
Under review as a conference paper at ICLR 2020

LEARNING KEY STEPS TO ATTACK
DEEP REINFORCEMENT LEARNING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning agents are known to be vulnerable to adversarial
attacks. In particular, recent studies have shown that attacking a few key steps
is effective for decreasing the agent’s cumulative reward. However, all existing
attacking methods find those key steps with human-designed heuristics, and it is
not clear how more effective key steps can be identified. This paper introduces
a novel reinforcement learning framework that learns more effective key steps
through interacting with the agent. The proposed framework does not require any
human heuristics nor knowledge, and can be flexibly coupled with any white-box
or black-box adversarial attack scenarios. Experiments on benchmark Atari games
across different scenarios demonstrate that the proposed framework is superior to
existing methods for identifying more effective key steps.

1 INTRODUCTION

Reinforcement learning (RL) is a framework for sequential decision problems, where an agent in-
teracts with an unknown environment and tries to maximize the total reward it receives. With the
rapid development of deep learning, RL agents parametrized by neural networks, usually referred to
as deep RL agents, are able to learn complex policies from raw inputs (Mnih et al., 2015). Recently,
deep RL agents have shown great success across various domains, such as achieving superhuman
performance on games (Mnih et al., 2015; Silver et al., 2016; 2018), completing complex robotic
tasks (Levine et al., 2016), optimizing patient treatments (Escandell-Montero et al., 2014; Raghu
et al., 2017), and developing autonomous driving skills (Pan et al., 2017; Isele et al., 2018).

However, if we wish to deploy these RL agents into security-critical applications, we must take their
reliability into consideration. It is discovered that neural networks classifiers may make errors on
deliberately crafted inputs, known as adversarial examples (Biggio et al., 2013; Szegedy et al., 2013;
Behzadan & Munir, 2017a). Deep RL is no exception: Many works have demonstrated that deep
RL agents are also vulnerable when attacked by adversarial examples (Behzadan & Munir, 2017a;
Huang et al., 2017), raising serious concerns on the reliability of these agents for security-critical
applications. For example, there may be severe consequences if an RL-agent-driven autonomous
vehicle is compromised by adversarial examples fed from a malicious attacker.

Given the sequential nature of RL, it is not necessary to attack at every time step to degrade the
agent’s performance significantly (Lin et al., 2017; Kos & Song, 2017). The reason is that not all
decisions made by the agent are equally important. Some decisions may be critical to the agent, such
as those for long-term planning or immediate reward gathering; some other decisions may not have
much effect on the environment nor the rewards, and thus attacking those steps would not change
anything. The critical steps will be named key steps in this work, and attacking these steps decreases
the cumulative reward that the agent could gather.

Figure 1 illustrates a key step and a non-key step in Atari Pong, where the main difference between
them is whether the ball has already passed through the agent. If the attacker is aware of this
difference, the attacker can concentrate on attacking the few key steps. By attacking fewer steps, the
attacker reduces the costs of generating, injecting, and hiding the adversarial examples. Therefore,
an intelligent attacker should prefer attacking key steps over non-key steps.

A natural question arises: How does an attacker identify the key steps to attack? As an initial attempt
to address this question, Lin et al. (2017) formulate the problem from an optimization perspective,

1

Under review as a conference paper at ICLR 2020

(a) Key step (b) Non-key step

Figure 1: An example of the key step and non-key step in Atari Pong. (a) The ball is moving in the
direction indicated by the red arrow. If the agent does not move down at this step or some earlier
steps, the ball would pass through, making the agent lose a point. (b) The ball has already passed
through the agent. Any decision at this step does not save the situation and does not affect the
environment much.

