk depends upon the current iterate xk and
(possibly) previous iterates. These update schemes enable each µk to trail the value of the residual
norm ‖S(xk)‖. This implies there may exist j ∈ N for which

‖S(xj)‖ < ‖S(xj+1)‖ = ‖S
(
TL2O(xj ; ζj)

)
‖ ≤ (1− δ)µj . (13)

5

Under review as a conference paper at ICLR 2020

Algorithm 2 Learned SKM (LSKM)

1: Stage 1: Initialization/Training.
2: Choose envelope TL2O(·; ·) and network structure, parameterized by Θ = (ζk)Kk=1
3: Choose training loss function φd
4: Choose ‘optimal’ parameter

Θ? ∈ arg min
Θ

Ed∼D
[
φd(x

K)
]
,

assuming µk =∞ at each layer k
5: Choose δ and safeguarding scheme for {µk}Kk=1
6: Define the neural networkM =MΘ?,δ,µk

.

7: Stage 2: Inference.
8: For input d return x =M(d)

Such leniency is desirable since it is possible that, even though the residual norms converge to zero,
constructing a sequence of iterates along the quickest route to the solution set requires traversing
portions of the underlying space where the residual norms increase for a few successive iterations.
The safeguarding schemes in Table 2 are justified by the Corollary below (proven in the Appendix).

Corollary 3.1. If {xk}k∈N is a sequence generated by the SKM method and Assumptions 1 and 2
hold and {µk}k∈N is generated using a scheme outlined in Table 2, then Assumption 3 holds and,
by Theorem 3.1, the limit (12) holds.

4 A NEURAL NETWORK VIEW

The SKM method may be truncated and executed via performing inferences with a neural network.
The input into the network is the data d, often in vector form. Each layer of the network consists
of an iterate xk, with the output from the final layer K providing the inference estimate xK that
approximates a solution to (1). The feedforward operations between layers are formed by a nonlinear
operator that is TL2O(·, ζk) if the descent condition in Line 6 of the SKM method holds and T
otherwise. Each parameter ζk is free to be chosen, and we encode all the network parameters with
Θ := (ζk)Kk=1. For each application of the algorithm, the operators T and S change, depending
upon the particular data d. For example, the data d could correspond to the measurement vector
d = Ax when attempting to recover x. Thus, to make explicit this dependence of each operator on
the data d, we henceforth incorporate a subscript to write Td and Sd.

The “optimal” choice of parameters Θ depends upon the particular application. Suppose each d is
drawn from a common distribution D. Then a choice of “optimal” parameters Θ? may be identified
as those for which the expected value of φd(xK) is minimized, where φd : H → R is an appropriate
cost function. In mathematical terms, this is expressed by stating Θ? forms a solution to the problem

min
Θ

Ed∼D
[
φd(x

K(Θ, d))
]
, (14)

where the expectation Ed∼D is taken over all d ∈ D and we emphasize the dependence of xK on Θ
and d by writing xK = xK(Θ, d). In practice, the problem (14) is approximately solved by using
a sample set of data {dn}Nn=1 taken from the distribution D and minimizing a loss function. We
summarize the procedure for creating, training, and performing inferences with such L2O networks
in Algorithm 2. ThereM denotes the neural network, which is dependent upon Θ, δ, and the choice
of safeguarding used to construct each µk (see Line 6).

Remark 4.1. Different learning problems than (14) may be used (e.g., the min-max problem used
by adversarial networks (Goodfellow et al., 2014)).

6

Under review as a conference paper at ICLR 2020

5 NUMERICAL EXAMPLES

This section presents example L2O schemes applied within the LSKM framework.1 We numeri-
cally investigate (i) the convergence rate of LSKM relative to corresponding KM iterations, (ii) the
efficacy of safeguarding procedures when inferences are performed on data for which L2O fails in-
termittently, and (iii) the convergence of LSKM schemes even when the application of TL2O is not
justified theoretically. We first use TL2O from ALISTA (Liu et al., 2019a) on the LASSO Problem.
Then we apply the differentiable linearized ADMM of Xie et al. (2019) to a similar problem. We
also implement a new L2O scheme for solving the nonnegative least squares (NNLS) problem.

In all experiments, we take µ1 = ‖Sd(x1)‖2. Implementations of the LSKM Algorithm are abbre-
viated by the scheme in Table 2, e.g., we write GS(α) to mean the Geometric Sequence method
with parameter α is used to construct {µk}k∈N. As in Algorithm 2, training is completed without
safeguarding. For notational compactness, in each example we let f?d the optimal value of fd(x)
among all possible x, and define the relative objective error Rf,D by

Rf,D(x) :=
Ed∼D [fd(x)− f?d]

Ed∼D [f?d]
, for all x ∈ Rn. (15)

Note we write expectation, but in practice generate an estimate of this via our test samples. The
optimal value f?d for each sample d is estimated by running the KM method for 15,000 iterations.

