Under review as a conference paper at ICLR 2020

EPISODIC REINFORCEMENT LEARNING WITH ASSO-
CIATIVE MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Sample efficiency has been one of the major challenges for deep reinforcement
learning. Non-parametric episodic control has been proposed to speed up para-
metric reinforcement learning by rapidly latching on previously successful poli-
cies. However, previous work on episodic reinforcement learning neglects the
relationship between states and only stored the experiences as unrelated items. To
improve sample efficiency of reinforcement learning, we propose a novel frame-
work, called Episodic Reinforcement Learning with Associative Memory (ER-
LAM), which associates related experience trajectories to enable reasoning effec-
tive strategies. We build a graph on top of states in memory based on state tran-
sitions and develop an efficient reverse-trajectory propagation strategy to allow
rapid value propagation through the graph. We use the non-parametric associative
memory as early guidance for a parametric reinforcement learning model. Results
on Atari games show that our framework has significantly higher sample efficiency
and outperforms state-of-the-art episodic reinforcement learning models.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable performance on extensive complex do-
mains (Mnih et al.| 2015} |Lillicrap et al., [2016} [Silver et al.,|2016; | Schulman et al., 2017). Deep RL
research largely focus on parametric method, . The parametric approaches are quite sample ineffi-
cient and requires several orders of magnitude more training samples than a human. This is because
gradient-based updates are incremental and slow, and has global impacts on parameters, which leads
to catastrophic inference issue.

Recently, episodic reinforcement learning has attracted much attention for improving sample effi-
ciency of deep reinforcement learning, such as model-free episodic control (MFEC) (Blundell et al.,
2016), neural episodic control (NEC) (Pritzel et al., |2017), ephemeral value adjustments (EVA)
(Hansen et al.,|2018), and episodic memory deep g-networks (EMDQN) (Lin et al.,|2018)). Episodic
control is inspired by the psychobiological and cognitive studies of human memory (Sutherland &
Rudy| 1989 Marr et al., 1991} Lengyel & Dayan, 2008} Botvinick et al., 2019)) and follows the idea
of instance-based decision theory (Gilboa & Schmeidler, [1995). It builds a non-parametric episodic
memory to store past good experiences, and thus can rapidly latch onto successful polices when
encountering with states similar to past experiences.

However, most of the existing breakthroughs have been focusing on episodic memory and leave
the association of memory largely unstudied. Previous work usually use a tabular-like memory
and experiences are stored as unrelated items. Studies in psychology and cognitive neuroscience
(Kohonen, 2012; |Anderson & Bower, [2014)) discover that associative memory found in hippocam-
pus plays an important role in human activities, which associates past experiences by remembering
relationship between them. Inspired by this, we propose a novel associative memory based rein-
forcement learning framework to improve the sample-efficiency of reinforcement learning, called
Episodic Reinforcement Learning with Associative Memory (ERLAM), which associates related
experience trajectories to enable reasoning effective strategies. We store the best historical values
for memorized states like episodic memory, and maintain a graph on top of these states based on
state transitions at the same time. Then we develop an efficient reverse-trajectory propagation strat-
egy to allow the values of new experiences to rapidly propagate to all memory items through the
graph. Finally, we use the fast-adjusted non-parametric high values in associative memory as early

Under review as a conference paper at ICLR 2020

guidance for a parametric RL agent so that it can rapidly latch on states that previously yield high
returns instead of waiting for many slow gradient updates.

To illustrate the superiority of the associative memory in

reinforcement learning, consider a robot exploring in a ,N\‘A c
maze to seek out the apple (at place G), as shown in Fig-
ure[T} It collects two trajectory experiences starting from
place A and B, respectively. All the states of trajectory A
(the blue one) receive no reward because the agent termi-
nates at a state with a non-zero reward (at place C), while
in trajectory B (the green one) the final non-zero reward
of catching an apple (at place G) back-propagates through
the whole path. Episodic memory keeps a high value at
the intersection of two trajectories (the door) when taking
actions toward lower-right corner while recording zero
values at the other states in trajectory A. If an episodic ~ __ Episodic _ Associative ____ Past
memory based robot starts from place A, it will wander Memory Memory Experiences
around A because there are no positive values indicating
the way to goal. Thus based on the episodic memory, the
robot may eventually take a policy like the green line after
multiple attempts. However, if the robot adopts associa-
tive memory, the high value in the door collected from
trajectory B will be further propagated to the start point
A and thus the robot can correctly take the red-line policy.