and propose a heuristic that attacks the agent when it strongly prefers one action. Concurrently,
Kos & Song (2017) propose another heuristic that attacks when the action appears rewarding to
the agent. However, since these heuristics are designed based on human knowledge, it is unclear
whether there exist more effective key steps. In this work, we study the possibilities of finding
those more effective key steps, and of finding them automatically without human knowledge. We
confirm both possibilities by introducing an RL framework where the attacker learns the key steps
from scratch through interacting with the agent. In particular, we study the key-step identification
problem proposed by Lin et al. (2017). We first make a crucial observation that this constrained
optimization problem can be converted into another form that matches the objective of RL. Then,
we design a corresponding RL environment to train the attacker. We justify our learning framework
by giving a toy example where those human-designed heuristics fail to identify the key steps. To test
the effectiveness of our framework, we conduct experiments on four benchmark Atari games. The
results suggest that the attacker trained by our framework finds more effective key steps than prior
methods do, such that the agent gets less cumulative reward under the same number of attacks. Our
contributions are summarized as follows:

• We formulate the key-step identification problem in an unconstrained form, and introduce
an RL framework that solves it directly without incorporating any human knowledge.

• The proposed RL framework is independent of how adversarial examples are generated.
Therefore, we can learn to identify the key steps with white-box or black-box attacks.

• We provide a toy example and conduct experiments on four Atari games. Compared to
existing methods, our method achieves superior performance in finding the key steps.

2 BACKGROUND AND RELATED WORKS

2.1 REINFORCEMENT LEARNING BACKGROUND

We begin with an introduction to the Markov Decision Process (MDP) (Sutton & Barto, 2018). For a
set S, we use ∆(S) to denote the set of probability distributions over S. Consider an agent interacting
with an environment: At each step t, the agent picks an action at based on a current state st, and then
the environment returns a reward rt and a next state st+1. We formalize this interaction as an MDP
M, which is a 5-tuple (S,A, P,R, γ), where S is a finite set of states, A is a finite set of actions,
P : S × A → ∆(S) defines the transition dynamics from st to st+1, R : S × A → ∆(R) defines
the reward distribution, and γ ∈ [0, 1] is a discount factor. For convenience, we use r : (st, at) 7→
Ert∼R(st,at)[rt] to denote the mean reward function. We specify an agent by its (stochastic) policy
π : S→ ∆(A), and define its Q-value function as

Qπ(st, at) = E

[∞∑
k=0

γkr(st+k, at+k)

]
,

2

Under review as a conference paper at ICLR 2020

where si ∼ P (si−1, ai−1) and ai ∼ π(si) for all i > t. The agent’s goal is to find a policy that
maximizes the expected cumulative reward, or expected return, defined by Qπ(s1, π(s1)), starting
from an initial state s1. For finite-horizontal MDPs, we use T to denote the maximum number of
steps, and define an episode to be a sample of (s1, a1, r1, . . . , sT , aT , rT , sT+1).

To learn the optimal policy, deep Q-network (DQN, Mnih et al. 2015) first approximates the Q-value
function by a neural network that takes a state as input and outputs the Q-values for all actions. The
policy is then induced by picking the action with the largest Q-value at each state. Given a transition
step (st, at, rt, st+1), the network fθ is trained by minimizing the square loss

Lθ =
((
rt + γmax

a
fθ(st+1)a

)
− fθ(st)at

)2
,

where we use fθ(s)a to denote the a-th entry of the Q-values fθ(s).

2.2 ADVERSARIAL ATTACK BACKGROUND

In the context of adversarial attacks, an attacker tries to craft adversarial examples that the target
model would misclassify. In gradient-based adversarial attacks, the attacker generates adversarial
examples by adding small perturbations to data examples, such that the perturbations are impercep-
tible to human eyes. Take the fast gradient sign method (FGSM) by Goodfellow et al. (2014) for
example. Given a target model fθ parametrized by θ and an image–label pair (x, y), the FGSM
computes the perturbation as

η = ε sign(∇xJ(θ, x, y)),

where ε is a scaling factor that controls the norm of the perturbation, and J(θ, x, y) is an objec-
tive function that depends on the attacker’s goal. In untargetted attacks, the attacker aims to min-
imize the target model’s classification accuracy. Thus, the objective J(θ, x, y) is substituted with
DKL(e(y)‖fθ(x)), the Kullback-Leibler divergence between the label’s one-hot encoding e(y) and
the predicted probabilities fθ(x). However, this type of white-box attacks requires full knowledge
of the network parameter θ, which may be hidden in practical tasks.