5.1 ALISTA FOR LASSO

Here we consider the popular LASSO problem for sparse coding. Consider an unknown sparse
vector x? ∈ Rn and a matrix A ∈ Rm×n, which is called the dictionary. Then assume we have
access to noisy linear measurements d ∈ Rm, where ε ∈ Rm is additive Gaussian white noise and

d = Ax? + ε. (16)

Even for underdetermined systems, when x? is sufficiently sparse and τ ∈ (0,∞) is an appropriately
chosen regularization parameter, x? can often be recovered faithfully by solving the LASSO problem

min
x∈Rn

fd(x) :=
1

2
‖Ax− d‖22 + τ‖x‖1, (17)

where ‖ · ‖2 and ‖ · ‖1 are the `2 and `1 norms, respectively. A classic method for solving (17) is
the iterative shrinkage thresholding algorithm (ISTA) (e.g., see (Daubechies et al., 2004)), a special
case of the proximal-gradient method in Table 1. Given x1 ∈ Rn, this method iteratively computes

xk+1 := T (xk) := ητ/L

(
xk − 1

L
AT (Axk − d)

)
, for all k ∈ N, (18)

where L = ‖AtA‖2 and ηθ is the soft-thresholding function defined by component-wise operations:

ηθ(x) := sgn(x) ·max{0, |x| − θ}. (19)

Implementation details for the LASSO problem may be found in the Appendix.

We applied the LSKM Algorithm to the LASSO problem above by using T defined in (18) and the
update operation from ALISTA (Liu et al., 2019a). The tunable operator TL2O is parameterized by
ζ = (θ, γ) for positive scalars θ and γ and defined by

TL2O(x; ζ) := ηθ
(
x− γWT (Ax− d)

)
, (20)

with W defined in the Appendix. The parameter Θ used in Algorithm 2 is Θ = (θk, γk)Kk=1, which
consists of 2K scalars. Note TL2O may fail to be nonexpansive, depending on the choice of ζ.

The primary illustration of the rapid convergence using LSKM-ALISTA relative to the KM coun-
terpart ISTA is in Figure 1a. There each xk estimating a solution to (17) is computed for data d
drawn from the same distribution Ds that was used to train the LSKM network. Figure 1b shows
a plot comparing performance of LSKM and KM with each d there drawn from a distribution Du

1All of the codes for this work can be found on Github here: (link will be added after review process).

7

Under review as a conference paper at ICLR 2020

100 101 102 103 104

10−3

10−1

101

103

Iteration/Layer k

R
el

at
iv

e
E

rr
or
R
f
,D

s
(x
k
) ISTA

LSKM-ALISTA

(a) Performance on seen distribution, i.e., d ∼ Ds

0 2 4 6 8 10 12 14 16 18 20 22 24
10−2

100

102

104

106

Iteration/Layer k

R
el

at
iv

e
E

rr
or
R
f
,D

u
(x
k
)

ISTA
LSKM-ALISTA
L2O-ALISTA

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
of

Sa
fe

gu
ar

d
A

ct
iv

at
io

ns

(b) Performance on unseen distribution, i.e., d ∼ Du

Figure 1: Expected relative function value error versus iteration when applied to two different data
distributions. Training used φd = fd. Inferences used δ = 0.01 and EMA(0.1).

that is different than Ds. For this reason, we refer to Du as the unseen distribution. For d ∈ Du,
the L2O scheme ALISTA usually fails to converge without safeguarding whereas the safeguarded
method LSKM-ALISTA still converges and much faster than ISTA. The dotted plot with square
markers shows the expected percentage of safeguard activations; the only two layers in Figure 1b
where safeguarding kicked in are layers 7 and 13, with respective percentages 99.7% and 95.7%
among 1000 testing samples. Additionally summary results are provided in Table 3. These show
the relative usefulness of difference choices of training loss function φd, safeguarding method, and
performance measured by different test loss functions. In particular, using φd = fd and EMA(0.25)
safeguarding yielded the lowest function value fd; however, instead using GS(0.1) safeguarding re-
sulted in estimates closer to the underlying sparse signals x?. Also, 20 iterations of LSKM-ALISTA
yields better function values fd than 10,000 iterations of ISTA, which reveals orders of magnitude
speedup by the safeguarded L2O schemes.

5.2 LINEARIZED ADMM

Let A ∈ Rm×n, x? ∈ Rn, and d ∈ Rm be as in Subsection 5.1. Here we apply the L2O scheme
differentiatable linearized ADMM (D-LADMM) of Xie et al. (2019) to the closely related sparse
coding problem

min
x∈Rn

‖Ax− d‖1 + τ‖x‖1. (21)

8

Under review as a conference paper at ICLR 2020

100 101 102 103
100

101

102

103

104

Iteration/Layer k

R
el

at
iv

e
E

rr
or
R
f
,D

s
(x
k
)

LADMM
LSKM-DLADMM

(a) Performance on seen distribution Ds

0 5 10 15 20

102

103

Iteration/Layer k
R

el
at

iv
e

E
rr

or
R
f
,D

u
(x
k
)

LADMM
LSKM-DLADMM
L2O-DLADMM

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
of

Sa
fe

gu
ar

d
A

ct
iv

at
io

ns

(b) Performance on unseen distribution, i.e., d ∼ Du

Figure 2: Expected relative function value error versus iteration when applied to two different dis-
tributions. Training used φd = fd. Inferences used δ = 0.01, and GS(0.1) in (a) and EMA(0.75) in
(b).

