
Under review as a conference paper at ICLR 2020

PROVABLE REPRESENTATION LEARNING FOR IMITA-
TION LEARNING VIA BI-LEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

A common strategy in modern learning systems is to learn a representation which
is useful for many tasks, a.k.a, representation learning. We study this strategy
in the imitation learning setting where multiple experts trajectories are available.
We formulate representation learning as a bi-level optimization problem where
the“outer” optimization tries to learn the joint representation and the “inner” op-
timization encodes the imitation learning setup and tries to learn task-specific pa-
rameters. We instantiate this framework for the cases where the imitation setting
being behavior cloning and observation alone. Theoretically, we provably show
using our framework that representation learning can reduce the sample complex-
ity of imitation learning in both settings. We also provide proof-of-concept exper-
iments to verify our theoretical findings.

1 INTRODUCTION

Humans can often learn from experts quickly and with a few demonstrations and we would like
our artificial agents to do the same. However, even for simple imitation learning tasks, the current
state-of-the-art method requires thousand of demonstrations. Humans do not learn new skills from
scratch. We can summarize learned skills, distill them and build a common ground, a.k.a, represen-
tation that is useful for learning future skills. Can we build an agent to do the same?

The current paper studies how to apply representation learning to imitation learning. Specifically,
we want to build an agent that is able learn a representation from multiple experts’ demonstrations,
so that the agent uses this representation to reduce the number of demonstrations required for a new
imitation learning task. While several attempts that aim to build agents that can quickly adapt to
new tasks are proposed (Duan et al., 2017; Finn et al., 2017; James et al., 2018), none of them, to
our knowledge, give provable guarantees showing the benefit of using past experience. Furthermore,
they do not focus on learning a representation. See Section 7 for more discussions.

In this paper, we propose a simple and principled framework to tackle this problem. The main
idea is to use bi-level optimization formulation where the “outer” optimization tries to learn the
joint representation and the “inner” optimization encodes the imitation learning setup and tries to
learn task-specific parameters. In particular, the inner optimization is flexible enough to allow the
agent to interact with the environment. Furthermore, the framework allows us to do a rigorous
analysis to show provable benefits of representation learning for imitation learning. With this general
framework at hand, we make the following concrete contributions:

• We first instantiate our framework in the setting where the agent can observe expert’s actions and
try to find a policy that match the expert’s policy, a.k.a, behavior cloning. This setting can be
viewed as a straightforward extension of representation learning via supervised learning (Maurer
et al., 2016). We show in this setting that with sufficient number of experts (with possibility
different reward functions), the agent can learn a representation that provably reduces the sample
complexity for a new target imitation learning task.

• Next, we consider a more challenging setting where the agent cannot observe experts’ actions
but only their states, a.k.a., the observation alone setting. We set the inner optimization as a min-
max problem. Notably, this min-max problem requires the agent to interact with the environment
to collect samples. Again, we show that with sufficient number of experts, the agent can learn
a representation that provably reduces the sample complexity for a target task where the agent
cannot observe actions from either source experts and the target expert.

1



Under review as a conference paper at ICLR 2020

• We conduct experiments to verify the effectiveness of our approach. We first use our framework
to learn a representation and apply it to two downstream target tasks, behavior cloning and policy
optimization. In these settings, we observe that by learning representations, the agent can learn a
good policy with fewer samples.

2 PRELIMINARIES

Markov Decision Processes (MDPs): LetM = (S,A, P, c, ν) be an MDP, where S is the state
space, A is the finite action space with |A| = K, H ∈ Z+ is the planning horizon, P : S × A →
4 (S) is the transition function, C : S × A → R is the cost function and ν ∈ 4(S) is the initial
state distribution. We assume that cost is bounded by 1, i.e. c(s, a) ≤ 1,∀s ∈ S, a ∈ A. This is a
standard regularity condition used in many theoretical reinforcement learning work. A (stochastic)
policy is defined as π = (π1, . . . , πH), where πh : S → 4(A) prescribes a distribution over action
for each state at level h ∈ [H]. For a stationary policy, we have π1 = · · · = πH = π. A policy
π induces a random trajectory s1, a1, s2, a2, . . . , sH , aH where s1 ∼ ν, a1 ∼ π1(s), s2 ∼ Ps1,a1
etc. Let νπh denote the distribution over S induced at level h by policy π. The value function
V π
h : S → R is defined as