In contrast, black-box attacks assume no access to θ and study other conditions, such as the ability to
query model outputs (Chen et al., 2017). One black-box attack of particular interest is the substitute
model approach (Papernot et al., 2016a; 2017), where the attacker computes perturbation using a
substitute model that is trained to perform the same task as the target model. This approach is based
on the finding that adversarial examples are transferable; that is, if an adversarial example fools a
model, it usually fools another models trained to perform the same task, regardless of the network
architecture (Szegedy et al., 2013). Consequently, once the attacker gains access to the training set,
black-box attacks reduce to white-box attacks with a lower attack success rate.

2.3 ADVERSARIAL ATTACK ON DEEP RL AGENTS

As opposed to traditional adversarial attacks, attacking an RL agent is a unique and challenging task.
When we attack a classifier, we typically aim to minimize the classification accuracy or to maximize
the probability that the classifier predicts some given class. When we attack an RL agent, however,
we usually do not care about the individual actions that the agent picks. In this paper, we choose to
minimize the agent’s cumulative reward (Huang et al., 2017; Lin et al., 2017) as the attacker’s goal.
Other possible goals include luring the agent into a designated state (Lin et al., 2017), or misguiding
the agent to optimize an adversarial reward (Tretschk et al., 2018).

Previous works have investigated the effects of white-box and black-box attacks against RL agents
on the Atari benchmark. Given full knowledge of the target agent’s network parameters, an attacker
can craft adversarial examples to fool the target agent into picking wrong actions (Behzadan &
Munir, 2017a; Huang et al., 2017; Kos & Song, 2017; Mandlekar et al., 2017; Pattanaik et al., 2018;
Hussenot et al., 2019) using the FGSM. Other white-box methods such as the Jacobian saliency
map algorithm (Papernot et al., 2016b) and the attack proposed by Carlini & Wagner (2017) are
also effective against RL agents (Behzadan & Munir, 2017a; Lin et al., 2017). Even if the attacker
cannot access the target agent’s network parameters, adversarial examples can still be crafted with
a substitute agent that is trained in the same environment as the target agent (Behzadan & Munir,
2017a; Huang et al., 2017), similar to the substitute model approach.

3

Under review as a conference paper at ICLR 2020

Another line of studies tries to improve the RL agent’s robustness with adversarial attacks. Several
works improve the agent’s robustness to visual perturbations through adversarial training (Kos &
Song, 2017; Mandlekar et al., 2017; Behzadan & Munir, 2017b; Pattanaik et al., 2018), which is a
defense technique that adds adversarial examples into training sets (Goodfellow et al., 2014). On
the other hand, Pinto et al. (2017) propose to improve the agent’s robustess to environment changes
by training the agent and an adversary in an alternating procedure, where the attacks are operated
on the environment dynamics. Tessler et al. (2019) study the agent’s robustness to action-space
perturbations in continuous control domains, and achieve better performance even in the absence of
the adversary.

3 LEARNING KEY STEPS TO ATTACK

3.1 THE KEY-STEP IDENTIFICATION PROBLEM

Suppose that an attacker would like to attack a target agent with policy π by adding perturbations to
the states. We use η to denote an arbitrary attack method that maps from a state to a perturbation.
Let B be the budget, the maximum number of attacks permitted in one episode. The key-step
identification problem (Lin et al., 2017) can be formulated as follows:

min
b1,...,bT∈{0,1}

E

[
T∑
t=1

r(st, at)

]
s.t. at ∼ π(st + btη(st)), st+1 ∼ P (st, at), ∀1 ≤ t ≤ T,

T∑
t=1

bt ≤ B.

(1)

In this problem. the attacker aims to minimize the expected return of the target agent under the
budget constraint. The binary variable bt indicates whether the perturbation η(st) is added to the
state st, and t is a key step found by the attacker if bt = 1.