The operators defining T and TL2O for LSKM-D-LADMM are provided in the Appendix along with
further implementation details. Comparison plots are provided in Figure 2 and Table 4 summarizes
further results.

5.3 PROJECTED GRADIENT FOR NONNEGATIVE LEAST SQUARES

Let A ∈ Rm×n and d ∈ Rm. Here we consider the nonnegative least squares (NNLS) problem

min
x∈Rn

fd(x) :=
1

2
‖Ax− d‖22 s.t. x ≥ 0. (22)

We proceed by using the projected gradient method in Table 1, where C := {x ∈ Rn : x ≥ 0},
∇fd(x) = AT (Ax− d), and projC(x) = max(x, 0), with the max applied component-wise. Then,
for α = 1/‖ATA‖2, we take

T (x) := max
(
x− αAT (Ax− d), 0

)
. (23)

We then relax T to obtain, for ζ = (W,D, β) with W ∈ Rn×n and D,β ∈ Rn,

TL2O(x; ζ) := max (Wx+D,β) . (24)

In the special case that W = (Id − αATA), D = αAT d and β = 0, we recover (23). When
safeguarding does not kick in, (24) yields a familiar network structure with the max as the activation
function. Here Θ = (ζk)Kk=1 = (W k, Dk, βk)Kk=1 consists of (n2 + 2n)K trainable parameters.
During training we force βK ≥ 0 to ensure xK ∈ C. Similar to the previous examples, summary
plots are given in Figure 3 and more results in Table 5 of the Appendix.

6 DISCUSSION

Our numerical examples provide several insights. Tables 3 to 5 in the Appendix reveal the choice of
training loss function φd results in different models and performance, even though the minimizers of
each φd used for training are identical. This is due to the difference in gradient directions of each φd
and reveals the ‘best’ choice of φd may depend on the application. Figure 1b shows the necessity of
safeguarding to ensure convergence and that inferences on unseen data can still be much more rapid
than traditional KM methods. For the space limit, we do not focus on timed results. We simply note

9

Under review as a conference paper at ICLR 2020

100 101 102 103

107

109

1011

1013

Iteration/Layer k

R
el

at
iv

e
E

rr
or
R
f
,D

s
(x
k
) PG

LSKM-PG

(a) Performance on seen distributionDs

0 5 10 15 20

105

108

1011

1014

Iteration/Layer k
R

el
at

iv
e

E
rr

or
R
f
,D

u
(x
k
)

PG
LSKM-PG
L2O-PG

0%

20%

40%

60%

80%

Pe
rc

en
ta

ge
of

Sa
fe

gu
ar

d
A

ct
iv

at
io

ns

(b) Performance on unseen distribution, i.e., d ∼ Du

Figure 3: Expected relative function value error versus iteration when applied to two different data
distributions. Training used φd = fd. Inferences used δ = 0.01, GS(0.1) in (a) and EMA(0.75) in
(b).

that the relative cost per iteration of the SKM method versus KM is roughly double in the worst case
(since two tentative update operations are needed). However, in cases like our ALISTA example,
this relative cost is greatly reduced because some computations (e.g., Axk − d) are common to both
TL2O and T . Even assuming the worst-case, these L2O schemes show at least an order of magnitude
reduction in computational cost.

The results of this work reveal a practical procedure for creating and implementing L2O schemes
on new problems. Suppose one is presented a convex optimization problem and a standard general
purpose method for solving it. The method determines an averaged operator T (e.g., as in Table
1). To construct TL2O, one may let each scalar, vector, and matrix that does not represent the data
d be parameterized (i.e., all of its entries learnable). We may further generalize the operations by
replacing scalar parameters with vectors and using elementwise products as in D-LADMM (see
(32)). Having T and TL2O, a network can be constructed via the LSKM algorithm. For training
the network, the learnable parameters may be initialized to the quantities that reduce TL2O to the
original operator T . Additional structures of parameters may be invoked (e.g., as done by ALISTA
with W in (27)). The number of terms to parameterize and how to structure parameterizations are
matters subject to the a practitioner’s needs/priorities for a given application.

7 CONCLUSION

This work establishes a framework for extending the L2O methodology to a wide class of iterative
optimization procedures (i.e., KM methods). We provide theoretical results that demonstrate se-
quences generated by our SKM method possess the property that the distance between each iterate
and fixed point set converges to zero. When there is a unique cluster point, this is equivalent to
convergence of the method to a solution. Furthermore, our LSKM algorithm provides a straightfor-
ward neural network design that inherits the theoretical properties from the SKM method. Practical
guidance is also given for constructing learnable operations for new problems. Our numerical ex-
periments demonstrate order(s) of magnitude faster convergence by LSKM implementations than
general-purpose counterparts and the efficacy of safeguarding in cases where L2O schemes would
otherwise fail to converge. Future work will provide a more efficacious fall-back method for using
data-driven updates than classic KM updates and will investigate stochastic extensions with quasi-
Féjer monotone operators.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Pierre Ablin, Thomas Moreau, Mathurin Massias, and Alexandre Gramfort. Learning step sizes for
unfolded sparse coding. arXiv:1905.11071, 2019.