V π
h (sh) = E

[
H∑
i=h

c(si, ai) | ai ∼ πi(si), si+1 ∼ Psi,ai

]
and the state-action function Qπ

h (sh, ah) is defined as Qπ
h (sh, ah) = Esh+1∼Psh,ah [V π

h (sh+1)].
The goal is to learn a policy π that minimizes the expected cost J(π) = Es1∼νV π

1 (s1). We define
the Bellman operator at level h for any policy π as Γπ

h : RS → RS , where for s ∈ S and g ∈ RS ,

(Γπ
h g)(s) := Ea∼πh(s),s′∼Ps,a [g(s′)] (1)

Multi-task Imitation learning: Now we formally describe the problem we want to study. We
assume there are multiple tasks (MDPs) sampled i.i.d. from a distribution η. A task µ ∼ η is an
MDP Mµ = (S,A, H, P, cµ, νµ); all tasks share everything except the cost function and initial
state distribution. For every task µ, π∗µ = (π∗1,µ, . . . , π

∗
H,µ) is an expert policy that the learner will

have access to in the form of trajectories induced by that policy. The trajectories may or may not
contain expert’s actions. These correspond to two settings that we discuss in more detail in Section 4
and Section 5. The distributions of states induced by this policy at different levels are denoted by

{ν∗1,µ, . . . , ν∗H,µ} and the average state distribution as ν∗µ = 1
H

H∑
h=1

ν∗h,µ. We define V ∗h,µ to be the

value function of π∗µ and Jµ to be the expected cost function for task µ. We will drop the subscript µ
whenever the task at hand is clear from context. Of interest is also the special case where the expert
policy π∗µ is a stationary policy.

Representation learning: In this work, we wish to learn policies from a function class of the form
Π = Φ ◦ F , where Φ ⊆ {φ : S → Rd | ‖φ(s)‖2 ≤ R} is a class of bounded norm representation
functions mapping states to vectors and F ⊆ {f : Rd → ∆(A)} is a class of functions mapping
state representations to distribution over actions. We will be using linear functions, i.e. F = {x →
softmax(Wx) | W ∈ RK×d, ‖W1‖2, . . . , ‖WK‖2 ≤ 1}. We denote a policy parametrized by
φ ∈ Φ and f ∈ F by πφ,f , where πφ,f (a|s) = f(φ(s))a. In some cases, we may also use the policy
πφ,f (a|s) = I{a = arg max

a′∈A
f(φ(s))a′}1. Denote Πφ = {πφ,f : f ∈ F} to be the class of policies

that use φ as the representation function.

Given demonstrations from expert policies for T tasks sampled independently from η, we wish to
first learn representation functions (φ̂1, . . . , φ̂H) so that we can use a few demonstrations from a
new task µ ∼ η and learn a policy π = (π1, . . . , πH) that uses the learned representations, i.e.
πh ∈ Πφ̂h , such that has average cost of π is not too far away from π∗. In the case of stationary
policies, we need to learn just a single φ by using the tasks and learn π ∈ Πφ for a new task. The
hope is that data from multiple tasks can be used to learn a complicated function φ ∈ Φ first, thus
requiring only a few samples for a new task to learn a linear policy from the class Πφ.

1Break ties in any way

2



Under review as a conference paper at ICLR 2020

Gaussian complexity: As in Maurer et al. (2016), we measure the complexity of a function class
H ⊆ {h : X → Rd} on a set X = (X1, . . . , Xn) ∈ Xn by using the following Gaussian average

G(H(X)) = E

sup
h∈H

d,n∑
i=1
j=1

γijhi(Xj) | Xj

 (2)

where γij are independent standard normal variables. Bartlett & Mendelson (2003) also used Gaus-
sian averages to show some generalization bounds.

3 BI-LEVEL OPTIMIZATION FRAMEWORK

In this section we introduce our framework and give an high-level description of the conditions
under which this framework gives us statistical guarantees. Our main idea is to phrase learning
representations for imitation learning as the following bi-level optimization

min
φ∈Φ

L(φ) := E
µ∼η

min
π∈Πφ

`µ(π) (3)

Here `µ is the inner loss function that penalizes π being different from π∗µ for the task µ. In general,
one can use any loss `µ that is used for single task imitation learning, e.g. for the behavioral cloning
setting (cf. Section 4), `µ is a classification like loss that penalizes the mismatch between predictions
by π∗ and π, while for the observation only setting (cf. Section 5) it is some measure of distance
between the state visitation distributions induced by π and π∗. The outer loss function is over the
representation φ. The use of bi-level optimization framework naturally enforces policies in the inner
optimization to share the same representation.