Problem (1) is a difficult combinatorial problem with exponentially large search space. Each de-
cision of the attacker changes the subsequent steps. Moreover, the transition dynamics and reward
distribution may be random. Even if the attacker manages to search the whole space by brute force,
the collected episodes are merely samples. The attacker still needs to estimate the expected return.

Due to these difficulties, previous works (Lin et al., 2017; Kos & Song, 2017) design simple heuris-
tics to find the key steps. Suppose that the target agent is parametrized by a Q-network fθ.1 Kos &
Song (2017) observe that steps with large Q-value are usually followed by large immediate reward,
and hypothesize that an attack is effective at steps with large Q-value. They propose to set bt = 1 if
the maximum Q-value maxa fθ(st)a is larger than a given threshold. On the other hand, Lin et al.
(2017) propose to add perturbations when the agent is confident about its action. They use the soft-
max function to convert the Q-values into a probability distribution (let π = softmax ◦ fθ), and set
bt = 1 if the probability gap maxa π(st)a −mina π(st)a is larger than a given threshold.

3.2 AN RL FRAMEWORK FOR LEARNING THE KEY STEPS

To address these challenges, we design an RL framework that directly solves the key-step identifi-
cation problem. Based on the Lagrange relaxation technique (Bertsekas, 1997), we first replace the
hard budget constraint with a soft penalty term:

min
b1,...,bT∈{0,1}

E

[
T∑
t=1

r(st, at)

]
+ λ

T∑
t=1

bt

s.t. at ∼ π(st + btη(st)), st+1 ∼ P (st, at), ∀1 ≤ t ≤ T,

(2)

where λ is a parameter that controls the penalty for each attack. Now Problem (2) becomes a sequen-
tial decision problem without additional constraints. We then propose to solve this problem through

1These heuristics can be applied to attack other value-based or policy-based agents in a similar way.

4

Under review as a conference paper at ICLR 2020

Figure 2: Interactions between the environment, the target agent, and the attacker. If the attack policy
outputs “1”, the attacker would intercept the state from the environment and inject the perturbed state
to the target agent. Different from prior methods, our method parametrizes the attack policy by a
neural network and trains it by an RL framework.

RL by training an attack policy that identifies the key steps. Figure 2 illustrates the interactions
among the environment, the target agent, and the attacker.

Our RL framework is designed as follows. Suppose that the target agent with policy π is trained
to maximize the expected return in an MDPM = (S,A, P,R, γ). We propose to train the attack
policy π′ in another MDPM′ = (S′,A′, P ′, R′, γ′), where each component is defined as follows:

• S′ = S, and γ′ = γ.
• The attacker’s action space A′ = {0, 1}.
• For all s ∈ S′, b ∈ A′, the transition dynamics P ′(s, b) = P (s, a), and the reward
R′(s, b) = −R(s, a)− bλ, where a ∼ π(s+ bη(s)) is the target agent’s action.

The new environment M ′ has the same state space as M , but reduces to binary action space with
the action “1” representing an attack at that step and “0” otherwise. The attacker’s reward is the
negative of the target agent’s reward, plus a penalty of λ for each attack. Therefore, maximizing the
expected return inM′ is equivalent to minimizing the objective in Problem (2).

Our proposed RL framework is general. We make no assumptions on the environment or on the
target agent. In addition, our RL framework can be freely paired with any RL algorithm and any
attack method when training the attack policy. Thus, both white-box and black-box attack scenarios
can be considered in this framework.

3.3 THE POTENTIAL OF LEARNING THE KEY STEPS

Here we justify our RL framework by giving a toy example where the prior methods fail to identify
the key steps. Consider a simple MDP shown in Figure 3. Suppose that we would like to attack an
agent with its policy and Q-value function given in the figure. If we set the budget constraint B = 2,
the most effective attack policy should attack steps 1 and 3. However, both heuristics are unable to
find these two key steps.