Heinz Bauschke and Patrick Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaace. Springer, 2nd. edition, 2017.

Heinz H. Bauschke, Francesco Iorio, and Valentin R. Koch. The Method of Cyclic Intrepid Pro-
jections: Convergence Analysis and Numerical Experiments. In Masato Wakayama, Robert S.
Anderssen, Jin Cheng, Yasuhide Fukumoto, Robert McKibbin, Konrad Polthier, Tsuyoshi Takagi,
and Kim-Chuan Toh (eds.), The Impact of Applications on Mathematics, volume 1, pp. 187–200.
Springer Japan, Tokyo, 2014.

Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed sensing. Ap-
plied and Computational Harmonic Analysis, 27(3):265–274, 2009. ISSN 1063-5203.

M. Borgerding, P. Schniter, and S. Rangan. AMP-Inspired Deep Networks for Sparse Linear Inverse
Problems. IEEE Transactions on Signal Processing, 65(16):4293–4308, 2017.

Charles L Byrne. Applied Iterative Methods. A K Peters, Ltd., 2008.

Andrzej Cegielski. Iterative Methods for Fixed Point Problems in Hilbert Spaces. Number 2057 in
Lecture Notes in Mathematics. Springer, 2012.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical Linear Convergence of
Unfolded ISTA and Its Practical Weights and Thresholds. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 31, pp. 9061–9071. Curran Associates, Inc., 2018.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11):
1413–1457, 2004.

R. Giryes, Y. C. Eldar, A. M. Bronstein, and G. Sapiro. Tradeoffs Between Convergence Speed and
Reconstruction Accuracy in Inverse Problems. IEEE Transactions on Signal Processing, 66(7):
1676–1690, 2018.

Pontus Giselsson, Mattias Falt, and Stephen Boyd. Line search for averaged operator iteration. In
2016 IEEE 55th Conference on Decision and Control (CDC), pp. 1015–1022, Las Vegas, NV,
USA, December 2016. IEEE.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Karol Gregor and Yann LeCun. Learning Fast Approximations of Sparse Coding. In Proceedings of
the 27th International Conference on International Conference on Machine Learning, ICML’10,
pp. 399–406, USA, 2010. Omnipress.

C.W Groetsch. A note on segmenting Mann iterates. Journal of Mathematical Analysis and Appli-
cations, 40(2):369–372, November 1972.

John R. Hershey, Jonathan Le Roux, and Felix Weninger. Deep Unfolding: Model-Based Inspiration
of Novel Deep Architectures. arXiv:1409.2574, 2014.

M.A. Krasnosel’skii. Two remarks about the method of successive approximations. Uspekhi Mat.
Nauk, 10:123–127, 1955.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. ALISTA: ANALYTIC WEIGHTS
ARE AS GOOD AS LEARNED WEIGHTS IN LISTA. pp. 33, 2019a.

Q. Liu, X. Shen, and Y. Gu. Linearized ADMM for Nonconvex Nonsmooth Optimization With
Convergence Analysis. IEEE Access, 7:76131–76144, 2019b.

11

Under review as a conference paper at ICLR 2020

Robert Mann. Mean Value Methods in Iteration. 4(3):506–510, 1953.

Chris Metzler, Ali Mousavi, and Richard Baraniuk. Learned D-AMP: Principled Neural Network
based Compressive Image Recovery. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems
30, pp. 1772–1783. Curran Associates, Inc., 2017.

Thomas Moreau and Joan Bruna. Understanding Trainable Sparse Coding with Matrix Factorization.
2017.

Simeon Reich. Weak convergence theorems for nonexpansive mappings in Banach spaces. Journal
of Mathematical Analysis and Applications, 67(2):274–276, 1979.

P. Sprechmann, A. M. Bronstein, and G. Sapiro. Learning Efficient Sparse and Low Rank Models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):1821–1833, September
2015.

Z. Wang, S. Chang, J. Zhou, M. Wang, and T. Huang. Learning A Task-Specific Deep Architecture
For Clustering. In Proceedings of the 2016 SIAM International Conference on Data Mining,
Proceedings, pp. 369–377. Society for Industrial and Applied Mathematics, June 2016a.

Zhangyang Wang, Qing Ling, and Thomas S. Huang. Learning Deep `0 Encoders. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016b.

Zhangyang Wang, Ding Liu, Shiyu Chang, Qing Ling, Yingzhen Yang, and Thomas S. Huang. D3:
Deep Dual-Domain Based Fast Restoration of JPEG-Compressed Images. pp. 2764–2772, 2016c.

Zhangyang Wang, Yingzhen Yang, Shiyu Chang, Qing Ling, and Thomas S. Huang. Learning a
Deep l∞ Encoder for Hashing. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, IJCAI’16, pp. 2174–2180. AAAI Press, 2016d.

Xingyu Xie, Jianlong Wu, Zhisheng Zhong, Guangcan Liu, and Zhouchen Lin. Differentiable Lin-
earized ADMM. arXiv:1905.06179, 2019.

Bo Xin, Yizhou Wang, Wen Gao, David Wipf, and Baoyuan Wang. Maximal Sparsity with Deep
Networks? In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 29, pp. 4340–4348. Curran Associates, Inc., 2016.

Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Deep ADMM-Net for Compressive Sensing MRI.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 29, pp. 10–18. Curran Associates, Inc., 2016.

A APPENDIX

Supplement to Subsection 5.1. In similar manner to (Chen et al., 2018) and (Liu et al., 2019a),
we use the following set up. We take m = 250, n = 500, and τ = 0.001. Each entry of the
dictionaryA is sampled i.i.d from the standard Gaussian distribution, i.e., aij ∼ N (0, 1/m). Having
these entries, we then normalize each column of A, with respect to the Euclidean norm. Each d
in the distribution Ds of data used to train the neural network is constructed using (16) with noise
ε ∼ 0.1·N (0, 1/m) and each entry of x? as the composition of Bernoulli and Gaussian distributions,
i.e., x?j ∼ Ber(0.1)◦N (0, 1) for all j ∈ [n]. Each d in the unseen distributionDu is computed using
the same distribution of noise ε as before and using x?j ∼ Ber(0.2) ◦ N (1, 2). Our data set consists
of 10,000 training samples and 1,000 test samples.

If τ is chosen too large, then the solution to the problem (17) is simply the zero vector, which is
undesirable. If τ is chosen too small, then the solution will not be sparse. Thus, appropriate choice
of τ is crucial. Since the goal of the LASSO problem is to faithfully recover the underlying sparse
vector x? used to create the measurement d, we find it reasonable to choose τ as a solution estimate
of the problem

min
τ∈(0,∞)

Ed∼D
[
‖xKd − x?d‖22

]
, (25)

12

Under review as a conference paper at ICLR 2020

Table 3: Summary of LASSO Problem Results on data d drawn from the seen distribution Ds.
K = 10, 000 iterations of ISTA are used by the KM reference method ‘ISTA 10K’ while K = 20
and δ = 0.01 for the LSKM schemes. ‘No guard’ refers to LSKM without safeguarding.

Method ISTA 10K No guard EMA(0.1) EMA(0.1) EMA(0.1) GS(0.1) RM(3)

Loss φd NA fd
1

2
‖Sd(·)‖22 ‖S1(·)‖1 fd fd fd

Rf,Ds(x
K) 7.72e-04 3.36e-04 4.65e-04 4.58e+00 3.33e-04 3.32e-04 6.68e-04

E[1
2
‖S(xK)‖22] 2.11e-09 4.68e-07 3.75e-07 1.58e-05 4.68e-07 4.68e-07 4.95e-07

where xKd is the output of ISTA after K = 15, 000 iterations for the problem (17) and x?d is the
sparse vector from which d was created. To simplify (25), we assume τ was of the form t = 10α

with integer α ∈ Z to obtain the problem

min
α∈Z

Ed∼D
[
‖xKd − x?d‖22

]
, (26)

Approximately solving this discrete problem for our data set revealed the optimal choice yielded
α = −3 and τ = 0.001.

In practice, such a choice of τ may be difficult to ascertain. However, if the practitioner has access
to each underlying x?d for their training data d, then one can circumvent the problem of choosing τ
by simply using the training loss function φd(x) := ‖x − x?d‖22. This was precisely the approach
taken in Liu et al. (2019a).

To define the learned operations in TL2O, we let

W ∈ arg min
M∈Rm×n

‖MTA‖F , s.t.(M:,`)
TA:,` = 1, for all ` ∈ [n], (27)

where ‖ · ‖F is the Frobenius norm and the Matlab notation M:,` is used to denote the `th column of
the matrix M .

Supplement to Subsection 5.2. LADMM is used to solve problems of the form

min
x∈Rn,z∈Rm

f(x) + g(z) s.t. Ax+Bz = d, (28)

for which LADMM generates sequences {xk}k∈N, {zk}k∈N and {νk}k∈N defined by the updates

xk+1 := proxβf
(
xk − βAT

[
νk + α

(
Axk +Bzk − d

)])
,

zk+1 := proxγg
(
zk − γBT

[
νk + α

(
Axk+1 +Bzk − d

)])
,

νk+1 := νk + α
(
Axk+1 +Bzk+1 − d

)
,

(29)

with given scalars α, β, γ ∈ (0,∞). The problem (21) may be written in the form of (28) by taking
f = τ‖ · ‖1, g = ‖ · ‖1, and B = −Id. In this case, the proximal operators in (29) reduce to soft-
thresholding operators. Although not given in Table 1, the update νk+1 is generated by applying
an averaged operator T to νk. (This follows since LADMM may expressed as a special case of
proximal ADMM, which itself is a special case of the ADMM method. The details of this derivation
are outside the scope of this paper.) This implies

‖S(νk)‖ = ‖νk − T (νk)‖ = ‖νk − νk+1‖ = α‖Axk+1 − zk+1 − d‖. (30)

Because we compare methods that use differing choices of α, the residual comparison illustrations
presented below will, for consistency of interpretation, assume α = 1 in (30). And, although xk+1

and zk+1 form intermediate computations, for notational clarity, the term xk in the SKM and LSKM
schemes is replaced in this subsection by the tuple (xk, zk, νk). This is of practical importance too
since it is the sequence {xk}k∈N that converges to a solution of (21).

