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ABSTRACT

While recent progress in deep reinforcement learning has enabled robots to learn
complex behaviors, tasks with long horizons and sparse rewards remain an on-
going challenge. In this work, we propose an effective reward shaping method
through predictive coding to tackle sparse reward problems. By learning predic-
tive representations offline and using these representations for reward shaping, we
gain access to reward signals that understand the structure and dynamics of the en-
vironment. In particular, our method achieves better learning by providing reward
signals that 1) understand environment dynamics 2) emphasize on features most
useful for learning 3) resist noise in learned representations through reward accu-
mulation. We demonstrate the usefulness of this approach in different domains
ranging from robotic manipulation to navigation, and we show that reward signals
produced through predictive coding are as effective for learning as hand-crafted
rewards.

1 INTRODUCTION

Recent progress in deep reinforcement learning (DRL) has enabled robots to learn and execute com-
plex tasks, ranging from game playing (Jaderberg et al.,|2018;|OpenAlL2019), robotic manipulations
(Andrychowicz et al., 2017; |Haarnoja et al., |2018]), to navigation (Zhang et al., [2017)). However, in
many scenarios learning depends heavily on meaningful and frequent feedback from the environ-
ment for the agent to learn and correct behaviors. As a result, reinforcement learning (RL) problems
with sparse rewards still remain a difficult challenge (Riedmiller et al., 2018; |Agarwal et al., [2019)).

In a sparse reward setting, the agent typically explores without receiving any reward, until it enters
a small subset of the environment space (the ”goal”). Due to lack of frequent feedback from the
environment, learning in sparse reward problems is typically hard, and heavily relies on the agent
entering the ”goal” during exploration. A possible way to tackle this is through reward shaping
(Devlin & Kudenkol 2012; Zou et al., [2019;|Gao & Tonil 2015), where manually designed rewards
are added to the environment to guide the agent towards finding the ”goal”’; however, this approach
often requires domain knowledge of the environment, and may bias learning if the shaped rewards
are not robust (Ng et al., |1999).

RL problems often benefit from representation learning (Bengio et al., [2013), which studies the
transformation of raw observations of an environment (sensors, images, coordinates etc) into a more
meaningful form, such that the agent can more easily extract information useful for learning. In-
tuitively, raw states contain redundant or irrelevant information about the environment, which the
agent must take time to learn to distinguish and remove; representation learning directly tackles this
problem by either eliminating redundant dimensions (Kingma & Welling, 2013} van den Oord et al.,
2017) or emphasizing more useful elements of the state (Nachum et al.| 2018a). Much of the prior
work on representation learning focuses on generative approaches to model the environment, but
some recent work also studies optimizations that learn important features (Ghosh et al.,|[2018)).

In this paper, we tackle the challenge of DRL to solve sparse reward tasks: we apply representation
learning to provide the agent meaningful rewards without the need for domain knowledge. In par-
ticular, we propose to use predictive coding in an unsupervised fashion to extract features that max-
imize the mutual information (MI) between consecutive states in a state trajectory. These predictive
features are expected to have the potential to simplify the structure of an environment’s state space:
they are optimized to both summarize the past and predict the future, capturing the most important
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elements of the environment dynamics. We show this method is useful for model-free learning from
either raw states or images, and can be applied on top of any general deep reinforcement learning
algorithms such as PPO (Schulman et al.| 2017).

Although MI has traditionally been difficult to compute, recent advances have suggested optimizing
on a tractable lower bound on the quantity (Hjelm et al., 2018 |Belghazi et al., 2018; Oord et al.,
2018). We adopt one such method, Contrastive Predictive Coding (Oord et al., |2018)), to extract
features that maximize MI between consecutive states in trajectories collected during exploration
(one thing worth noting is that this method is not restricted to specific predictive coding schemes
such as CPC). Such features are then used for simple reward shaping in representation space to
provide the agent better feedback in sparse reward problems. We demonstrate the validity of our
method through extensive numerical simulations in a wide range of control environments such as
maze navigation, robot locomotion, and robotic arm manipulation (Figure[d). In particular, we show
that using these predictive features, we provide reward signals as effective for learning as hand-
shaped rewards, which encode domain and task knowledge.

