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ABSTRACT

Learning to cooperate is crucially important in multi-agent environments. The key
is to understand the mutual interplay between agents. However, multi-agent en-
vironments are highly dynamic, which makes it hard to learn abstract representa-
tions of their mutual interplay. To tackle these difficulties, we propose graph con-
volutional reinforcement learning, where graph convolution adapts to the dynam-
ics of the underlying graph of the multi-agent environment, and relation kernels
capture the interplay between agents by their relation representations. Latent fea-
tures produced by convolutional layers from gradually increased receptive fields
are exploited to learn cooperation, and cooperation is further boosted by tempo-
ral relation regularization for consistency. Empirically, we show that our method
substantially outperforms existing methods in a variety of cooperative scenarios.

1 INTRODUCTION

Cooperation is a widespread phenomenon in nature from viruses, bacteria, and social amoebae to
insect societies, social animals, and humans (Melis & Semmann, 2010). Human exceeds all other
species in terms of range and scale of cooperation. The development of human cooperation is
facilitated by the underlying graph of human societies (Ohtsuki et al., 2006; Apicella et al., 2012),
where the mutual interplay between humans is abstracted by their relations.

It is crucially important to enable agents to learn to cooperate in multi-agent environments for many
applications, e.g., autonomous driving (Shalev-Shwartz et al., 2016), traffic light control (Wiering,
2000), smart grid control (Yang et al., 2018a), and multi-robot control (Matignon et al., 2012).
Multi-agent reinforcement learning (MARL) facilitated by communication (Sukhbaatar et al., 2016;
Peng et al., 2017; Jiang & Lu, 2018), mean field theory (Yang et al., 2018b), and causal influence
(Jaques et al., 2019) have been exploited for multi-agent cooperation. However, communication
among all agents (Sukhbaatar et al., 2016; Peng et al., 2017) makes it hard to extract valuable in-
formation for cooperation, while communication with only nearby agents (Jiang & Lu, 2018) may
restrain the range of cooperation. MeanField (Yang et al., 2018b) captures the interplay of agents
by mean action, but the mean action eliminates the difference among agents and thus incurs the
loss of important information that could help cooperation. Causal influence (Jaques et al., 2019) is a
measure of action influence, which is the policy change of an agent in the presence of an action of an-
other agent. However, causal influence is not directly related to the reward of environment and thus
may not encourage cooperation. Unlike existing work, we consider the underlying graph of agents,
which could potentially help understand agents’ mutual interplay and promote their cooperation as
it does in human cooperation (Ohtsuki et al., 2006; Apicella et al., 2012).

In this paper, we propose graph convolutional reinforcement learning, where the multi-agent en-
vironment is modeled as a graph, each agent is a node, and the encoding of local observation of
agent is the feature of node. We apply convolution to the graph of agents. By employing multi-head
attention (Vaswani et al., 2017) as the convolution kernel, graph convolution is able to extract the
relation representation between nodes and convolve the features from neighboring nodes just like a
neuron in a convolutional neural network (CNN). Latent features extracted from gradually increased
receptive fields are exploited to learn cooperative policies. Moreover, the relation representation is
temporally regularized to help the agent develop consistent cooperative policy.

Graph convolutional reinforcement learning, namely DGN, is instantiated based on deep Q net-
work and trained end-to-end. DGN shares weights among all agent, making it easy to scale. DGN
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abstracts the mutual interplay between agents by relation kernels, extracts latent features by convo-
lution, and induces consistent cooperation by temporal relation regularization. We empirically show
the learning effectiveness of DGN in jungle and battle games and routing in packet switching net-
works. We demonstrate that DGN agents are able to develop cooperative and sophisticated strategies
and DGN outperforms existing methods in a large margin.