We now modify the iteration (29) for the problem (21) to create the D-LADMM L2O scheme. We
generalize soft-thresholding to vectorized soft-thresholding for β ∈ Rn by

ηβ(x) = (ηβ1(x1), ηβ2(x2), . . . , ηβn(xn)). (31)

13

Under review as a conference paper at ICLR 2020

Table 4: Summary of D-LADMM Problem Results on data d drawn from the seen distribution Ds.
K = 1, 000 iterations of LADMM are used by the KM reference method ‘LADMM 1K’ while
K = 20 and δ = 0.01 for the LSKM schemes. ‘No guard’ refers to LSKM without safeguarding.

Method LADMM 1K No guard EMA(0.75) GS(0.1) RT

Loss φd NA fd fd fd fd

Rf,Ds(x
K) 3.48e+00 1.78e+00 1.52e+01 1.78e+00 1.28e+01

Table 5: Summary of NNLS Problem Results on data d drawn from the seen distribution Ds. K =
1, 500 iterations of PG are used by the KM reference method ‘PG 1.5K’ whileK = 20 and δ = 0.01
for the LSKM schemes. ‘No guard’ refers to LSKM without safeguarding.

Method PG 1.5K No guard EMA(0.75) GS(0.1) RT

Loss φd NA fd fd fd fd

Rf,Ds(x
K) 3.80e+06 1.86e+06 2.37e+07 1.86e+06 1.65e+08

We assume ηβ represents the scalar soft-thresholding in (19) when β ∈ R and the vector general-
ization (31) when β ∈ Rn. Combining ideas from ALISTA (Liu et al., 2019a) and D-LADMM (Liu
et al., 2019b), given (xk, zk, νk) ∈ Rn × Rm × Rm, αk, γk, ξk ∈ Rm, βk, σk ∈ Rn, W1 ∈ Rn×m,
and W2 ∈ Rm×m, set

x̃k+1 := ηβk

(
xk − σk ◦ (W k

1)T
[
νk + αk ◦

(
Axk − zk − d

)])
,

z̃k+1 := ηγk

(
zk − ξk ◦ (W k

2)T
[
νk + αk ◦

(
Ax̃k+1 − zk − d

)])
,

ν̃k+1 := νk + αk ◦
(
Ax̃k+1 − z̃k+1 − d

)
,

(32)

with element-wise products denoted by ◦. For the parameter ζk := (αk, βk, γk, σk, ξk,W k
1 ,W

k
2),

then define
TL2O(xk, zk, νk; ζk) := (x̃k+1, z̃k+1, ν̃k+1). (33)

Fixing the number of iterations K, the learnable parameters from (32) used in the LSKM Algorithm
may be encoded by Θ = (ζk)Kk=1 =

(
αk, βk, γk, σk, ξk,W k

1 ,W
k
2

)K
k=1

, consisting of (2n+ 3m+

mn+m2)K scalars.

For data generation, we follow the same settings as in the experiments of Subsection 5.1. Although
the value of τ is not optimally chosen, this was used as it worked well for D-LADMM.

Supplement to Subsection 5.3. We take m = 500, n = 250, aij ∼ Ber(0.1) · rand[0, 1]. We use
noise ε ∼ 0.1 · N (0, 1/m). Each d ∼ Ds used for training the neural network is sampled using d =
Ax? + ε with x ∼ max(N (0, 1), 0). For unseen data d ∼ Du we sample x? ∼ max(N (5, 102), 0).
We sample 10,000 training samples from Ds to train the neural network and 1,000 samples from Ds
and Du, respectively, for testing.

Proofs.

Below is a proof of Theorem 3.1.

Proof. If the inequality in Line 6 holds finitely many times, then there exists an index beyond
which Line 9 is always used to update xk. In this case, for large k the SKM Method takes the
form of the classic KM Method, which is known to converge (e.g., see (Cegielski, 2012, Theorem
3.7.1), (Groetsch, 1972, Corollary 3), and (Bauschke & Combettes, 2017, Theorem 5.15)). Thus, it
is sufficient to only consider the case where the inequality in Line 6 holds infinitely many times.
We proceed by first showing the sequence {xk}k∈N is bounded (Step 1). This is used to prove
{xk}k∈N has a cluster point in Fix(T) (Step 2). Results from these steps are then applied to obtain
the desired limit (12) (Step 3). Because

Step 1: By Assumption 2, there exists R ∈ (0,∞) sufficiently large to ensure

‖x‖ > R =⇒ ‖S(x)‖ > 1, for all x ∈ H. (34)

14

Under review as a conference paper at ICLR 2020

Equivalently, we may write

‖S(x)‖ ≤ 1 =⇒ ‖x‖ ≤ R, for all x ∈ H. (35)

By Assumption 3, there also exists N1 ∈ N such that

µk ≤ 1, for all k ≥ N1. (36)

Fix any z ∈ Fix(T). We claim

‖xk − z‖ ≤ max
`∈[N1]

{2R, ‖x` − z‖}, for all k ∈ N. (37)