This paper is structured as follows: We begin by providing preliminary information in Section 2]
and discussing relevant work in Section [3] then, we explain and illustrate the proposed method in
Section [ lastly, we present experiment results in Section [} and conclude the paper by discussing
the results and pointing out future work in Section[6]

2 PRELIMINARIES

Reinforcement Learning and Reward Shaping: This paper assumes a finite-horizon Markov De-
cision Process (MDP) (Puterman, 1994), defined by a tuple (S, A, P, r,~, T). Here, S € R denotes
the state space, A € R™ denotes the action space, P : S x A x S — R™ denotes the state transition
distribution, r : & x A — R denotes the reward function, v € [0,1] is the discount factor, and
finally 7" is the horizon. At each step ¢, the action a; € A is sampled from a policy distribution
mg(a¢|s:) where s € S and 6 is the policy parameter. After transiting into the next state according
to p(s¢+1]at, s¢), where p € P, the agent receives a scalar reward r(s¢, at).

With such definition, the goal of RL is to learn a policy 7y (a¢|s;) that maximizes the expected

discounted reward E. p[R(7o.7-1)] = ]Emp[zg_l 7' (s¢, ar)]. In this paper, we assume model-
free learning, meaning the agent does not have access to P.

Reward shaping essentially replaces the original MDP with a new one, whose reward function is now
r'(s¢,a¢). In this paper, reward shaping is done to train a policy 7.~ that maximizes the expected
discounted reward in the original MDP, i.e. E, , p[R(70.7-1)].

Mutual Information and Predictive Coding: Mutual information measures the amount of informa-
tion obtained about one random variable after observing another random variable (Cover & Thomas),
2012). Formally, given two random variables X and Y with joint distribution p(z,y) and marginal
densities p(x) and p(y), their MI is defined as the KL-divergence between joint density and product
of marginal densities:

p(z,y)
MI(X;Y) = Dxu(p(z, ) [p(2)p(y)) = Ep(a,y) [log———=5]. (1)
P p(@)p(y)
Predictive coding in this paper aims to maximize the MI between consecutive states in the same
state trajectory. As Ml is difficult to compute, we adopt the method of optimizing on a lower bound,
InfoNCE (Oord et al., 2018]), which takes the current context ¢, to predict a future state s;:

J(Ztqr,ce) |
fzirrs c) + 225, es f(z),ct)
P(x|y)

Here, f(x,y) is optimized through cross entropy to model a density ratio: f(x,y) Pla) - Atk
is the embedding of state x;; by the encoder, and ¢; is obtained by summarizing the embeddings
of previous n states in a segment of a trajectory, z;_, 1.+, through a gated recurrent unit (Cho et al.,
2014). Intuitively, the context c; pays attention to the evolution of states in order to summarize
the past and predict the future; thus, it forces the encoder to extract only the essential dynamical
elements of the environment, elements that encapsulate state evolution.

MI(styr;ct) > Es[log 2)




Under review as a conference paper at ICLR 2020

Figure 2: Clustering states in embedding space. We start with the original states (left most), obtain
and cluster the embeddings (middle two), and finally label original states by clusters (right most).

3 RELEVANT WORKS

Our paper uses the method of Contrastive Predictive Cod-

ing (CPC) (Oord et al., 2018)), which includes experi-

ments in the domain of RL. In the CPC paper, the In- o
foNCE is applied to the LSTM component (Hochreiter &
Schmidhuber, [1997) of an A2C architecture (Mnih et al.,
2016; [Espeholt et al.,[2018)). The LSTM maps every state
observation to an embedding, which is then directly used
for learning. This differs from our approach, where we

train on pre-collected trajectories to obtain embeddings, :[ |

and only use these embeddings to provide rewards to the —
agent, which still learns on the raw states. Our approach
has two main advantages: 1) Preprocessing states allows
us to collect exploration-focused trajectories, and obtain
embeddings that are suitable for multi-tasking. 2) Using
embeddings to provide rewards is more resistant to noises
in embeddings than using them as training features, since
in the former case we care more about the accumulation  Figure 1: Tllustration of policy trained
of rewards across multiple states, where the noises are di-  through clustering. The first-step pol-
luted. icy guide the agent towards the correct