By ablation studies, we confirm the following. Graph convolution greatly enhances the cooperation
of agents. Unlike other parameter-sharing methods, graph convolution allows the policy to be op-
timized by jointly considering the agents in the receptive field of an agent, promoting the mutual
help. Relation kernels that are independent from the input order of features can effectively capture
the interplay between agents and abstract relation representation to further improve cooperation.
Temporal regularization, which minimizes the KL divergence of relation representations in succes-
sive timesteps, boosts the cooperation, helping the agent to form a long-term and consistent policy
in the highly dynamic environment with many moving agents.

2 RELATED WORK

MARL. MADDPG (Lowe et al., 2017) and COMA (Foerster et al., 2018) are actor-critic mod-
els for the settings of local reward and shared reward, respectively. A centralized critic that takes
as input the observations and actions of all agents are used in both, which makes them hard to
scale. PS-TRPO (Gupta et al., 2017) solves problems that were previously considered intractable
by most MARL algorithms via sharing of policy parameters that also improves multi-agent cooper-
ation. However, the cooperation is still limited without sharing information among agents. Sharing
parameters of value function among agents is considered in (Zhang et al., 2018) and convergence
guarantee is provided for linear function approximation. However, the proposed algorithms and their
convergence are established only in fully observable environments. Value propagation is proposed in
(Qu et al., 2019) for networked MARL, which uses softmax temporal consistency to connect value
and policy updates. However, this method only works on networked agents with static connectivity.
CommNet (Sukhbaatar et al., 2016) and BiCNet (Peng et al., 2017) communicate the encoding of
local observation among agents. ATOC (Jiang & Lu, 2018) and TarMAC (Das et al., 2019) enable
agents to learn when to communicate and who to send messages to, respectively, using attention
mechanism. These communication models prove that communication does help for cooperation.
However, full communication is costly and inefficient, while restrained communication may limit
the range of cooperation.

Graph Convolution and Relation. Many important real-world applications come in the form of
graphs, such as social networks (Kipf & Welling, 2017), protein-interaction networks (Duvenaud
et al., 2015), and 3D point cloud (Charles et al., 2017). Several frameworks (Henaff et al., 2015;
Niepert et al., 2016; Kipf & Welling, 2017; Velickovic et al., 2017) have been architected to extract
locally connected features from arbitrary graphs. A graph convolutional network (GCN) takes as
input the feature matrix that summarizes the attributes of each node and outputs a node-level feature
matrix. The function is similar to the convolution operation in CNNs, where the kernels are con-
volved across local regions of the input to produce feature maps. Using GCNs, interaction networks
can reason the objects, relations and physics in complex systems, which has been proven difficult for
CNNs. A few interaction frameworks have been proposed to predict the future states and underlying
properties, such as IN (Battaglia et al., 2016), VIN (Watters et al., 2017), and VAIN (Hoshen, 2017).
Relational reinforcement learning (RRL) (Zambaldi et al., 2018) embeds multi-head dot-product
attention (Vaswani et al., 2017) as relation block into neural networks to learn pairwise interaction
representation of a set of entities in the agent’s state, helping the agent solve tasks with complex
logic. Relational Forward Models (RFM) (Tacchetti et al., 2019) use supervised learning to predict
the actions of all other agents based on global state. However, in partially observable environments,
it is hard for RFM to learn to make accurate prediction with only local observation.

3 METHOD

We construct the multi-agent environment as a graph, where agents in the environment are repre-
sented by the nodes of the graph and each node i has a set of neighbors, Bi, which is determined by
distance or other metrics, depending on the environment, and varies over time. Moreover, neighbor-
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ing nodes can communicate with each other. The intuition behind this is neighboring agents are more
likely to interact with and affect each other. In addition, in many multi-agent environments, it may be
costly and less helpful to take all other agents into consideration, because receiving a large amount of
information requires high bandwidth and incurs high computational complexity, and agents cannot
differentiate valuable information from globally shared information (Tan, 1993; Jiang & Lu, 2018).
As convolution can gradually increase the receptive field of an agent1, the scope of cooperation is
not restricted. Therefore, it is efficient and effective to consider only neighboring agents. Unlike the
static graph considered in GCNs, the graph of multi-agent environment is dynamic and continuously
changing over time as agents move or enter/leave the environment. Therefore, DGN should be able
to adapt to the dynamics of the graph and learn as the multi-agent environment evolves.