While Equation 3 is formulated in terms of the distribution η, in practice we only have access to
few samples for T tasks; let x(1), . . . ,x(T ) denote samples from tasks µ(1), . . . , µ(T ) sampled i.i.d.
from η. We thus learn the representation φ by minimizing empirical version of Equation 3.

L̂(φ) =
1

T

T∑
i=1

min
π∈Πφ

`x
(i)

(π) =
1

T

T∑
i=1

`x
(i)

(πφ,x
(i)

)

where `x is the empirical loss on samples x and πφ,x = arg minπ∈Πφ `
x(π) corresponds to a task

specific policy that uses a fixed representation φ.

Our goal then is to show that for a new task µ ∼ η, the policy πφ̂,x learned by using samples x from
the task µ has low expected cost Jµ, i.e.,
Theorem 3.1 (Informal theorem). With reasonable probability over the sampling of train task data

E
µ∼η

E
x
Jµ(πφ̂,x)− E

µ∼η
Jµ(π∗µ) is small

Now we explain under what conditions our framework can give Theorem 3.1. At a high level, we
need three properties to show such a guarantee:

1. `x(π) concentrates to `x(π) with few samples from the task µ (not polynomial in |S|, but some
complexity measure of function approximation class);

2. a small value of `µ(π) implies a small value for Jµ(π)− Jµ(π∗µ);
3. if φ and φ′ are “similar” representations then minπ∈Πφ `

µ(π) and minπ∈Πφ′ `
µ(π) are close.

The first property is some standard condition to guarantee within-task sample efficiency. The second
property ensures matching the behavior of the expert ensures low cost. This is a standard condition
in imitation learning. The third property is special for representation learning and ensures that the
empirical loss for T tasks is a good estimate for the average loss on tasks sampled from η.

In the next section, we will describe representation learning for behavioral cloning as an instantiation
of the above framework and describe the various components of the framework. Furthermore we
will describe the results and give a proof sketch to show how the aforementioned properties help
us show our final guarantees. The guarantees for this setting follow almost directly from results
in Maurer et al. (2016) and Ross et al. (2011). Later in Section 5 we describe the same for the
observations alone setting which is more non-trivial.

3



Under review as a conference paper at ICLR 2020

4 REPRESENTATION LEARNING FOR BEHAVIORAL CLONING

Choice of `µ: We first specify the inner loss function in the bi-level optimization framework. In
the single task setting, the goal of behavioral cloning (Syed & Schapire, 2010; Ross et al., 2011)
is to use expert trajectories of the form τ = (s1, a1, . . . , sH , aH) to learn a stationary policy2 that
tries to mimic the decisions of the expert policy on the states visited by the expert. For a task µ,
this reduces to a supervised classification problem that minimizes a surrogate to the following loss
`µ0−1(π) = Es∼ν∗µ,a∼π∗µ(s)I{π(s) 6= a}. We abuse notation and denote this distribution over (s, a)

for task µ as µ; so (s, a) ∼ µ is the same as s ∼ ν∗µ, a ∼ π∗µ(s). Prior work (Syed & Schapire, 2010;
Ross et al., 2011) have shown that a small value of `µ0−1(π) implies a small difference J(π)−J(π∗).
Thus for our setting, we choose `µ to be of the following form

`µ(π) = E
s∼ν∗µ,a∼π∗µ(s)

`(π(s), a) = E
(s,a)∼µ

`(π(s), a) (4)

where ` is any surrogate to 0-1 loss I{a 6= arg max
a′∈A

π(s)a′} that is Lipschitz in φ(s). In this work

we consider the logistic loss `(π(s), a) = − log(π(s)a).

Learning φ from samples: Given expert trajectories for T tasks µ(1), . . . , µ(T ) we construct a
dataset X = {x(1), . . . ,x(T )}, where x(t) = {(stj , atj)}nj=1 ∼ (µ(t))n is the dataset for task t.
Details of the dataset construction are provided in Section C.1. Let S denote the set of states {stj}.
Instantiating our framework, we learn a good representation by solving φ̂ = arg min

φ∈Φ
L̂(φ), where

L̂(φ) :=
1

T

T∑
t=1

min
π∈Πφ

1

n

n∑
j=1

`(π(stj), a
t
j) =

1

T

T∑
t=1

min
π∈Πφ

ˆ̀x(t)

(π) (5)

where `x is loss on samples x = {(sj , aj)}nj=1 defined as `x(π) = 1
n

∑n
j=1 `(π(sj), aj).