Applying representation learning to RL has been studied cluster (Whlte. arrow), and the second-
in many prior works (Nachum et al.,2018a; Ghosh et al.} step policy guides the agent towards the
2018; (Oord et all, 2018; Caselles-Dupré et al} 2018). In 802l (grey arrow).

a recent paper on actionable representation (Ghosh et al.| 2018)), representation learning is also ap-
plied to providing the agent useful reward signals. In actionable representation paper, states are
treated as goals, and embeddings are optimized in a way that the distance between two states reflects
the difference between the policies required to reach them. This is fundamentally different from
our approach, which aims to extract features that have predictive qualities. Furthermore, computing
actionable representation requires trained goal-conditioned policies as a part of the optimization,
which is a strict requirement, while this paper aims to produce useful representations without need-
ing access to trained policies.

Lastly, VQ-VAE (van den Oord et al.,[2017) is a generative approach that provides a principled way
of extracting low-dimensional features. In contrast to VAE (Kingma & Welling} [2013)), it outputs a
discrete codebook, and the prior distribution is learned rather than static. VQ-VAE could be useful
for removing redundant information from raw states, which may speed up learning; however, since
the goal of VQ-VAE is reconstruction, it does not put emphasis on features that are particularly use-
ful for learning, nor does it attempt to understand the environment dynamics across long segments
of states. Our use of predictive coding is thus be a better fit for reinforcement learning, as we empha-
size on features that help understand the evolution of states rather than reconstruct each individual
state.
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4 METHOD

4.1 LEARNING PREDICTIVE FEATURES

In this step, the key idea is to train, in an unsupervised fashion and prior to learning, an encoder
that extracts predictive features from states. We begin by collecting state trajectories through initial
exploration. While there is no requirement for any specific exploration strategies, we used random
exploration with manual resets to collect diverse trajectories without need for pre-trained policies.

From these trajectories, segments of consecutive states are sampled and used to train a CPC encoder:
for each segment, a fixed number of beginning states (z;_,.;) are encoded into latent embeddings
(2t—n-t) and summarized by a GRU (¢; = fgru(zt—n:t)); the output of the GRU was referred to in
the original paper as “context”, which is then used to predict the embedding of each remaining state
(z¢+) in the segment through a score function s;4x = exp(z¢+rWic:). More architectural details
can be found in Appendix

4.2 APPLYING PREDICTIVE FEATURES TO RL

The trained embeddings are then used for reward shaping in 2 ways:

Clustering: We sample random states from the environment and cluster their corresponding em-
beddings. We found that clustering these embeddings provide meaningful information on the global
structure of the environments, i.e. states that are naturally close to each other (Figure [Z). We then
use these clusters to provide additional reward signals to the agent, in particular awarding the agent
a positive reward for entering the cluster that contains the goal. This way, the agent is more likely
to enter the subset of state space that is close to the goal (Figure|[T)), and learning is faster and more
stable.

Optimizing on Negative Distance: In environments with
large state spaces, we directly optimize on the distance
between the current state and the goal state in represen-
tation space (or embedding space, both of which will be
used interchangeably for the rest of the paper). That is,
we add an additional negative distance term to the reward

at each step ¢, — ||z, — 24| ?, where z is the embedding
of the current state s, and z, is the embedding of the
goal s4. This simple approach leads to surprisingly good
improvements for learning, even for environments with

Figure 3: Illustration of policy trained non-linear structures such as mazes (Figure ).
through optimizing on negative distance ) )
in embedding space. Note that moving In the next section, we study both the embeddings ob-

straight in embedding space (right) may tained from initial training as well as both of the applica-
correspond to moving around a wall in  tions discussed above.
the maze (left).