3.1 GRAPH CONVOLUTION

Encoder (MLP/CNN)

Convolutional Layer
(relation kernel)

Q network

Convolutional Layer
(relation kernel) 

Agent

Figure 1: DGN consists of three modules: en-
coder, convolutional layer, and Q network. All
agents share weights and gradients are accumu-
lated to update the weights.

We consider partially observable environments,
where at each timestep t each agent i receives a lo-
cal observation oti, which is the property of node i
in the graph, takes an action ati, and gets a reward
rti . DGN consists of three types of modules: obser-
vation encoder, convolutional layer and Q network,
as illustrated in Figure 1. The local observation oti
is encoded into a feature vector hti by MLP for low-
dimensional input or CNN for visual input. The con-
volutional layer integrates the feature vectors in the
local region (including node i and its neighbors Bi)
and generates the latent feature vector h

′t
i . By stack-

ing more convolutional layers, the receptive field of
an agent gradually grows, where more information is
gathered, and thus the scope of cooperation can also
increase. That is, by one convolutional layer, node i
can directly acquire the feature vectors from the encoders of nodes in one-hop (i.e., Bi). By stacking
two layers, node i can get the output of the first convolutional layer of the nodes in one-hop, which
contains the information from nodes in two-hop. However, more convolutional layers will not in-
crease the local region of node i, i.e., node i still only communicates with its neighbors. Details of
the convolution kernel will be discussed in next subsection.

As the number and position of agents vary over time, the underlying graph continuously changes,
which brings difficulties to graph convolution. To address the issue, we merge all agents’ feature
vectors at time t into a feature matrix F t with size N×L in the order of index, where N is the number
of agents and L is the length of feature vector. Then, we construct an adjacency matrix Cti with size
(|Bi| + 1) × N for agent i, where the first row is the one-hot representation of the index of node i,
and the jth row, j = 2, . . . , |Bi| + 1, is the one-hot representation of the index of the (j − 1)th
neighbor. Then, we can obtain the feature vectors in the local region of node i by Cti × F t.
Inspired by DenseNet (Huang et al., 2017), for each agent, the features of all the preceding layers are
concatenated and fed into the Q network, so as to assemble and reuse the observation representation
and features from different receptive fields, which respectively have distinctive contributions to the
strategy that takes the cooperation at different scopes into consideration.

During training, at each timestep, we store the tuple (O,A,O′,R, C) in the replay buffer, where
O = {o1, · · · , oN} is the set of observations, A = {a1, · · · , aN} is the set of actions, O′ =
{o′1, · · · , o′N} is the set of next observations, R = {r1, · · · , rN} is the set of rewards, and
C = {C1, · · · , CN} is the set of adjacency matrix. Note that we drop time t in the notations for
simplicity. Then, we sample a random minibatch of S from the replay buffer and minimize the loss

L(θ) = 1

S

∑
S

1

N

N∑
i=1

(yi −Q (Oi,C , ai; θ))
2
, (1)

where yi = ri + γmaxa′Q
(
O′
i,C , a

′
i; θ

′) , Oi,C ⊆ O denotes the set of observations of the agents
in i’s receptive fields determined by C, γ is the discount factor, and Q function, parameterized by

1The receptive field of an agent at a convolutional layer is its perceived agents at that layer.