Figure 1: Comparison of selected poli-
cies based on episodic memory and as-
sociative memory. An agent starts from
two place A and B to collect two expe-
riences.

To some extent, our associative memory is equivalent to automatic augmentation of counterfactual
combinatorial trajectories in memory. Thus, our framework significantly improves the sample-
efficiency of reinforcement learning. Comparisons with state-of-the-art episodic reinforcement
learning methods show that ERLAM is substantially more sample efficient for general settings of
reinforcement learning. In addition, our associative memory can be used as a plug-and-play module
and is complementary to other reinforcement learning models, which opens the avenue for further
researches on associative memory based reinforcement learning.

2 RELATED WORK

Deep Reinforcement Learning Our method is closely related to DQN (Mnih et al.,|2015). As the
seminal work of deep reinforcement learning, DQN learns a deep neural network for state-action
value function by gradient back-propagation and conduct parametric control. Following this line, a
large number of extensions have been proposed to improve the learning efficiency of the parametric
model. Double DQN (Van Hasselt et al., 2016)) alleviates the over-estimation issue of Q-Network.
Dueling network (Wang et al., 2015) separates Q-Network to two streams which predict state value
and advantage value respectively and achieves better generalization across actions. Prioritized expe-
rience replay (Schaul et al.,|2015b) changes the sampling priority of each training sample according
to its learning error. Apart from these prior improvement, many work have been proposed to accel-
erate reward propagation and back up mechanism. Optimality Tightening method(He et al., [2016)
combines the strength of DQN with a constrained optimization approach to rapidly propagate close-
by rewards. Q*(\) (Harutyunyan et al.,[2016) and Retrace()\) (Munos et al., |2016) incorporate on-
policy samples into off-policy learning targets. Noisy Net (Fortunato et al.,|2017) adds noise to the
parametric model during learning to improve the exploration ability. Distributional RL (Bellemare
et al., [2017) learns the value function as a full distribution instead of a expected value. Different
from these work, we focus on combining non-parametric memory and parametric model in this pa-
per, thus our method is complementary to these prior extensions and can be combined with them
seamlessly.

Episodic Control and Episodic Reinforcement Learning Our work is also related to episodic
control and episodic reinforcement learning. Different from the parametric paradigm in DQN,
model-free episodic control (Blundell et al.l |2016) uses a non-parametric model to store past ex-
perience and replay good trajectories and thus can quickly latch on good policies. To enhance the
capacity of memory state representation, neural episodic control (Pritzel et al., 2017) proposes

Under review as a conference paper at ICLR 2020

to make use of a differentiable neural dictionary to generate semi-tabular representation as slow-
changing keys and then retrieves fast-updating values by context-based lookup for action selection.
To better leverage trajectory nature of experience, ephemeral value adjustments method (Hansen
et al., |2018) proposes to further leverage trajectory information from replay buffer to propagate
value through time and produce trajectory-centric value estimates. Our method differs from EVA
in that we associate memory by a graph, thus we can leverage not only intra-episode but also inter-
episode information. Episodic memory is also used for accelerating the learning process of deep
reinforcement learning, which is called episodic reinforcement learning. Episodic memory deep
g-networks (Lin et al.l [2018) distills the information of episodic memory into a parametric model
by adding a regularization term in objective function and significantly boosts up the performance of
DQN. Different from these prior work which adopt either tabular memory or semi-tabular memory,
our work builds a graph on memory items based on their relationship to from a associative memory.

Graph Based Methods in Deep Reinforcement Learning Recently, several work have also been
proposed to use graph for planning in deep reinforcement learning. |[Eysenbach et al.|(2019) builds
a directed graph directly on top of states in replay buffer and run graph search to find the sequence
of waypoints, leading to many easier sub-tasks and thus improve learning efficiency. |Huang et al.
(2019) abstracts state space as a small-scale map which allows it to run high-level planning using
pairwise shortest path algorithm. Different from these prior work which use graph for planning,
our method reorganize episodic memory by a graph to allow faster reward propagation. In addition,
these graph based models rely on goal-conditioned RL (Kaelbling}, |{1993; [Schaul et al.| 2015a)) and
only demonstrate their performance in navigation-like problems, while our approach is intended for
general RL settings.