5 EXPERIMENTS

In this section, we will address the following questions:

1. Does predictive coding simplify environment structure?

2. Do these simplified representations provide reward feedback to agent in sparse reward
tasks?

We show the result of applying predictive coding to learning in five different environments: Grid-
World, HalfCheetah, Pendulum, Reacher, and AntMaze (Figure E]) These environment form a rich
set of standard DRL experiments, covering both discrete and continuous action spaces.

GridWorld environment (Chevalier-Boisvert et al., [2018]) is used as the primary experiment for dis-
crete settings. Although it has simple dynamics, GridWorld environments have a variety of maze
structures that pose an interesting representation learning problem: two points between a wall are
close distance wise, but they might require the agent to take a dramatically long route to reach one
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Figure 4: Visualization of environments used in this paper. The environments are GridWorld,
HalfCheetah, Pendulum, Reacher, and AntMaze respectively.

point from the other. In our experiments, we demonstrate that predictive coding is able to understand
the global structure of any arbitrary maze, and map states in the latent space according to their actual
distances in the maze.

We use Mujoco (Todorov et al., |2012) and classic Gym (Brockman et al.| 2016) environments for
continuous control settings. HalfCheetah, Pendulum, and Reacher are environments in continuous
setting with richer dynamics than GridWorld. While they have simpler global structures (e.g. pendu-
lum moves in a circle), we show that predictive coding is able to understand a hierarchy of features
in these environments, and that these features can be directly incorporated to speed up learning.
AntMaze environments (Nachum et al.| 2018b) have continuous control dynamics as well as in-
teresting maze structures similar to GridWorld. As a result, representations learned by predictive
coding in AntMaze show both understanding of global structure and formation of hierarchies of
features.

To show the generality of our approach, we use an open-sourced implementation of CPCE| and stan-
dard DRL baselineﬂ for training. A compilation of all code used in this paper will be made publicly
available. Further details on the experimental setup and architectural details can be found in Ap-

pendix [A]
5.1 DISCRETE SETTINGS

5.1.1 GRIDWORLD

GridWorld environments are 2D 17-by-17 square mazes with different layouts. We include 3 differ-
ent layouts: one with a U-shaped barrier (U-Maze), one with 4 rooms divides walls (Four-Room),
and one with 4 square blocks (Block-Maze).

The result of applying CPC repre-
sentation learning to GridWorld is
shown in Figure[5] In all three exper-
iments, CPC learns representations
that reflect the true distance between
two points. For instance, as seen in
the plot, states between the barrier
(blue and green states) in U-Maze are
mapped to points far from each other
in the representation state, although
being distance-wise close. Similarly,
the states in the blue room and green
room of Four-Rooms are mapped to
Figure 5: CPC representation of GridWorld environment: two ends of a long band in the repre-
U-Maze (left), Four-Rooms (middle), and Block-Maze sentation space, with states in the red
(right). By clustering embeddings (bottom, all embeddings and pink rooms located in the middle.
are visualized by T-SNE), we are able to recover clusters This reflects the need for the agent to
corresponding to natural structures of the mazes (top). go through the red and pinks rooms

to reach the blue room or the green

ter”
f’

PN S ~
~ :,'1"-‘.‘4-.
o o

"https://github.com/davidtellez/contrastive-predictive-coding
“https://github.com/hill-a/stable-baselines
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room. Lastly, representation learned in Block-Maze res
imaged-based observations.

tores the true structure of the maze from

We assess the quality of the embeddings by analysing how much they reflect the true distances
between states. For each maze environment, we sample random pairs of points from the maze, and
plot the true distance (obtained by running A* in the original maze ) between the pair against their
distance in the representation space (L-2 norm). Additionally, we run linear regression to obtain a

line of best fit for each plot. The result for Barrier Maze is
we observe a strong correlation between the true distance