3



Under review as a conference paper at ICLR 2020

θ, takes Oi,C as input and outputs Q value for agent i. As the action of agent can change the graph
at next timestep which makes it hard to learn Q function, we keep C unchanged in two successive
timesteps when computing the Q-loss in training to ease this learning difficulty. The gradients of
Q-loss of all agents are accumulated to update the parameters. Then, we softly update the target
network as θ′ = βθ + (1− β)θ′.
Like CommNet, DGN can also be seen as a factorization of a centralized policy that outputs ac-
tions for all the agents to optimize the average expected return. The factorization is that all agents
share θ and the model of each agent is connected to its neighbors, dynamically determined by the
graph of agents at each timestep. More convolutional layers (i.e., larger receptive field) yield a
higher degree of centralization that mitigates non-stationarity. In addition, unlike other methods
with parameter-sharing, e.g., DQN, that sample experiences from individual agents, DGN samples
experiences based on the graph of agents, not individual agents, and thus takes into consideration
the interactions between agents. Nevertheless, the parameter-sharing of DGN does not prevent the
emergence of sophisticated cooperative strategies, as we will show in the experiments. Note that
during execution each agent only requires the (latent) features from its neighbors (e.g., via commu-
nication) regardless of the number of agents, which makes DGN easily scale.

3.2 RELATION KERNEL

Convolution kernels integrate the feature in the receptive field to extract the latent feature. One of
the most important properties is that the kernel should be independent from the order of the input
feature vectors. Mean operation as in CommNet meets this requirement, but it leads to only marginal
performance gain. BiCNet uses the learnable kernel, i.e., RNN. However, the input order of feature
vectors severely impacts the performance, though the affect is alleviated by bi-direction mechanism.
Further, convolution kernels should be able to learn how to abstract the relation between agents so
as to integrate their input features.
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Figure 2: Illustration of computation of the convolutional
layer with relation kernel of multi-head attention.

Inspired by RRL, we use multi-head dot-
product attention as the convolutional kernel
to compute interactions between agents. For
each agent i, let B+i denote Bi and i. The in-
put feature of each agent is projected to query,
key and value representation by each inde-
pendent attention head. For attention headm,
the relation between i and j ∈ B+i is com-
puted as

αmij =
exp

(
τ ·Wm

Qhi · (Wm
Khj)

T
)∑

k∈B+i
exp

(
τ ·Wm

Qhi · (Wm
Khk)

T
) , (2)

where τ is a scaling factor. For each attention head, the value representations of all the input features
are weighed by the relation and summed together. Then, the outputs of M attention heads for agent
i are concatenated and then fed into function σ, i.e., one-layer MLP with ReLU non-linearities, to
produce the output of the convolutional layer,

h
′

i = σ(concate[
∑
j∈B+i

αmijWm
V hj ,∀m ∈ M]). (3)

Figure 2 illustrates the computation of the convolutional layer with relation kernel. Multi-head
attention makes the kernel independent from the order of input feature vectors, and allows the kernel
to jointly attend to different representation subspaces. More attention heads give more relation
representations and make the training more stable empirically (Vaswani et al., 2017). Moreover,
with multiple convolutional layers, higher order relation representations can be extracted, which
effectively capture the interplay between agents and greatly help to make cooperative decision.

3.3 TEMPORAL RELATION REGULARIZATION

As we train our model using deep Q learning, we use future value estimate as target for the current
estimate. We follow this insight and apply it to the relation kernel in our model. Intuitively, if the
relation representation produced by the relation kernel of upper layer truly captures the abstract rela-
tion between surrounding agents and itself, such relation representation should be stable/consistent
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Figure 3: Illustration of experimental scenarios: battle (left), jungle (mid), and routing (right).

for at least a short period of time, even when the state/feature of surrounding agents changes. Since in
our relation kernel, the relation is represented as the attention weight distribution to the observation
of surrounding agents, we use the attention weight distribution in the next state as the target for the
current attention weight distribution. This will encourage the agent to form the consistent relation
representation and hence consistent cooperation, regardless of consistent action, while RNN/LSTM
forces consistent action, regardless of cooperation. As the relation in different states should not be
the same but similar, we use KL divergence to compute the distance between the attention weight
distributions in the two states.