Evaluating representation φ̂: A learned representation φ̂ is tested on a new task µ ∼ η as follows:
draw samples x ∼ µn using trajectories from π∗µ and solve πφ̂,x = arg min

π∈Πφ̂

ˆ̀x(π). Does πφ̂,x have

expected cost Jµ(πφ̂,x) not much larger than Jµ(π∗µ)? The following theorem answers this question.
We make the following two assumptions to prove the theorem.
Assumption 4.1. The expert policy π∗µ is deterministic for every µ ∈ supp(η).

Assumption 4.2 (Policy realizability). There is a representation φ∗ ∈ Φ such that for every µ ∈
supp(η), there is a policy πµ ∈ Πφ∗ such that πµ(s)π∗µ(s) ≥ 1− γ,∀s ∈ S for some γ < 1/2.

The first assumption holds if π∗µ is aiming to maximize some cost function. The second assumption
is for representation learning to make sense. We need to assume the existence of a common repre-
sentation φ∗ that can approximate all expert policies and γ measures the expressiveness of Φ. Now
we present our first main result.

Theorem 4.1. Let φ̂ ∈ arg min
φ∈Φ

L̂(φ). Under Assumptions 4.1,4.2, with probability 1 − δ over the

choice of dataset X, we have

E
µ∼η

E
x∼µn

Jµ(πφ̂,x)− E
µ∼η

Jµ(π∗µ) ≤ H2(2γ + εgen)

where εgen = cG(Φ(S))
T
√
n

+ c′RK√
n

+ c′′
√

ln(4/δ)
T , for some small constants c, c′, c′′.

The upper bound has two terms. The first term H2γ is small as long as the representation class Φ
is expressive enough. The second term, εgen measures the sample complexity. While c′RK√

n
and

c′′
√

ln(4/δ)
T are standard for learning linear predictor and a failure probability bound over η, the

2We can easily extend the theory to non-stationary policies

4



Under review as a conference paper at ICLR 2020

term c
G(Φ({stj}))

T
√
n

is from the use of representation learning. We remark that when using end to

end learning with the policy class Π, the generalization bound is roughly of the order G(Φ({sj})
n .

Note Gaussian average of G(Φ({stj})) is typically O
(√

nT
)

and of G(Φ({sj})) is of O (
√
n).

Therefore, when T is larger than n, representation learning help reduce sample complexity. This
phenomenon is also observed in Maurer et al. (2016). We give a proof sketch for Theorem 4.1
below; the full proof is deferred to Appendix A.

4.1 PROOF SKETCH

The proof has two main steps. In the first step we bound the error due to use of samples. The
policy πφ,x that is learned on samples x ∼ µn is evaluated on the distribution µ and the average loss
incurred by representation φ across tasks is L̄(φ) = E

µ∼η
E

x∼µn
`µ(πφ,x).

On the other hand, if the learner had complete access to the distribution η and distributions µ
for every task, then the ideal representation would be φ∗ = arg minφ∈Φ L(φ), where L(φ) :=

E
µ∼η

min
π∈Πφ

`µ(π). Using the results from Maurer et al. (2016), we can prove the following about φ̂

Lemma 4.2. With probability 1− δ over the choice of X, φ̂ ∈ arg min
φ∈Φ

L̂(φ) satisfies

L̄(φ̂) ≤ min
φ∈Φ

L(φ) + c
G(Φ({stj}))

T
√
n

+ c′
RK√
n

+ c′′
√

ln(1/δ)

T

The proof of this lemma is provided in the appendix for completeness.

The second step of the proof is connecting the loss L̄(φ) and the average cost Jµ of the policies
induced by φ for tasks µ ∼ η. This can obtained by using the connection between the surrogate 0-1
loss `µ and the cost Jµ that has been established in prior work (Ross et al., 2011; Syed & Schapire,
2010). The following lemma uses the result for deterministic expert policies from Ross et al. (2011).