We show the result of applying clustering to sparse reward
problems in GridWorld: the agent is randomly spawn and
navigates in the maze, and it only receives a positive re-
ward when reaching the goal. Without additional reward
signals, the agent might not be able to reach the goal if it
is spawn in a far-away location. To make use of clusters
obtained from CPC representations, we train a two step
policy: the agent first goes to the cluster that contains
the goal, and then to the goal. We reward the agent for
reaching the cluster in the first step, and use environment
reward for the second step. This way, the agent receives
more signal in all locations in the maze. An illustration
of a policy trained this way is shown in Figure ]

We find that this approach leads to better learning in all
three mazes (Figure [7). In all three experiments, the re-
ward (adjusted to remove cluster reward) converges faster
and to higher values with clustering. This is likely be-
cause the additional reward for entering the cluster guides
the agent towards states that are naturally close to the
goal, allowing the agent to reach the goal more frequently

shown in Figure[6] and for all three mazes
s and the distances in latent space.

08

0.6

0.4

0.2

0.0

Figure 6:  Plot of true distance be-
tween states in maze vs distance in rep-
resentation space. The x-axis is the true
distance obtained by A*, while the y-
axis is the distance in the representation
space. A line of best fit is provided for

illustration.
during exploration. Table[T|shows that the

policy learned through clustering significantly outperforms the policy learned in standard setting.

BlockMaze

—— Raw States with Clusters
—— Raw States

— Raw States
—— Raw States

with Cluster

—— Raw States with Clusters
—— Raw States

25600 50000 75000 100000 125000 150000 175000 200! 0 25000 50000 75000 100000 125000 150000
Frames Frames

Figure 7: Learning curves of GridWorld environments.
down by 1 to remove the cluster reward.

175000 200000

25600 50000 75000 100000 125000 150000 175000 200!
Frames

The reward curve with clusters is shifted

Table 1: Success Rate in GridWorld Environments

Setup With Clustering Without Clustering
U-Maze 61% 98%
Four-Rooms  71% 98%
Block-Maze 98% 100%
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5.2 CONTINUOUS SETTINGS

We study four different control environments: Pendulum, AntMaze, Reacher, HalfCheetah (latter
two moved to Appendix [A).

Environments used in this section have much richer dynamics than GridWorld. We show that the
learned representations simplify these environments both by understanding the global structure of
the environment (AntMaze) and encoding meaningful hierarchies of features.

Unlike GridWorld, simple clustering strategies are less effective because of the large state space.
Instead, we directly optimize on the agent’s distance to goal in representation space. We show that
this simple approach can lead to improvement in learning as much as using hand-shaped rewards.
For each environment, we include 4 setups:

1. Sparse reward (blue): Providing an agent a small positive reward when it reaches the goal

2. Hand-shaped reward (pink): Providing an agent a hand-shaped reward at each step (hand-
shaped reward)

3. Raw distance (green): Providing an agent a negative penalty on the distance between cur-
rent state and goal state (plus sparse reward to goal for AntMaze only)

4. Embedding distance (orange): Providing an agent a negative penalty on the distance be-
tween current state and goal state in the representation space (plus control penalty on action
norm for HalfCheetah only).

5.2.1 PENDULUM

The Pendulum is a classic control
problem where a rigid arm freely
swings about a fixed center. To imi-
tate the swing-up task, we set the goal
states to have angles § € [—0.1,0.1],
where an angle of 0 means the arms
is pointing straight up. Additinally,
we consider “the goal is reached”
only after the agent manages to stay
among goal states for 5 consecutive

pendulum
T -
TP LT

T
| ! T i
qil\ i1 il matl

L] i

Success Rate

—— hand-shaped reward

."‘"} —_ spa;szdrewa;dt
steps. For hand-shaped reward, we L84 s oo ‘  vasanes
penalize the magnitude Of the angle - “’ ..‘ } 500000 1000000]5000002&(;(’1?350250000030000003500000400(5000

encourage the arm to maintain an up-

ward position. Figure 8: Illustrations of embeddings of Pendulum and

As shown in Figure EI, clustering the learning curves for different reward schemes. Embeddings
embeddings produces clusters pri- (bottom-left) cluster primarily by angle of the arm (top-left).
marily by angle. However, there is Orange curve converges significantly faster than others.
still lot of overlapping between clusters when we only consider the position of the arm, suggesting
that the arm’s velocity also plays a less important role. This hierarchy between position and velocity
was very beneficial for learning, as the agent would learn to swing up the arm first before decelerat-
ing the arm to maintain top positions. Indeed, optimizing on distance in embedding space (orange)
led to much faster learning than all other setups, including the hand-shaped rewards (pink), where as
optimizing on distance in the original space (green) leads to sub-optimal behaviors such as reducing
velocity too early.