It should be noted that we do not use the target network to produce the target relation representation
as in normal deep Q learning. This is because relation representation is highly correlated with the
weights of feature extraction. But update of such weights in target network always lags behind that of
the current network. Since we only focus on the self-consistent of the relation representation based
on the current feature extraction network, we apply current network to the next state to produce the
new relation representation instead of the target network as in deep Q learning.

Let Gκ(Oi,C ; θ) denotes the attention weight distribution of relation representations at convolutional
layer κ for agent i. Then, with temporal relation regularization, the loss is modified as below

L(θ) = 1

S

∑
S

1

N

N∑
i=1

((yi −Q (Oi,C , ai; θ))
2
+ λDKL(Gκ(Oi,C ; θ)||zi), (4)

where zi = Gκ(O′
i,C ; θ) and λ is the coefficient for the regularization loss. Temporal relation reg-

ularization of upper layer in DGN helps the agent to form long-term and consistent action policy
in the highly dynamical environment with many moving agents. This will further help agents to
form cooperative behavior since many cooperation tasks need long-term consistent actions of the
collaborated agents to get the final reward. We will further analyze this in the experiments.

4 EXPERIMENTS

For the experiments, we adopt a grid-world platform MAgent (Zheng et al., 2017). In the environ-
ment, each agent corresponds to one grid and has a local observation that contains a square view
with 11 × 11 grids centered at the agent and its own coordinates. The discrete actions are moving
or attacking. Two scenarios, battle and jungle, are considered to investigate the cooperation among
agents. Also, we build an environment, routing, that simulates routing in packet switching networks.
These three scenarios are illustrated in Figure 3. In the experiments, we compare DGN with inde-
pendent Q-learning, DQN, which is fully decentralized, CommNet (Sukhbaatar et al., 2016), and
MeanField Q-learning (MFQ) (Yang et al., 2018b). In the experiments, DGN and the baselines are
parameter-sharing and their basic hyperparameters are all the same. Moreover, to ensure the com-
parison is fair, their parameter sizes are also similar. Please refer to Appendix for hyperparameters
and experimental settings, respecitvely. The video (https://bit.ly/2HwuR4f) provides more
details about the experiments. The codes of DGN are available at https://bit.ly/2HI2i2K.

4.1 BATTLE

In this scenario, N agents learn to fight against L enemies who have superior abilities than the agents.
The moving or attacking range of the agent is the four neighbor grids, however, the enemy can move
to one of twelve nearest grids or attack one of eight neighbor grids. Each agent/enemy has six hit
points (i.e., being killed by six attacks). After the death of an agent/enemy, the balance will be easily
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lost and hence we will add a new agent/enemy at a random location to maintain the balance. By that,
we can make fair comparison among different methods in terms of kills, deaths and kill-death ratio
besides reward for given timesteps. The pretrained DQN model built-in MAgent takes the role of
enemy. As individual enemy is much powerful than individual agent, an agent has to collaborate
with others to develop coordinated tactics to fight enemies. Moreover, as the hit point of enemy is
six, agents have to consistently cooperate to kill an enemy.

Figure 4: Learning curves in battle.

We trained all the models with the setting of N = 20
and L = 12 for 2000 episodes. Figure 4 shows their
learning curves in terms of mean reward. For all the
models, the shadowed area is enclosed by the min and
max value of three training runs, and the solid line in
middle is the mean value (same for jungle and routing).
DGN converges to much higher mean reward than other
baselines, and its learning curve is more stable. MFQ
outperforms CommNet and DQN which first get relative
high reward, but eventually converge to much lower re-
ward. As observed in the experiment, at the beginning of
training, DQN and CommNet learn sub-optimum poli-
cies such as gathering as a group in a corner to avoid
being attacked, since such behaviors generate relatively
high reward. However, since the distribution of reward is uneven, i.e., agents at the exterior of
the group are easily attacked, learning from the “low reward experiences” produced by the sub-
optimum policy, DQN and CommNet converge to more passive policies, which lead to much lower
reward. We evaluate DGN and the baselines by running 30 test games, each game unrolled with 300
timesteps. Table 1 shows the mean reward, kills, deaths, and kill-death ratio.