3 BACKGROUND

In the framework of reinforcement learning (Sutton & Barto, |1998), an agent learns a policy to
maximize its cumulative rewards by exploring in a Markov Decision Processes (MDP) environment.
An MDP is defined by a tuple (S,.A, P, R,~), where S is a finite set of states, .4 is a finite set of
actions available to the agent, P : S X A x & — R defines the transition probability distribution,
R is the reward function, and v € (0, 1] is the discount factor. At each time step ¢, the agent
observes state s; € S, select an action a; € A according to its policy 7 : S — A, and receives a
scalar reward 7. In the setting of finite horizon, the accumulated discounted return is calculated as,

R, = ZkT:O ~v*ri4 where T is the episode length and goal of the agent is to maximize the expected
return for each state s;.

The state-action value function Q™ (s,a) = E[R:|s: = s,a] is the expected return for executing
action a on state s and following policy 7 afterwards. DQN Mnih et al.| (2015) parameterizes this
action-value function by deep neural networks Qy(s,a) and use Q-learning (Watkins & Dayanl
1992) to learn it to rank which action at is best to take in each state s, at time step ¢. The parameters
of the value network 6 are optimized by minimizing the Lo difference between the networks output
Qo(s,a) and the Q-learning target y; = r; + v max, Q4(s¢41,a¢), where 0 are parameters of a
target network that is a older version of the value network and updated periodically. DQN uses an
off-policy learning strategy, which samples (s, at, r¢, S¢+1) tuple from a replay buffer for training.

Episodic reinforcement learning (Blundell et al.| 2016} [Pritzel et al) [2017; Hansen et al.| 2018;
Lin et al.,|2018; |[Botvinick et al.,|2019)) enables fast learning by modeling the hippocampal instance-
based learning. The key idea is to store good past experiences in a tabular-based memory and rapidly
latch onto past successful polices when encountering with similar states. Model-free episodic control
(Blundell et al., | 2016)) uses a non-parametric model that keeps the best Q values of states in a tabular-
based memory and replays the sequence of actions that so far yielded the highest return from a given
start state. At the end of each episode, the Q values in memory are updated by the greater of the
existing values and the accumulated discounted returns in the current episode. In the execution
stage, the agent selects actions according to a k-nearest-neighbours lookup in the memory table.
A number of extensions have been proposed to integrate episodic control with parametric DQN.
Neural episodic control (Pritzel et al.,2017) develops end-to-end episodic control by a differentiable
memory network. Episodic memory DQN (Lin et al., 2018)) uses episodic memory to supervise the
training of DQN. EVA (Hansen et al., |2018) shifts the value predicted by a neural network with
trajectory-centric value estimates.

Under review as a conference paper at ICLR 2020

4 EPISODIC REINFORCEMENT LEARNING WITH ASSOCIATIVE MEMORY

4.1 ASSOCIATING EPISODIC MEMORY AS A GRAPH

Similar with previous episodic reinforcement learning, we adopt an episodic memory to maintain the
historically highest values Qgc(¢(s), a) of each state-action pair, where ¢ is an embedding function
and can be implemented as a random projection or variational auto-encoders (VAE) (Kingma &
Wellingl [2013). When receiving a new state, the agent will look up in the memory and update the
values of states according to the following equation,

Que((s1),ar) « { max(Qec(¢(st), ar), Re) , if(P(se),ar) € Qrc 0

Ry , otherwise.

However, episodic memory stores states as unrelated items and does not make use of relationship
between these items. To fully exploit information in episodic memory, we further build a directed
graph G on top of items in the episodic memory to form an associative memory, as shown in Figure
2] In this graph, each node corresponds to a memory item that records the embedded vector of a
state ¢(s) and we leverage transitions of states to bridge the nodes. The graph are defined as,

G=(V,E), V=¢(s), E={s—s"|(s,a,s) is stored in memory}. 2)

Given a sampled trajectory, we temporarily add each state to the graph. We add directed edges
from the given state to every other previously memorized state that is successor of it under a certain
action. Our associative memory reorganizes the episodic memory and connects these fragmented
states that previously yielded high returns by a graph. We rewrite these stored values Qgc(¢(s), a) as
Qg(o(s),a) in our graph augmented episodic memory. In addition, we adopt a strategy of discarding
the least recently used items when the memory is full.