5.2.2 ANTMAZE

Finally, in AntMaze, a four-legged robot navigate in a maze-like environment until it reaches the
goal area. Naturally, AntMaze has both the rich dynamics of a robot as well as the structure of a
maze environment, and is helpful for illustrating the power of predictive coding to both reflect the
global structure of an environment while picking the most important features. In our experiment
setup, we use a thin wall to block passage in the maze, so that a state on the other side of the wall
may appear close to the agent, but is in reality very far. We set the goal state to be the lower left
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corner of the maze; for hand-shaped rewards, we assign each state in the maze a correct direction to
move in and award the agent for moving in that particular direction.

antmaze

Success Rate

Figure [0 shows the visualization
of embeddings and learning curves.
One immediate observation is that
clusters properly divide the maze into
4 sections, and states between the
wall are now more separated; this is
similar to the embeddings in Grid-
World, where the embeddings under-
stand the true distance between dif-

peis e ferent positions in the maze. At the
embedding distance
—— raw distance

same time, even though full states

are provided (positions as well as full
joint dynamics), the clusters reflect

Figure 9: Illustrations of embeddings of AntMaze and that embeddings learn to use the po-
learning curves for different reward schemes. Embeddings sition of the agent as the most im-
(bottom-left) cluster primarily by position of the agent (top- portant feature. As a result, learn-
left). Orange curve achieves similar performance to pink ing using these embeddings (orange)

curve with smaller variance.
hand-shaped reward (pink).

6 DISCUSSION

achieves performance on par with

6.1 EMBEDDINGS AS FEATURES VS REWARD SHAPING

Mutual information maximization is notori-
ously difficult to optimize, and may easily pro-
duce noisy embeddings without sufficient train-
ing data. Our approach mitigates this problem
in two aspects. Firstly, we preprocess the em-
beddings instead of training them online, so that
the agent avoids learning on noisy embeddings
that are not fully trained. Secondly, instead of
using the embeddings as features to train on,
we use them to provide reward signals to the
agent, who still learns using the raw features.
This approach is more resilient to noises in em-
beddings, especially for policy gradient meth-
ods, since we care more about total rewards
across trajectories than the rewards of individ-
ual states.

We illustrate the above points by comparing
training with cpc features and our approach in
the Reacher environment. As shown in Fig-
ure [T0} the use of cpc embeddings as features
lead to insignificant improvements to learning,
where as using these embeddings to only pro-

vide reward signals led to the best performance.

reacher

yi "\-—"|‘va“«“«: s

reward
st

M——‘ = embedding dist:
00 g

istance
sparse reward with cpc features

250000 500000 750000 1000000 1250000 1500000 1750000 2000000
Frames

Figure 10: Illustration of learning curves for dif-
ferent setups. Learning on the original sparse re-
ward problem with embeddings as features (yel-
low) did not lead to significant learning improve-
ment, while using embeddings to provide rewards
(orange) achieved the best learning.

6.2 TEXTURE AGNOSTIC PREDICTIVE CODING

In this section, we discuss an important advantage of predictive coding: since embeddings are opti-
mized to maximize their predictive abilities, less meaningful information such as the texture of the
background from the raw observations are ignored.

This property of predictive coding makes it possible for an agent to learn in a constantly chang-
ing environment, such as a game (Bellemare et al], 2012). We showcase this property by training
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the encoder with states from the Pendulum environment with multiple backgrounds (bricks, sand,
cloth), and assess the encoder’s generalizability to new textures (such as wood). Figure [IT] con-
tains examples of textures used for training and validation, as well as the clustering results of their
corresponding embeddings. In particular, two textures resulted in very similar embeddings, even
though the encoder had never seen the wooden texture during training. We conclude that predictive
coding has learned to ignore the background, which contains less important information about the
state dynamics.