Table 1: Battle

DGN DGN-R DGN-M MFQ CommNet DQN

mean reward 0.91 0.84 0.50 0.70 0.03 −0.03
# kills 220 208 121 193 7 2

# deaths 97 101 84 92 27 74
kill-death ratio 2.27 2.06 1.44 2.09 0.26 0.03

DGN agents learn a series of tactical maneuvers, such as encircling and envelopment of a single
flank. For single enemy, DGN agents learn to encircle and attack it together. For a group of en-
emies, DGN agents learn to move against and attack one of the enemy’s open flanks, as depicted
in Figure 5a. CommNet agents adopt an active defense strategy. They seldom launch attacks but
rather run away or gather together to avoid being attacked. DQN agents driven by self-interest fail
to learn a rational policy. They are usually forced into a corner and passively react to the enemy’s
attack, as shown in Figure 5b. MFQ agents do not effectively cooperate with each other because the
mean action incurs the loss of important information that could help cooperation. In DGN, relation
kernels can extract high order relations between agents through graph convolution, which can be
easily exploited to yield cooperation. Therefore, DGN outperforms other baselines.

Ablations. We first remove temporal relation regularation from DGN, denoted as DGN-R. As
shown in Figure 4 and Table 1, the performance drops slightly. In the experiment, it is observed
that DGN agents indeed behave more consistently and synchronously with each other, while DGN-
R agents are more likely to be distracted by the new appearance of enemy or friend nearby and
abandon its original intended trajectory. This results in fewer appearances of successful forma-

Encircling

Envelopment of 
a single flank

(a) DGN in battle
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(b) DQN in battle
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(c) DGN in jungle
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(d) DQN in jungle

Figure 5: Illustration of representative behaviors of DGN and DQN agents in battle and jungle.
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tion of encircling of a moving enemy, which might need consistent cooperation of agents to move
across the field. DGN agents often overcome such distraction and show more long-term strategy
and aim by moving more synchronously to chase the enemy until encircle and destroy it. From
this experiment, we can see that temporal relation regularization indeed helps agents to form more
consistent cooperation. We further replace relation kernels of graph convolution in DGN-R with
mean kernels, denoted as DGN-M. Comparing the performance of DGN-R and DGN-M, we con-
firm that relation kernels that abstract the relation representation between agents indeed helps to
learn cooperation. Although DGN-M and CommNet both use mean operation, DGN-M substan-
tially outperforms CommNet. This is attributed to graph convolution can effectively extract latent
features from gradually increased receptive field. The performance of DGN with different receptive
fields is available in Appendix.

4.2 JUNGLE

Figure 6: Learning curves in jungle.

This scenario is a moral dilemma. There are N agents
and L foods in the field, where foods are stationary. An
agent gets positive reward by eating food, but gets higher
reward by attacking other agent. At each timestep, each
agent can move to or attack one of four neighboring
grids. Attacking a blank grid gets a small negative re-
ward (inhibiting excessive attacks). This experiment
is to examine whether agents can learn collaboratively
sharing resources rather than attacking each other. We
trained all the models in the setting of N = 20 and
L = 12 for 2000 episodes. Figure 6 shows their learn-
ing curves. Table 2 shows the mean reward and number
of attacks between agents over 30 test runs, each game
unrolled with 120 timesteps.

Table 2: Jungle

DGN MFQ CommNet DQN

mean reward 0.66 0.62 0.30 0.24
# attacks 1.14 2.74 5.44 7.35

DGN outperforms all the baselines during training and test in terms of mean reward and number
of attacks between agents. It is observed that DGN agents can properly select the close food and
seldom hurt each other, and the food can be allocated rationally by the surrounding agents, as shown
in Figure 5c. Moreover, attacks between DGN agents are much less than others, e.g., 2× less than
MFQ. Sneak attack, fierce conflict, and hesitation are the characteristics of CommNet and DQN
agents, as illustrated in Figure 5d, verifying their failure of learning cooperation.