Key Value

O =

o/0 A

[0 =

o pun

o/@ A

® A /)

g —_:__ m — 4 OJom points
Episodic Memory Associative Memory

Figure 2: Comparison of episodic memory and associative memory.

4.2 PROPAGATING VALUES THROUGH ASSOCIATIVE MEMORY

Typical deep RL algorithms sample experience tuples uniformly from the replay buffer to update
value function. However, the way of sampling tuples neglects the trajectory nature of an agent
experience. That is say, one tuple occurs after another and so information of the next state should
be quickly propagated into the value of current state. EVA (Hansen et al., 2018) encourages faster
value propagation by introducing trajectory-centric planning (TCP) algorithm. Nonetheless, EVA
only propagates value through the current episode, which we refer to as intra-episode propagation.
Our insight here is that a same state might appear in different trajectories and such join points can

Under review as a conference paper at ICLR 2020

help connect different various trajectories. Therefore, we explicitly build the graph between states
from different trajectories in memory and thus allows inter-episode value propagation.

Since the graph over states is complicated (e.g., not a tree structure), value propagation over such
graph is always slow. To accelerate the propagating process, we propagate values using the sequen-
tial property. The pseudo code of value propagation is shown in Algorithm|l| Our general idea is to
update the values of the graph in the reverse order of each trajectory. Specifically, when adding to
a new state to the memory, we record the sequential step ID ¢ of the state at current trajectory. For
memory associating, we first sort the elements in memory by their sequential step ids in descending
order, and propagate the value from states with large sequential step ID to small one for several it-
erations until Q¢ values converge. At each update, we get all successor state-action pairs (s’, a’) of
the current one (s, a) and current reward r according to the graph G and apply max operation on suc-
cessor action a’ to propagate the values to current state-action pair. Formally, our graph augmented
memory is updated as follow:

Qg(¢(8),a) «r +’7HEZ}X Qg(¢(8/>7a/)- 3)

Since most of states at the beginning are similar across different episodes, our reverse order updating
strategy can efficiently propagate all the values of the graph.

In the previous episodic reinforcement learning with no graph built, only the values of exactly the
same or similar states can be updated. This is because in the typical update rule of episodic memory
as shown in Eq.[I] the relationship between states has been neglected. That is, episodic memory does
not leverage the information of edges E in our graph G. Consequently, stored values in episodic
memory often violate bellman equation. On the contrary, our associative memory allows efficient
value propagation through the edges of the graph to compute the more accurate values for each state.

Algorithm 1 Value propagation in Associative Memory

h: embedded vector of state, h = ¢(s)
G < Sort nodes in graph G by sequential step ID ¢ in descending order
repeat
form=1...|G|do
Get current state-action pair (s, a) = (S, am)
Get successor state embedding s’ and action o’ using graph G.
Update graph augmented memory using Eq.[3]
end for
until Qg converges

4.3 LEARNING WITH ASSOCIATIVE MEMORY

The way of building associative memory can also be viewed as a way of counterfactual experience
augmentation. As shown in Figure[2] the same states might appear in N > 1 trajectories. Vanilla
episodic memory maps such states to highest values among N trajectories, while our associative
memory regards such states as join points to connect different trajectories, leading to totally N2
trajectories. This is equivalent to sample more combinatorial trajectories from environments, and
thus can significantly improve sample efficiency of RL algorithms.

Our associative memory can be applied to both learning and control phase. In this paper, we use our
associative memory as a guidance for the learning of Q function. Specifically, we use the associative
memory as regularization term of objective function to supervise the learning of Q-network. The
Q-network is learned by minimized the following objective function:

Lo = E(s,a,s’,r)ND [(T + ymgx Qé(sla CL) - Q@(Sv a))z + A(Qg(é(s)a a) - Q9(57 CL))2:|) “4)

where X is the weight of the regularization term, 6 represents parameters of parametric Q-network.

Similar with DQN (Mnih et al., 2015), we also adopt a target network parameterized by 6 to stabi-
lize the learning process. Through the combination of parametric and non-parametric term, we can

Under review as a conference paper at ICLR 2020

efficiently guide the learning of a conventional Q-network by the fast-adjusted high values in asso-
ciative memory so that the agent can rapidly latch on strategies that previously yield high returns
instead of waiting for many steps of slow gradient update. The pseudo code of our method is shown
in Algorithm 2]

Algorithm 2 ERLAM: Episodic Reinforcement Learning with Associative Memory

D: Replay buffer.