Figure 11: Illustrations of two background textures and clustering of their corresponding embed-
dings (clustered by embeddings, illustrated by mapping to position of arm). The cloth texture (left)
was used during training, while the wood texture (right) was only used during validation. Both
textures led to embeddings properly clustered by the angle of the arm.

6.3 EXPLORATION

Our proposed method relies on the quality of trajectories collected at the beginning, which in turn
depends on the initial exploration. Although in most cases, exploration with random policies or
simple goal-conditioned policies is enough to produce trajectories that expose the environment dy-
namics, there are environments with extremely long horizons or large state spaces that effective
exploration without learning the task is difficult. An example is Montezuma’s Revenge, which is
currently unsolvable without algorithms designed to tackle hard exploration (Ecoffet et al.} [2018))
or expert demonstration data (Salimans & Chen, |2018)). For future work, a direction is to train the
embeddings online, i.e. during training the agent. This way, trajectories collected may be more
relevant to the particular training task, and we could obtain high-quality embeddings (high-quality
in the sense that they are useful for the particular training task) without thorough exploration of the
environment. As discussed in the first paragraph, learning on intermediate embeddings may be un-
desirable, so the agent should initially rely purely on environment rewards, and only start receiving
rewards shaped by embeddings after the embeddings reach a certain quality mark (for CPC, this
could be checked by the InfoNCE loss, which indicates a lower bound on mutual information).
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A APPENDIX

A.1 ENVIRONMENT DESCRIPTIONS

GridWorld: The agent is a point that can move horizontally or vertically in a 2-D maze structure.
Each state observation is a compact encoding of the maze, with each layer containing information
about the placement of the walls, the goal position, and the agent position respectively. The goal
state is one in which the goal position and the agent position are the same.

HalfCheetah: The agent is a 2-d two-legged robot freely moving on a horizontal plane. Each state
observation encodes the position of the agent, the angles and the velocities of each joint. The goal
states are any states where the agent position x > 10.

Pendulum: The agent is a rigid arm moving about a fixed center by applying a force to its tip. Each
state observation encodes the angle and the velocity of the arm. The goal states are any states where
the agent achieves an angle 6 € [—0.1,0.1].

Reacher: The agent is a robotic arm with two rigid sections connected by a joint. The agent moves
about a fixed center on the plane by applying a force to each rigid section. Each state observation
encodes the angles of two sections, the position of the tip of the arm, and the direction to goal. The
goal state is one where the tip of the arm touches a certain point on the plane.

AntMaze: The agent is a four-legged robot freely moving in a maze structure. Each state observa-
tion encodes the position of the agent, the angles and the velocities of each joint. Instead of learning
from scratch, we pre-train a simple direction-conditioned walking policy and learn to navigate in
this environment. The goal states are a square area with side 2 and center (0, 0).

Table 2: Environment dimensions and horizons
Environment State/Goal Dimensions Action Dimensions Maximum Steps

GridWorld 17,17, 3) 4, 100
HalfCheetah (18,) (6) 1000
Pendulum 3, (1, 200
Reacher (11, 2, 50
AntMaze (113,) 2, 600

A.2 NETWORK PARAMETERS AND HYPERPARAMETERS FOR LEARNING
For all experiments in this paper we use a standard PPO baseline (Hill et al., |2018)) to train. We

use two fully-connected layers with output size 64 for the actor critic. We provide hyperparameters
below, and refer to Hill et al.|(2018)) for all other implementation details.

Table 3: Hyper parameters for PPO

Parameter Value
gamma 0.99
entropy coefficient  0.01
leaning rate 2.5 x 1074
clip range [—0.2,0.2]
max gradient norm 0.5
batch size 128
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A.3 TRAINING CPC

We follow the approach proposed in|Oord et al.[(2018)) to obtain predictive features from states. The
details are provided in the two tables below.