4.3 ROUTING

The network consists of L routers. Each router is randomly connected to a constant number of
routers (three in the experiment), and the network topology is stationary. There are N data packets
with a random size, and each packet is randomly assigned a source and destination router. If there
are multiple packets with the sum size larger than the bandwidth of a link, they cannot go through
the link simultaneously. In the experiment, data packets are agents, and they aim to quickly reach
the destination while avoiding congestion. At each timestep, the observation of a packet is its own
attributes (i.e., current location, destination, and data size), the attributes of cables connected to
its current location (i.e., load, length), and neighboring data packets (on the connected cable or
routers). It takes some timesteps for a data packet to go through a cable, a linear function of the cable
length. The action space of a packet is the choices of next hop. Once the data packet arrives at the
destination, it leaves the system and another data packet enters the system with random initialization.

We trained all the models with the setting of N = 20 and L = 20 for 2000 episodes. Figure 7
shows their learning curves. DGN converges to much higher mean reward and more quickly than
the baselines. We evaluate all the models by running 10 test games, each game unrolled with 300
timesteps. Table 3 shows the mean reward, mean delay of data packets, and throughput, where the
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delay of a packet is measured by the timesteps taken from source to destination and the throughput
is the number of delivered packets per timestep.

Figure 7: Learning curves in routing.

To better interpret the performance of the models, we
calculate the shortest path for every pair of nodes in the
network using Floyd algorithm. Then, during test, we
directly calculate the delay and throughout based on the
shortest path of each packet, which is Floyd in Table 3.
Note that this delay is without considering the bandwidth
limitation (i.e., data packets can go through any link si-
multaneously). Thus, this is the ideal case for the routing
problem. When considering the bandwidth limit, we let
each packet follow its shortest path, and if a link is con-
gested, the packet will wait at the router until the link is
unblocked. This is Floyd with BL in Table 3, which can
be considered as the practical solution. As shown in Ta-
ble 3, the performance of DGN is much better than other
models and Floyd with BL.

In the experiment, it is observed that DGN agents tend to select the shortest path to the destination,
and more interestingly, learn to select different paths when congestion is about to occur. DQN agents
cannot learn the shortest path due to myopia and easily cause congestion at some links without
considering the influence of other agents. Communication indeed helps as MFQ and CommNet
outperform DQN. However, they are unable to develop the sophisticated strategies as DGN does
and eventually converge to much lower performance.

Table 3: Routing

(N, L) Floyd Floyd w/ BL DGN MFQ CommNet DQN

(20, 20)
mean reward 1.23 1.02 0.49 0.18

delay 6.3 8.7 8.0 9.4 18.6 46.7
throughput 3.17 2.30 2.50 2.13 1.08 0.43

(40, 20)
mean reward 0.86 0.78 0.39 0.12

delay 6.3 13.7 9.8 11.8 23.5 83.6
throughput 6.34 2.91 4.08 3.39 1.70 0.49

(60, 20)
mean reward 0.73 0.59 0.31 0.06

delay 6.3 14.7 12.6 15.5 27.0 132.0
throughput 9.52 4.08 4.76 3.87 2.22 0.45

To investigate how network traffic affects the performance of the models, we performed the exper-
iments with heavier data traffic, i.e., N = 40 and L = 20, where all the models are directly applied
to the setting without retraining. From Table 3, we can see that DGN is much better than Floyd
with BL, and MFQ is also better than Floyd with BL. The reason is that Floyd with BL (i.e., simply
following the shortest path) is favorable when traffic is light and congestion is rare, while it does
not work well when traffic is heavy and congestion easily occurs. We further apply all the models
learned in N = 20 and L = 20 to the setting of N = 60 and L = 20. DGN still outperforms Floyd
with BL, while MFQ become worse than Floyd with BL. It is observed in the experiments that DGN
without retraining outperforms Floyd with BL up to N = 140 and L = 20, available in Appendix.
From the experiments, we can see that our model trained with fewer agents can well generalize to the
setting with much more agents, which demonstrates that the policy that takes as input the integrated
features from neighboring agents based on their relations scales well with the number of agents.