G: Graph (Associative memory).

T,: Trajectory length of e-th episode.
K Associate frequency.

for Episode numbere =1... FE do
fort=1...7T.do
Receive initial observation s; from environment with state embedding h; = ¢(s¢).
a; < e-greedy policy baesd on Qy(s¢, a)
Take action a,, receive reward r; and next state S;1.
Update Qg using Eq[1]if (hy,a;) € G
Append (ht, A, Tt, t, Rt) to g if (ht, at) ¢ g
Append (s, at, ¢, 5¢41) to D.
if ¢ mod update_freq == 0 then
Sample training experiences (s, a, r, t, R) from D
Retrieve Qg (4(s), a) from associative memory
Update parameter 6 using Eq.]
end if
end for
if e mod K == 0 then
Run Algorithm|[I]to update Qg
end if
end for

4.4 CONNECTION TO GRAPH-BASED DEEP REINFORCEMENT LEARNING

When the general RL setting used in our approach degenerates to a setting of navigation-like task
that is usually adopted by goal-conditional RL (Kaelbling} |{1993; [Schaul et al., 2015a)), the update
target of associative memory in Eq.[3| y = r + vy max, Qg(é(s’), a’) can be rewritten as,

o , if s’ is a terminal state, 5)
Y=\ ymaxe Qg(o(s'),a’) , otherwise.

Optimizing with target in Eq. [5]is equivalent to finding the shortest path in the graph of all states.
In this case, algorithmﬂ]is analogous to Bellman-Ford algorithm (Bellman, [1958), which is proved
that the value can converge in limited iterations. In the context of goal-conditional RL, some graph-
based methods (Huang et al., 2019} Eysenbach et al.,2019)) also calculated shortest path. They focus
on a graph of waypoints learned by goal-conditional RL instead of memorized states that previously
yield high returns. In addition, they use a parametric approach for value approximation, while we
develop a non-parametric approach to improve sample efficiency of a parametric RL agent.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

To evaluate the sample efficiency of our algorithm, we conduct experiments on the benchmark suite
of Atari games from the Arcade Learning Environment (ALE;Bellemare et al.| (2013)), which offer
various scenes to test RL algorithms over different settings. We follow the same setting for network
architecture and all hyper-parameters as DQN (Mnih et al., 2015)). The raw images are resized to
an 84 x 84 grayscale image s; and 4 consecutive frames are stacked into one state. The Q value
network alternates convolutions and ReLUs followed by a 512-unit fully connected layer and an
output layer whose size is equal to the number of actions in each game. Denote Conv(W, F, S) as
the convolutional layer with the number of filters W, kernel size F and stride S. The 3 convolutional

Under review as a conference paper at ICLR 2020

5700%
2633%
ERLAM (10M)

2110%
mmE EMDQN (40M)

200%

500%

400%

300%

- I III

: .
S L x & X 0 2 ¥ s o o @© T & £ T s 5 & s T &
§ £ F &y g E ;s SF 8 FEEF S EFES S8 F S FF 52
s & 5§ 5§ £ ¥ T ¢ £ 2 T N g < &£ ¢ £ ¥ £ g 3 § ¢ g
=z O g v g £ « x S & o O 5
§ F § & F S F ¢ < & - 2 25 S 4§ ¢ 58 8¢
3 € F £ £ g 5 8 8 & g 2 & 48 g £ £ &
g § @ F @ 5 ~ o & | §F &
Q g > (e) S <
§
£

o

Figure 3: Comparison between ERLAM (i.e., DQN with associative memory) and EMDQN (i.e.,
DQN with episodic memory) using normalized scores as shown in Eq.[6] Bars indicate how much
each algorithm outperforms the DQN (i.e., DQN with no memory) agent. Higher is better.

layers can be indicated as Conv(32,8,4), Conv(64,4,2), and Conv(64,3,1). We used the RMSProp
algorithm (Tieleman & Hinton, [2012)) with learning rate o = 0.00025 for gradient descent training.
The discount factor + is set to 0.99 for all games. We use annealing e-greedy policies from 1.0 to

0.1 in training stage while fixing e = 0.05 during evaluation.