Lemma 4.3. Given a representation φ with L̄(φ) ≤ ε. Let x ∼ µn be samples for a new task µ ∼ η.
Let πφ,x be the policy learned by behavioral cloning on the samples, then under Assumption 4.1

E
µ∼η

E
x∼µn

Jµ(πφ,x)− E
µ∼η

Jµ(π∗µ) ≤ H2ε

This suggests that making L̄ small is good enough. A simple implication of Assumption 4.2 that
minφ∈Φ L(φ) ≤ L(φ∗) ≤ γ, along with the above two lemmas completes the proof.

5 REPRESENTATION LEARNING FOR OBSERVATIONS ALONE SETTING

Now we consider the setting where we cannot observe experts’ actions but only their states. As in
Sun et al. (2019), we also solve a problem at each level; consider a level h ∈ [H].

Choice of `µh: Let π∗µ = {π∗1,µ, . . . , π∗H,µ} be the sequence of expert policies (possibly stochastic)
at different levels for the task µ. Let ν∗h,µ be the distribution induced on the states at level h by
the expert policy π∗µ. The goal in imitation learning with observations alone (Sun et al., 2019) is
to learn a policy π = (π1, . . . , πH) that matches the distributions νπh with ν∗h for every h, w.r.t. a
discriminator class G3 that contains the true value functions V ∗1 , . . . , V

∗
H and is approximately closed

under the Bellman operator of π∗. Instead, in this work we learn π that matches the distributions
πh · ν∗h and ν∗h+1 for every h w.r.t. to a class G ⊆ {g : S → R, |g|∞ ≤ 1} that contains the value
functions and has a stronger Bellman operator closure property. For every task µ, `µh is defined as

`µh(π) = max
g∈G

[ E
s∼ν∗h,µ

E
a∼π(s)
s̃∼Ps,a

g(s̃)− E
s̄∼ν∗h+1,µ

g(s̄)] (6)

3If G contains all bounded functions, then it reduces to minimizing TV between νπh and ν∗
h.

5



Under review as a conference paper at ICLR 2020

= max
g∈G

[ E
s∼ν∗h,µ

E
a∼U(A)
s̃∼Ps,a

Kπ(a|s)g(s̃)− E
s̄∼ν∗h+1,µ

g(s̄)]

where we rewrite `µh by importance sampling in the second equation; this will be useful to get
an empirical estimate. While our definition of `µh differs slightly from the one used in Sun et al.
(2019), using similar techniques, we will show that small values for `µh(πh) for every h ∈ [H] will
ensure that the policy π = (π1, . . . , πH) will have expected cost Jµ(π) close to Jµ(π∗µ). We abuse
notation, and for a task µ we denote µ = (µ1, . . . , µH) where µh is the distribution of (s, a, s̃, s̄)
used in `µh; thus (s, a, s̃, s̄) ∼ µh is equivalent to s ∼ ν∗h,µ, a ∼ U(A), s̃ ∼ Ps,a, s̄ ∼ ν∗h+1,µ.

Learning φh from samples: We assume, 1) access to 2n expert trajectories for T independent
train tasks, 2) ability to reset the environment at any state s and sample from the transition P (·|s, a)
for any a ∈ A. The second condition is satisfied in many problems equipped with simulators.
Using the sampled trajectories for the T tasks {µ(1), . . . , µ(T )} and doing some interaction with
environment, we get the following dataset X = {X1, . . . ,XH} where Xh is the dataset for level
h. Specifically, Xh = {x(1)

h , . . . ,x
(T )
H } where x

(i)
h = {(sij , aij , s̃ij , s̄ij)}nj=1 ∼ (µ(i))n. Additionally

we denote Sh = {sij}
T,n
i=1,j=1 to be all the s-states in Xh, S̃h and S̄h are similarly defined. Details

about how this dataset is constructed from expert trajectories and interactions with environment is
provided in Section C.2. We learn the representation φ̂h = arg min

φ∈Φ
L̂h(φ), where

L̂h(φ) =
1

T

T∑
i=1

min
π∈Πφ

max
g∈G

1

n

n∑
j=1

[Kπ(aij |sij)g(s̃ij)− g(s̄ij)] =
1

T

T∑
i=1

min
π∈Πφ

ˆ̀x(i)

h (π)

where for dataset x = {(sj , aj , s̃j , s̄j)}nj=1, ˆ̀x
h(π) := max

g∈G
1
n

n∑
j=1

[Kπ(aj |sj)g(s̃j) − g(s̄j)]. Note

that because of the maxg∈G , ˆ̀x
h is no longer an unbiased estimator of `µh when x ∼ µnh .