5 CONCLUSIONS

We have proposed graph convolutional reinforcement learning. DGN adapts to the dynamics of the
underlying graph of the multi-agent environment and exploits convolution with relation kernels to
extract latent features from gradually increased receptive fields for learning cooperative strategies.
Moreover, the relation representation between agents are temporally regularized to make the coop-
eration more consistent. Empirically, DGN significantly outperforms existing methods in a variety
of cooperative multi-agent scenarios.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Coren L Apicella, Frank W Marlowe, James H Fowler, and Nicholas A Christakis. Social networks
and cooperation in hunter-gatherers. Nature, 481(7382):497, 2012.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In NeurIPS, 2016.

R Qi Charles, Hao Su, Mo Kaichun, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017.
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A HYPERPARAMETERS

Table 4 summarizes the hyperparameters used by DGN and the baselines in the experiments.

Table 4: Hyperparameters

Hyperparameter DGN CommNet MFQ DQN

discount (γ) 0.96, 0.96, 0.98
batch size 10

buffer capacity 2× 105

β 0.01
ε and decay 0.6/0.996

optimizer Adam
learning rate 10−4

# neighbors 3 − 3 −
# convolutional layers 2 −

# attention heads 8 −
τ 0.25 −
λ 0.03 −
κ 2 −

# encoder MLP layers 2 2 − −
# encoder MLP units (512, 128) (512, 128) − −

Q network affine transformation affine transformation (1024, 256) (1024, 256)
MLP activation ReLU

initializer random normal

B EXPERIMENTAL SETTINGS

In jungle, the reward is 0 for moving, +1 for attacking (eating) the food, +2 for attacking other
agent, −4 for being attacked, and −0.01 for attacking a blank grid. In battle, the reward is +5
for attacking the enemy, −2 for being killed, and −0.01 for attacking a blank grid. In routing, the
bandwidth of each link is the same and set to 1. Each data packet is with a random size between 0 and
1. If the link to the next hop selected by a data packet is overloaded, the data packet will stay at the
current router and be punished with a reward −0.2. Once the data packet arrives at the destination,
it leaves the system and gets a reward +10. In the experiments, we fix the size of B to 3, because
DGN is currently implemented based on TensorFlow which does not support dynamic computing
graph (varying size of B). We also show how different sizes of B affect DGN’s performance in
the following. Indeed, DGN adapts to dynamic environments, no matter how the number of agents
changes, how the graph of agents changes, and how many neighbors each agent has.

C ADDITIONAL EXPERIMENTS

As aforementioned, larger receptive field yields a higher degree of centralization that mitigates non-
stationarity. We also investigate this in the experiments. First we examine how DGN performs with
different number of convolution layers. As illustrated in Figure 8, two convolutional layers indeed
yield more stable learning curve than one layer as expected. As the agent’s receptive field is also
determined by the size of B, we also investigate how it affects the performance of DGN. We set B

Figure 8: DGN with different
number of convolutional layers in
battle
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Figure 9: DGN with different
number of neighbors for each
agent in jungle.

Figure 10: DGN versus Floyd
with BL under increasingly heav-
ier traffic in routing
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of each agent to 1, 2 and 3 in jungle. As illustrated in Figure 9, its performance drops as the number
of neighbors reduces, as expected.

We also conducted additional experiments in routing to compare DGN (learned in the setting of
N = 20 and L = 20) and Floyd with BL under increasingly heavier traffic, in terms of mean delay.
As shown in Figure 10, DGN continuously outperforms Floyd with BL up to N = 140. After that,
Floyd with BL outperforms DGN. The reason is that when the traffic becomes so heavy, the network
is fully congested and there is no way to improve the performance. DGN learned in much lighter
traffic may still try to find better routes, but this incurs extra delay.
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