The result (37) holds trivially for all k ∈ [N1]. Proceeding by induction, suppose (37) holds for
some k > N1. If the inequality in Line 6 holds, then (35), (36) and the update formula in Line 7
together imply ‖xk+1‖ ≤ R. Since ‖S(z)‖ = 0, (35) also implies ‖z‖ ≤ R. Thus,

‖xk+1 − z‖ ≤ ‖xk+1‖+ ‖z‖ ≤ 2R ≤ max
`∈[N1]

{2R, ‖x` − z‖}. (38)

If instead the update in Line 9 is applied, the averagedness of T implies there is α ∈ (0, 1) such that

‖xk+1 − z‖2 ≤ ‖xk − z‖2 − 1− α
α
‖S(xk)‖2 (39)

(e.g., see Prop. 4.35 in (Bauschke & Combettes, 2017) or Cor. 2.2.15 and Cor. 2.2.17 in (Cegielski,
2012)), and so

‖xk+1 − z‖ ≤ ‖xk − z‖ ≤ max
`∈[N1]

{2R, ‖x` − z‖}. (40)

Equations (38) and (40) together close the induction, from which (37) follows. Whence

‖xk‖ ≤ ‖xk − z‖+ ‖z‖ ≤ max
`∈[N1]

{2R, ‖x` − z‖}+R, for all k ∈ N, (41)

which verifies the sequence {xk}k∈N is bounded.

Step 2: Because the inequality in Line 6 holds infinitely many times, there exists a subsequence
{xqk}k∈N ⊆ {xk}k∈N satisfying

0 ≤ lim
k→∞

‖S(xqk)‖ ≤ lim
k→∞

(1− δ)µk = 0, (42)

from which the squeeze theorem asserts ‖S(xqk)‖ → 0. Since {xk}k∈N is bounded, so also is
{xqk}k∈N. Thus, there exists a subsequence {x`k}k∈N ⊆ {xqk}k∈N converging to a limit p ∈ H.
Then applying the fact S is 2-Lipschitz and ‖ · ‖ is continuous yields

0 = lim
k→∞

‖S(x`k)‖ =

∥∥∥∥S (lim
k→∞

x`k
)∥∥∥∥ = ‖S(p)‖ =⇒ p ∈ Fix(T). (43)

That is, {xk}k∈N contains a cluster point p ∈ Fix(T).

Step 3: Let ε > 0 be given. Following (Bauschke et al., 2014, Def. 2), define the ε-enlargement

Fix(T)[ε] := {x ∈ H : dFix(T)(x) ≤ ε}. (44)

Note Fix(T)[ε] is a nonempty closed and bounded subset ofH. Set

C :=
(
B(0, R)− Fix(T)[ε/2]

)
∪ ∂Fix(T)[ε/2], (45)

where B(0, R) is the closed ball of radius R centered at the origin. BecauseH is finite dimensional
and C is closed and bounded, C is compact. Thus, every continuous function obtains its infimum
over C. In particular, we may set

ζ = min
x∈C
‖S(x)‖. (46)

Note ζ > 0 since C ∩ Fix(T) = ∅. Consequently, letting ζ̃ := min{1, ζ/2} yields

‖S(x)‖ ≤ ζ̃ =⇒ x ∈ Fix(T)[ε] =⇒ dFix(T)(x) ≤ ε, for all x ∈ H, (47)

15

Under review as a conference paper at ICLR 2020

where the first implication holds because x ∈ B(0, R) by (35) and x /∈ C by (46). By Assumption
3, there exists N2 ∈ N such that

µk ≤ ζ̃, for all k ≥ N2. (48)

By the result of Step 2, there exists N3 ≥ N2 such that

‖xN3 − p‖ ≤ ε =⇒ dFix(T)(x
N3) ≤ ε. (49)

We claim
dFix(T)(x

k) ≤ ε, for all k ≥ N3, (50)
which, by the arbitrariness of ε, implies (12) holds. Indeed, inductively suppose (50) holds for some
k ≥ N3. If the inequality in Line 6 holds, then (47) and (48) together imply

‖S(xk+1)‖ ≤ (1− δ)µk ≤ ζ̃ =⇒ dFix(T)(x
k+1) ≤ ε. (51)

Otherwise, letting P : H → H be the projection operator onto Fix(T), we deduce

‖xk+1 − P (xk+1)‖ ≤ ‖xk+1 − P (xk)‖ ≤ ‖xk − P (xk)‖ = dFix(T)(x
k) ≤ ε, (52)

where the second inequality follows from (39), taking z = P (xk). Note the left hand side of (52)
equals the distance from xk+1 to Fix(T). Therefore, (51) and (52) close the induction in each case,
and (12) holds.

The limit (12) can be used in a similar manner to the work in Step 2 above to prove each cluster point
of {xk}k∈N is in Fix(T). Thus, if {xk}k∈N admits a unique cluster point, then the entire sequence
converges to a point x? ∈ Fix(T).

Below is a proof of Corollary 3.1.

Proof. The proof is parsed into four parts, one for each particular choice of the sequence {µk}k∈N
in Table 2, where we note “Recent Term” is a special case of “Recent Max” obtained by taking
m = 1. Each proof part is completely independent of the others and is separated by italic text.
However, to avoid excessive writing, in each section let Γ ⊆ N be the set of all indices for which the
descent condition in Line 6 holds, the sequence {tk}k∈N be an ascending enumeration of Γ, mk be
the number of times the descent condition has been satisfied by iteration k, and µ1 ∈ (0,∞).