Evaluating representations φ̂1, . . . , φ̂H : Learned representations are tested on a new task µ ∼
η as follows: get samples x = (x1, . . . ,xH)4 for all levels using trajectories from π∗µ, where

xh ∼ µnh . For each level h, learn πφ̂h,xh = arg minπ∈Πφ̂
ˆ̀xh
h (π) and consider the policy πφ̂,x =

(πφ̂1,x1 , . . . , πφ̂H ,xH ). Before presenting the guarantee for πφ̂,x, we introduce a notion of Bellman
error that will show up in our results. For a policy π = (π1, . . . , πH) and an expert policy π∗ =
(π∗1 , . . . , π

∗
H), we define the inherent Bellman error

επbe := max
h∈[H]

max
g∈G

min
g′∈G

E
s∼(ν∗h+νπ

h )/2
[|g′(s)− (Γπ

h g)(s)|] (7)

We make the following two assumptions for the subsequent theorem. These are standard assump-
tions in theoretical reinforcement learning literature.
Assumption 5.1 (Value function realizability). V ∗h,µ ∈ G for every h ∈ [H] and µ ∈ supp(η).

Assumption 5.2 (Policy realizability). There are representations φ∗1, . . . , φ
∗
H ∈ Φ such that π∗h,µ ∈

Πφ∗h for every h ∈ [H] and µ ∈ supp(η).

Now we present our main theorem for the observation alone setting.

Theorem 5.1. Let φ̂h ∈ arg min
φ∈Φ

L̂h(φ). Under Assumptions 5.1,5.2, with probability 1 − δ over

sampling of X = (X1, . . . ,XH), we have

E
µ∼η

E
x
J(πφ̂,x)− E

µ∼η
J(π∗µ) ≤

H∑
h=1

(2H − 2h+ 1)εgen,h +O(H2)εφ̂be

where εφ̂be = E
µ∼η

E
x

[επ
φ̂,x

be ] is the average inherent Bellman error and

εgen,h = O

(
KG(Φ(Sh))

T
√
n

+
KG(G(S̃h))

n
+
G(G(S̄h))

n
+
RK2

√
n

+

√
ln(H/δ)

T

)
4Note that we do not need the datasets xh at different levels to be independent of each other

6



Under review as a conference paper at ICLR 2020

Now we explain the theorem. εgen,h measures the generalization error. Note the term KG(Φ(Sh))
T
√
n

is similar to the term G(Φ(S))
T
√
n

in Theorem 4.1, which is from the use of representation learning for

policy class.
(
KG(G(S̃h))

n + G(G(S̄h))
n

)
is the standard generalization bound term for value func-

tions. Since we do not use representation learning for value functions having larger T does not help

with this function class. RK2
√
n

represents the complexity of learning linear policy.
√

ln(H/δ)
T is a

standard term to guarantee low failure probability. Lastly, ε′be is a Bellman error term. This type of
error terms occur commonly in the analysis of policy iteration type algorithms. Comparing with Sun
et al. (2019), our bound suggest using representation for policy class reduce the sample complexity
when T is larger than n, a phenomenon also observed in Theorem 4.1 and in Maurer et al. (2016).
We remark that unlike in Sun et al. (2019), our Bellman error is based on the Bellman operator of
the learned policy rather than the optimal policy. Le et al. (2019) used a similar notion that they call
inherent Bellman evaluation error.

The proof of Theorem 5.1 follows a similar outline to that of behavioral cloning. However we cannot
use the results from Maurer et al. (2016) directly since for each task we are solving a min-max game.
We provide the proof in Appendix B.

6 EXPERIMENTS

In this section we present experimental results on the DirectedSwimmer environment (modified from
the Swimmer environment from OpenAI gym (Brockman et al., 2016)) with Todorov et al. (2012)
simulator and a NoisyCombinationLock environment designed by ourself. These experiments have
two aims: 1) verify our theory, 2) test the power of representation learned via our framework in a
broader context. Specially, we do policy optimization using the learned representation. For simplic-
ity, we use Equation 5 to train the representation for all experiments and the baseline model learns a
policy directly without using representation learning. Experiment details are deferred to Section D.