This toy example highlights the potential drawback of these heuristics. Since the attacker might
change the agent’s policy in the future steps, the agent’s Q-value estimates in the current step could
be inaccurate. As a result, heuristics based on these Q-value estimates may not find the most effective
key steps. In contrast, our framework trains the attacker from scratch. We do not rely on human-
designed heuristics, and thus the attacker could possibly learn to identify the most effective key steps
in this example.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate the proposed RL framework on four Atari 2600 games in the Arcade Learning En-
vironment (Bellemare et al., 2013) (Pong, Space Invaders, Seaquest, and Riverraid), which covers

5

Under review as a conference paper at ICLR 2020

Figure 3: An MDP example where the two heuristics fail. The MDP components are described as
follows. A circle represents a state, and a double circle represents a terminal state. At each state, the
agent can choose to go left or right, as shown by the lines. Red numbers under the terminal states
represent the reward an agent gets if the agent reaches that state. The discount factor γ is set to 0.9.
Suppose we would like to attack an agent with its estimated Q-values and policy shown by the blue
numbers and blue arrows. Let the budget constraint B = 2. To minimize the agent’s cumulative
reward, a smart attacker should attack at steps 1 and 3, guiding the agent into state s15. However, the
heuristic proposed by Kos & Song (2017) would attack at steps 2 and 3 since the maximum Q-value
is larger at those steps. On the other hand, the heuristic proposed by Lin et al. (2017) also attacks
steps 2 and 3 since the gap of Q-values is larger at those steps (so the probability gap is larger too).
As a result, both heuristics guide the agent into state s11, failing to find the best key steps.

Figure 4: An example of perturbation generated by the FGSM with ε = 0.01. Left: Original frame.
Middle: Perturbed frame. Right: Added perturbation (rescaled to [0, 1]).

a variety of environments. The environment settings and preprocessing match the guidelines sug-
gested by Machado et al. (2018). In particular, we use a sticky-action probability of 0.25 in these
environments. For the target agent, we take pretrained DQN agents from Dopamine (Castro et al.,
2018), which have the same network architecture as Mnih et al. (2015), and fix them thereafter.
We train the attack policy using DQN with this same architecture. It is worth mentioning that we
train each attack policy for 10M frames, which is only 1/20 of the frames used to train the target
agents. Unless otherwise stated, the penalty parameter λ is fixed to 0.01. Other hyperparameters are
reported in the Appendix.

Throughout the experiments, we use the untargetted FGSM to generate perturbations due to its com-
putation efficiency. Although we only test our framework in this setting, we expect the framework
to generalize to the case of targetted attack, or to other adversarial attack algorithms. We use Fool-
box (Rauber et al., 2017) to generate the adversarial examples, with the norm constraint ε set to
0.01. An example of the perturbation is shown in Figure 4. The perturbation is imperceptible to
human and can only be visualized after rescaling. To make the scenario more realistic, we follow
Hussenot et al. (2019) and perturb the target agent’s observation, rather than the whole state. That
is, although the target agent stack the latest four frames as its current state, we are only allowed to
add perturbation to the latest frame.

We consider both white-box and black-box attacks, and compare our method to three baselines in
the key-step identification problem. The first one attacks uniformly at random, and the other two

6

Under review as a conference paper at ICLR 2020

(a) Pong (b) Space Invaders (c) Seaquest (d) Riverraid

Figure 5: Performance comparison in the key-step identification problem with white-box attacks.
The vertical axis shows the target agent’s undiscounted return, and the horizontal axis is the attack
ratio. The result of the two heuristics are obtained by setting 10 different thresholds on their corre-
sponding criteria. Under the same attack ratio, the lower the target agent’s undiscounted return is,
the better the attack method does. (random: uniformly random attack; large value: the heuristic
proposed by Kos & Song (2017); large prob gap: the heuristic proposed by Lin et al. (2017); RL:
the attack policy traind by our RL framework)

(a) Pong (b) Space Invaders (c) Seaquest (d) Riverraid

Figure 6: Performance comparison in the key-step identification problem with black-box attacks.
(See Figure 5 for descriptions of the axes and legends.)

baselines are the heuristics proposed by Kos & Song (2017) and Lin et al. (2017). All reported scores
are undiscounted return, averaged over ten episodes and over three target agents that are trained with
different random seeds.