Geometric Seqeunce. Define the sequence {µk}k∈N using, for each k ∈ N, the update formula

µk+1 =

{
µk if Line 6 holds,

(1− δ)µk otherwise.
(53)

This implies
µk = (1− δ)mkµ1. (54)

Since Γ is infinite, lim
k→∞

mk =∞, and it follows that

lim
k→∞

µk = lim
k→∞

(1− δ)mkµ1 = 0 · µ1 = 0, (55)

i.e., Assumption 3 holds.

Arithmetic Average. Define the sequence {µk}k∈N using, for each k ∈ N, the update formula

µk+1 :=

1

mk + 1

(
‖S(xk+1)‖+mkµk

)
if Line 6 holds,

µk otherwise.
(56)

Then observe

0 ≤ µtk+1 ≤
(1− δ)µtk +mtkµtk

mtk + 1
=

(
1− δ

mtk + 1

)
µtk ≤ µtk , for all k ∈ N. (57)

Since µk+1 = µk whenever k /∈ Γ, (57) shows {µk}k∈N is monotonically decreasing. Consequently,
using induction reveals

0 ≤ µtk −
δ

mtk + 1
µtk ≤ µ1 −

k∑
`=1

δµt`
mt` + 1

= µ1 −
k∑
`=1

δµt`
`+ 1

for all k ∈ N, (58)

16

Under review as a conference paper at ICLR 2020

where we note mt` = ` in the sum since m` increments once each time a modification occurs in the
sequence {µk}k∈N. By way of contradiction, suppose there exists α ∈ (0,∞) such that

lim inf
k→∞

µk ≥ α > 0. (59)

Then (58) implies
k∑
`=1

αδ

`+ 1
≤

k∑
`=1

δµt`
`+ 1

≤ µ1, for all k ∈ N. (60)

However, the sum on the left hand side becomes a divergent harmonic series as k →∞, contradict-
ing the finite upper bound on the right hand side. This contradiction proves assumption (59) is false,
from which it follows that

lim inf
k→∞

µk = 0. (61)

By the monotone convergence theorem, we deduce µk → 0, i.e., Assumption 3 holds.

Exponential Moving Average. Given θ ∈ (0, 1), for all k ∈ N, define

µk+1 :=

{
θ‖S(xk+1)‖+ (1− θ)µk−1 if Line 6 holds,

µk otherwise.
(62)

Now observe
µtk+1 = θ‖S(xtk+1)‖+ (1− θ)µtk ≤ θ(1− δ)µtk + (1− θ)µtk = (1− θδ)µtk . (63)

This shows the sequence {µk}k∈N is nonincreasing and, when a decrease does occur, it is by a
geometric factor of the current iterate. Through induction, it follows that

µk ≤ (1− θδ)mkµ1, for all k ∈ N. (64)
Since Γ is infinite, lim

k→∞
mk =∞. This, combined with the fact (1− θδ) ∈ (0, 1), implies

0 ≤ lim
k→∞

µk ≤ lim
k→∞

(1− θδ)mkµ1 = 0 · µ1 = 0, (65)

from which the squeeze theorem asserts Assumption 3 holds.

Recent Max. Let m ∈ N. Set Ξk to be the set of the most recent min{m, k} indices for which the
descent condition in Line 6 held, where {µk}k∈N is defined, for all k ∈ N, by the update formula

µk+1 =

{
max
`∈Ξk

‖S(x`)‖ if Line 6 holds,

µk otherwise.
(66)

The sequence {µk}k∈N is monotonically decreasing since the inequality in Line 6 implies, each time
a new term ‖S(xk)‖ is introduced so that ‖S(xk)‖ ∈ Ξk+1, the new term is no larger than the largest
term in Ξk. All that remains is to show this sequence converges to zero. By way of contradiction,
suppose there exists α ∈ (0,∞) such that

lim inf
k→∞

µk = α > 0. (67)

Then choose
ε =

δα

2(1− δ)
, (68)

which implies
(1− δ)(α+ ε) < α. (69)

By (67) and the fact Γ is infinite, there exists Ñ ∈ N with Ñ > m such that
‖µtÑ − α| < ε =⇒ µtÑ < α+ ε. (70)

Then note each new element to Ξk is no larger than (1 − δ)µtÑ . And, for any k after m such
replacements occur, it follows that

µk = max
`∈Ξk

‖S(x`)‖ ≤ (1− δ)µtÑ ≤ (1− δ)(α+ ε) < α, (71)

a contradiction to (67). This contradiction shows our assumption (67) must be false, and so
lim inf
k→∞

µk = 0. (72)

By the monotone convergence theorem, we conclude Assumption 3 holds.

17

	Introduction
	Fixed Point Methods
	Safeguarded KM Method
	A Neural Network View
	Numerical Examples
	ALISTA for LASSO
	Linearized ADMM
	Projected Gradient for Nonnegative Least Squares

	Discussion
	Conclusion
	Appendix