For associative memory, we also use the same settings for all game. We set the value of A as 0.3
and associate frequency K as 50. The memory size is set as 1 million. We use random projection
technique and project the states into vectors with dimension of d = 4. For efficient table lookup, we

build a kd-tree for these low-dimension vectors.

5.2 RESULTS ON ATARI GAMES
We largely follow the training and evaluation protocol as (Mnih et al., 2015). We train our agents
for 10 epochs, each containing 1 million frames, thus 10 million frames in total. For each game, we
evaluate our agent at the end of every epoch for 0.5 million million frames, with each episode up to
18000 frames and start the game with up to 30 no-op actions to provide random starting positions

for the agent.
In our experiments, we compare ERLAM with episodic reinforcement learning baselines, MFEC

(Blundell et al., 2016)), NEC (Pritzel et al.| [2017), EMDQN (Lin et al., 2018), EVA (Hansen et al.,
2018), as well as an ablation (i.e., DQN with no associative memory). MFEC directly use the
non-parametric episodic memory for action selection, while NEC, EMDQN and EVA combine non-
parametric episodic memory and a parametric Q-network. Different from previous work, ERLAM

adopts associative memory to guide the learning of a Q-network.

We tested ERLAM on 25 popular and challenging Atari games. To evaluate our approach, we follow
Wang et al.| (2015) and measure improvement in percentage in score over the better of human and

DQN agent scores for both ERLAM and EMDQN:
Scoreagent — Scorepon ©)

max{Scorepuman, SCOrepoN } — SCOrerandom

To test the sample efficiency of our method, we limit our training data in 10 million frames and
compare with state-of-the-art results on episodic RL (i.e., EMDQN (Lin et al.| [2018))) , which are
trained with 40 million frames and reported in their original paper. The results are shown in Figure[3]
We found that even though our agent uses 4 time less training samples than EMDQN, ERLAM still
outperforms EMDQN on 17 games. It demonstrates that associative memory can efficiently guide
the learning of a parametric RL agent and our framework of combining associative memory with
parametric RL can achieve significantly better sample efficiency than existing RL algorithms. We
also compare the overall performance (mean and median) of ERLAM with other methods in Table[T]

We found that ERLAM significantly outperforms all baselines.

Under review as a conference paper at ICLR 2020

DON | A3C | MFEC | NEC | EMDQN(40M) | Prior. DQN | EVA | ERLAM
Mean 83.6 | 40.1 71.7 106.1 250.6 116.6 172.2 515.4
Median | 16.0 6.9 40.9 53.3 95.5 323 39.2 103.5

Table 1: Performance comparison with previous methods. All agents are trained using 10 million
frames except from EMDQN which is trained with 40 million frames.

Atlantis BattleZone StarGunner BankHeist

re Per Episode

. 3 s 3 2 . 6 s 0 2 . 6 8 2 . 6
Millions of Frames Millions of Frames. Millions of Frames Millions of Frames

Atlantis BattleZone StarGunner BankHeist

Average Value of States in Memon

wo 10 20 20 X s 100 150 200 o0 150 20 250 ° s w00 150 200
Plot Number Plot Number Plot Number Plot Number

Figure 4: Examples of learning curves on 10 million frames compared with EMDQN and DQN.
The top row shows average scores per episode and the bottom row shows average values of states in
memory per Plot Number. One Plot Number is equivalent to about 30K frames. Note that 0 indicates
the first million.

To gain better understanding of our superior performance, we further plot learning curves (Figure
Ef[) on four games, which include three general good cases (Atlantis, BattleZone, StarGunner) and
a bad case (BankHeist) to demonstrate when associative memory works extremely well and when
it is not particularly effective. In addition, we plot the average values of states in memory (Figure
[) for better revealing the performance difference on game scores. Across most games, ERLAM is
significantly faster at learning than EMDQN and DQN, but ERLAM only has a slightly better per-
formance than EMDQN on BankHeist. The reasons lie in two folds. Firstly, there are more crossed
experiences on Atlantis, BattleZone, StarGunner than BankHeist, and thus on the first three games
the values computed by associative memory are significantly larger than those in episodic memory.
Secondly, we observe that the background objects in BankHeist have abnormally changeable ap-
pearance and complex behaviors, which are intractable for memory based methods (e.g., MFEC,
NEC, EMDQN and ERLAM) especially with a simple random projection embedding function for
state feature abstraction (we also discussion this in Conclusion Section). It also accounts for the
reason why ERLAM and EMDQN have similar performance with DQN.