4.2 IDENTIFYING KEY STEPS WITH WHITE-BOX ATTACKS

First we assume that the attacker has full knowledge of the target agent’s network parameters, so the
perturbations can be computed by the FGSM directly. Figure 5 plots the target agent’s performance
versus the attack ratio (the number of attacks divided by the number of steps in an episode) for
different methods. The results show that, under the same budget constraint, the target agent gets the
least return when attacked by our method in all four environments. This suggests that it is possible
to learn the key steps from scratch, and that our method learns more effective key steps than those
found by the previous methods.

4.3 IDENTIFYING KEY STEPS WITH BLACK-BOX ATTACKS

Now we assume that the attacker cannot access the target agent’s network parameters. We use
another substitute agent to compute the perturbations, as well as the statistics needed in the two
heuristics, and apply them to attack the target agent. We fix one pretrained agent as the substitute
agent and report scores averaged over three target agents. The results are shown in Figure 6. Com-
pared to white-box attacks, black-box attacks are of less success rate, and thus the effects of the
attacks are weakened (cf. Figure 5). Still, our method learns more effective key steps in two out of
four environments (Pong, Riverraid).

4.4 BEHAVIOR COMPARISON OF THE ATTACK POLICY

To understand to what extent the attack policy learned in our RL framework is different from the
heuristics, we attack the target agent by the learned attack policy, and compute the statistics used
by the two heuristics at each step. Figure 7 plots the histogram of those statistics in one episode of

7

Under review as a conference paper at ICLR 2020

(a) White-box attacks (b) Black-box attacks

Figure 7: Behavior comparison of our method to previous heuristics in Pong. Left: Histogram of
the maximum Q-value computed by Kos & Song (2017). Right: Histogram of the probability gap
computed by Lin et al. (2017). (all: all steps in one episode; attack: steps that our method attacks)

Table 1: Comparison of different λ on Pong.

λ

1 0.1 0.01 0.001 0.0001

undiscounted return 16.3 -20.5 -20.6 -20.9 -20.9
attack ratio (%) 0.00 5.34 9.70 15.76 18.69

Pong. The results of other environments are provided in the Appendix. From Figure 7 we can see
that the key steps found by our method spread across different intervals, rather than focusing on the
largest intervals. This suggests that our method does not simply mimic the heuristics, but indeed
learns unique key steps to attack.

4.5 THE EFFECT OF THE PENALTY PARAMETER

To investigate the penalty parameter λ, we train five attack policies with different values of λ in
Pong under the setting of white-box attacks. Other hyperparameters remain unchanged. The results
are shown in Table 1. From the table we make the following observations. First, as λ decreases,
the attack ratio increases and the undiscounted return of the target agent gets lower. Second, if λ
is too large (greater than or equal to 1 in this case), the learned attack policy would not launch any
attack, failing to identify any key steps. Third, for λ ranging from 0.1 to 0.0001, the target agent’s
undiscounted reward stays close to the minimum value -21.0 in Pong, and the attack ratio remains
rather small compared to other heuristics (cf. Figure 5). These observations suggest that, although
changing λ has effects on the attack ratio of the learned attack policy, our RL framework is not too
sensitive to the choice of λ.

5 DISCUSSION

We show that the key-step identification problem can be better solved by training an attacker policy
through RL. Compared to existing works, our method learns different key steps without any hu-
man knowledge. Moreover, the results on Atari benchmarks validate our believe that the proposed
method could learn more effective key steps. This raises safety concerns on the real-world appli-
cations of deep RL agents. One possible future direction is to study how we can improve the RL
agent’s robustness to this kind of key-step attacks. For example, combining the idea of alternating
training from Pinto et al. (2017) and Tessler et al. (2019) into our RL framework may be a fruitful re-
search direction. Since the RL agent’s robustness is mostly studied in continuous environments (e.g.,
MuJoCo), we hope that this work attracts more attention into studying this topic in environments
with discrete actions.