Table 4: Network details for training CPC

Environment Encoder Type Autoregressive Model Type
GridWorld 2 FC layers with output size 64 GRU with output size 256
All others 2 Cov layers with (3, 3) kernel, and stride 2 GRU with output size 256

Table 5: CPC training details
Environment No. of Trajectories Context Length Predict Length Epoch

GridWorld 200 10 10 2
HalfCheetah 500 50 50 5
Pendulum 200 10 10 10
Reacher 200 20 20 10
AntMaze 500 30 30 5

A.4 HAND-SHAPED REWARD SCHEMES

For continuous environments, we show that using predictive features provides reward signals as
informative as hand-shaped rewards, which encodes domain and task knowledge about the environ-
ment. In particular, each hand-shaped reward scheme contains information about where the goal is
and how to get there. We provide details below for each environment.

e HalfCheetah: (z;,1 — x;) — «||a||, where z; is the x position of the agent at time ¢, and
ay 1s the action input to the agent at time ¢.

e Pendulum: —(|6;]* + o |we| + 3 ||a¢ ), where 6;, w;, and a are the angle, angular velocity,
and action input at time ¢ respectively.

e Reacher: —(|[p; — py|| + o ||a¢||), where p; is the position of the tip of the arm at time ¢,
Dy 1s the position of the goal, and a; is the action input at time ¢.

o AntMaze: —((x;41 — x)cos(6:) + (yi+1 — ye)sin(6;)), where x4, y; are the x, y positions
of the agent at time ¢, and 6, is the hard-coded direction to travel in.
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A.5 EXPERIMENT RESULT FOR HALFCHEETAH

Figure [I2] shows the visualization of
embeddings of random states as well
as the comparison between different

Success Rate

n

halfcheetah

reward setups. The predictive fea-
tures focus on the most significant el-
ement of the environment: the x po-
sition of the agent, allowing us to re-
cover horizontally spaced clusters.

—— hand-shaped reward

As the plot shows, optimizing on the
~—— sparse reward . . . .
— embeding iance negative distance in embedding space

—— raw distance

Figure 12: Illustrations of embeddings of HalfCheetah and
learning curves for different reward schemes. Embeddings
(bottom-left, visualized by T-SNE) cluster by x position of
the agent (top-left, with x-aixs being x position and y-axis

being y-position of the agent).

S00000 TR0 IS0 oo o0 3000000 (Orange), Optimizing on the nega-

Frames

tive distance in raw space (green),
and optimizing hand-shaped rewards
(pink) all lead to similar perfor-
mances. While this is less convinc-
ing than other environments, we ob-
serve that optimizing negative dis-
tance in representation space is not

worse; rather, it is likely that optimizing on negative distance in raw space is already good enough,
since the x-position of the agent has the largest variance among all other features.

A.6 EXPERIMENT RESULT FOR REACHER

In the Reacher environment, a robotic
arm has two sections with a joint in
the middle. The arm’s one end is
fixed at the center of the plane, and
its goal is typically to reach a certain
point on the plane with the other end
of the arm. This can be naturally for-
mulated as a sparse reward problem
(Lanka & Wu,[2018)), where the agent
receives no reward until it reaches the
goal state. For hand-shaped reward,
we penalize the distance between the
tip of the arm and the goal point plus
the L-2 norm of agent’s action for sta-
bility.

Similar to Pendulum, embeddings of
Reacher achieves clusters primarily
by the position of the arm, as shown
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3o, 3 —— embedding distance
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Figure 13: Illustrations of embeddings of Reacher and
learning curves for different reward schemes. Embeddings
(bottom-left) cluster primarily by angles of sections of the
arm (top-left). Orange curve achieves almost-perfect per-
formance at 750k steps.

in Figure[I3](note that each axis is the angle of one section of the arm). Consequently, optimizing on
the distance in embedding space (orange) allows the agent to quickly learn to move directly towards
the goal. This turned out to be more stable than using hand-shaped reward (pink), which sometimes
led the agent to occasionally overshoot and miss the goal.
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