6 CONCLUSION

In this paper, we propose a biologically inspired sample efficient reinforcement learning framework,
called Episodic Reinforcement Learning with Associative Memory (ERLAM). Our method explic-
itly organizes memorized states as a graph. We develop an efficient reverse-trajectory propagation
strategy to allow the values of new experiences rapidly propagate to all memory items through the
graph. Experiments in Atari games demonstrate that our proposed framework can significantly im-
prove sample efficiency of current reinforcement learning algorithms.

In the future, there are some interesting research directions that can be pursued within our proposed
framework. Firstly, in this paper, following the work of [Blundell et al.| (2016) and |Lin et al.| (2018},
our state embedding function ¢ is implemented as random projection. It is possible to incorporate
advanced representation learning approaches that can capture useful features into our framework to
support more efficient memory retrieval and further boost up the performance. Secondly, existing
episodic reinforcement learning algorithms mainly focus on value-based methods. It will be an inter-
esting future work to extend the episodic memory to policy-based methods. Thirdly, we instantiate
our associative memory in the learning phase in this paper. However, associative memory can also
be used in explicit episodic control to further enhance exploitation.

Under review as a conference paper at ICLR 2020

REFERENCES
John R Anderson and Gordon H Bower. Human associative memory. Psychology press, 2014.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 449-458. JMLR. org, 2017.

Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87-90, 1958.

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016.

Mathew Botvinick, Sam Ritter, Jane X Wang, Zeb Kurth-Nelson, Charles Blundell, and Demis
Hassabis. Reinforcement learning, fast and slow. Trends in cognitive sciences, 2019.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridg-
ing planning and reinforcement learning. arXiv preprint arXiv:1906.05253, 2019.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

Itzhak Gilboa and David Schmeidler. Case-based decision theory. The Quarterly Journal of Eco-
nomics, 110(3):605-639, 1995.

Steven Hansen, Alexander Pritzel, Pablo Sprechmann, André Barreto, and Charles Blundell. Fast
deep reinforcement learning using online adjustments from the past. In Advances in Neural In-
formation Processing Systems, pp. 10567-10577, 2018.

Anna Harutyunyan, Marc G Bellemare, Tom Stepleton, and Rémi Munos. Q(\) with off-policy
corrections. In International Conference on Algorithmic Learning Theory, pp. 305-320. Springer,
2016.

Frank S He, Yang Liu, Alexander G Schwing, and Jian Peng. Learning to play in a day: Faster deep
reinforcement learning by optimality tightening. arXiv preprint arXiv:1611.01606, 2016.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. arXiv preprint arXiv:1908.05451, 2019.

Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary results. In Pro-
ceedings of the tenth international conference on machine learning, volume 951, pp. 167-173,
1993.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Teuvo Kohonen. Self-organization and associative memory, volume 8. Springer Science & Business
Media, 2012.

Maité Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. In Advances
in neural information processing systems, pp. 889-896, 2008.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations, 2016.

Zichuan Lin, Tiangi Zhao, Guangwen Yang, and Lintao Zhang. Episodic memory deep g-networks.
arXiv preprint arXiv:1805.07603, 2018.

Under review as a conference paper at ICLR 2020

David Marr, David Willshaw, and Bruce McNaughton. Simple memory: a theory for archicortex.
In From the Retina to the Neocortex, pp. 59-128. Springer, 1991.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054—1062,
2016.

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2827-2836. JIMLR.
org, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International Conference on Machine Learning, pp. 1312-1320, 2015a.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Robert J Sutherland and Jerry W Rudy. Configural association theory: The role of the hippocampal
formation in learning, memory, and amnesia. Psychobiology, 17(2):129-144, 1989.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26—
31, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.

Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279-292, 1992.

10

	Introduction
	Related Work
	Background
	Episodic Reinforcement Learning with Associative Memory
	Associating episodic memory as a graph
	Propagating values through associative memory
	Learning with associative memory
	Connection to graph-based deep reinforcement learning

	Experiments
	Experiment setting
	Results on Atari games

	Conclusion