REFERENCES

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction
attacks. In International Conference on Machine Learning and Data Mining in Pattern Recogni-

8

Under review as a conference paper at ICLR 2020

tion, pp. 262–275. Springer, 2017a.

Vahid Behzadan and Arslan Munir. Whatever does not kill deep reinforcement learning, makes it
stronger. arXiv preprint arXiv:1712.09344, 2017b.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G Belle-
mare. Dopamine: A research framework for deep reinforcement learning. arXiv preprint
arXiv:1812.06110, 2018.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM,
2017.

Pablo Escandell-Montero, Milena Chermisi, Jose M Martinez-Martinez, Juan Gomez-Sanchis, Carlo
Barbieri, Emilio Soria-Olivas, Flavio Mari, Joan Vila-Francés, Andrea Stopper, Emanuele Gatti,
et al. Optimization of anemia treatment in hemodialysis patients via reinforcement learning.
Artificial intelligence in medicine, 62(1):47–60, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Targeted attacks on deep reinforcement
learning agents through adversarial observations. arXiv preprint arXiv:1905.12282, 2019.

David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fujimura. Navigating
occluded intersections with autonomous vehicles using deep reinforcement learning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pp. 2034–2039. IEEE, 2018.

Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv preprint
arXiv:1705.06452, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tac-
tics of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:1703.06748,
2017.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust
policy learning: Active construction of physically-plausible perturbations. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3932–3939. IEEE, 2017.

9

Under review as a conference paper at ICLR 2020

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinforcement learning for
autonomous driving. arXiv preprint arXiv:1704.03952, 2017.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277,
2016a.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram
Swami. The limitations of deep learning in adversarial settings. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pp. 372–387. IEEE, 2016b.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pp. 506–519. ACM, 2017.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
deep reinforcement learning with adversarial attacks. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 2040–2042. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2018.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 2817–2826. JMLR. org, 2017.

Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo Celi, Peter Szolovits, and Marzyeh
Ghassemi. Deep reinforcement learning for sepsis treatment. arXiv preprint arXiv:1711.09602,
2017.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models. arXiv preprint arXiv:1707.04131, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and appli-
cations in continuous control. arXiv preprint arXiv:1901.09184, 2019.

Edgar Tretschk, Seong Joon Oh, and Mario Fritz. Sequential attacks on agents for long-term adver-
sarial goals. arXiv preprint arXiv:1805.12487, 2018.

A APPENDIX

10

Under review as a conference paper at ICLR 2020

Table 2: Hyperparameters used during training the attack policy in our RL framework.

Hyperparameter Value

penalty λ 0.01
optimizer Adam
learning rate 0.0001
batch size 32
discount factor 0.99
training steps 10000000
target network update frequency 1000
replay buffer size 100000
learning start step 20000
learning frequency 4
exploration type ε-greedy
epsilon decay type linear decay
exploration decay horizon 250000
minimum exploration probability 0.01
exploration probability during testing 0.001
adversarial attack method FGSM
maximum norm constraint for perturbation 0.01
perturbation searching intervals 100

(a) Space Invaders with white-box attacks (b) Space Invaders with black-box attacks

(c) Seaquest with white-box attacks (d) Seaquest with black-box attacks

(e) Riverraid with white-box attacks (f) Riverraid with black-box attacks

Figure 8: Behavior comparison of our method to previous heuristics. Left: Histogram of the maxi-
mum Q-value computed by Kos & Song (2017). Right: Histogram of the probability gap computed
by Lin et al. (2017). (all: all steps in one episode; attack: steps that our method attacks)

11

	Introduction
	Background and related works
	Reinforcement learning background
	Adversarial attack background
	Adversarial attack on deep RL agents

	Learning key steps to attack
	The key-step identification problem
	An RL framework for learning the key steps
	The potential of learning the key steps

	Experiments
	Experimental setup
	Identifying key steps with white-box attacks
	Identifying key steps with black-box attacks
	Behavior comparison of the attack policy
	The effect of the penalty parameter

	Discussion
	Appendix