Verification of theory: In Figure 1 we verify our theoretical findings. On the left, we test on the
DirectedSwimmer environment and report the logistic loss on the validation, which measures how
close the trained policy is to the target expert policy. We find that learning representations, even with
a few experts, can significantly reduce the sample complexity. On the right, we report the average
reward of the trained policies on the environment. Here we see a different phenomenon: when the
number of experts is small (4 or 16), the baseline method can beat policies trained using represen-
tation learning, though the baseline method requires more samples to do so. When the number of
experts is large (64), we see the policy trained using representation learning can significantly out-
perform the baseline method. This behavior is expected as when the number of experts is small, we
may learn a sub-optimal representation and because we fix this representation for training the policy,
more samples for the test task cannot make this policy better, whereas more samples always make
the baseline method better. Nevertheless, when the number of experts is large, we can significantly
reduce the sample complexity. With 60 samples, the base line method is still far behind the policy
trained using representation learning with 64 experts.

Policy optimization with representations trained by imitation learning: We next test the util-
ity of representations learned via our framework for RL. After training a representation, we use a
simplified proximal policy optimization method that learns a linear policy over the learned repre-
sentation. Results are reported in Figure 2. For DirectedSwimmer and NoisyCombinationLock, we
observe a common pattern. When the number of experts to learn the representation is small, the
baseline method enjoys better performance than the policies trained using representation learning.
As the number of experts to learn the representation increases, we see the policy trained using rep-
resentation learning can outperform baseline, sometime significantly. This experiment suggests that
representations trained via imitation learning can even be useful beyond imitation learning.

7 RELATED WORK

Representation learning has shown its great power in various domains. See Bengio et al. (2013)
for a survey. Theoretically, Maurer et al. (2016) gave analysis showing representation can provably
reduce the sample complexity in the multi-task supervise learning setting. Recently, Arora et al.

7



Under review as a conference paper at ICLR 2020

Figure 1: Experiments for verifying theory. Left: validation loss on DirectedSwimmer. Right:
average return on NoisyCombinationLock

Figure 2: Experiments on policy Optimization with representation trained by imitation learning Left:
average return on the DirectedSwimmer. Right: average return on the NoisyCombinationLock.

(2019) analyzed the benefit of representation learning via contrastive learning. These papers all build
representations for the agent / learner. We remark that researchers also try to build representations
about the environment / physical world (Wu et al., 2017).

Imitation learning can help with sample efficiency of many problems (Ross & Bagnell, 2010; Sun
et al., 2017; Daumé et al., 2009; Chang et al., 2015; Pan et al., 2018). Most exiting work consider the
setting where the learner can observe expert’s action. A general strategy is use supervised learning to
learn a policy that maps the state to action that matches expert’s behaviors. The most straightforward
one is behavior cloning (Pomerleau, 1991), which we also study in our paper. More advanced
approaches have also been proposed (Ross et al., 2011; Ross & Bagnell, 2014; Sun et al., 2018).
These approaches, including behavior cloning, often enjoy sound theoretical guarantees.

This paper also considers a more challenging setting, imitation learning from observation alone.
Though some model-based methods have been proposed (Torabi et al., 2018; Edwards et al., 2018),
these methods lack theoretical guarantees. Another line of work learns a policy that minimizes the
difference between the state distributions induced by it and the expert policy, under a certain distri-
butional metric (Ho & Ermon, 2016). Sun et al. (2019) gave a theoretical analysis to characterize
the sample complexity of this approach and our method for this setting is inspired by their approach.

A line of work uses meta-learning for imitation learning (Duan et al., 2017; Finn et al., 2017; James
et al., 2018). Our work is different from theirs as we want to explicitly learn a representation that is
useful across all tasks whereas these work try to learn a meta-algorithm that can quickly adapt to a
new task. For example, Finn et al. (2017) used a gradient based method for adaptation.

8 CONCLUSION

The current paper proposes a bi-level optimization framework to learning representations for im-
itation learning using multiple demonstrators. Theoretical guarantees are provided to justify the
statistical benefit of representation learning. Some preliminary experiments verify the effectiveness
of the proposed framework. In particular, in experiments, we find the representation learned via
imitation learning is also useful for policy optimization in the reinforcement learning setting. We
believe it is an interesting theoretical question to explain this phenomenon. Additionally, extend-
ing this bi-level optimization framework to incorporate methods beyond imitation learning is an
interesting future direction.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. J. Mach. Learn. Res., 3:463–482, March 2003.

Y. Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new per-
spectives. IEEE transactions on pattern analysis and machine intelligence, 35:1798–1828, 08
2013. doi: 10.1109/TPAMI.2013.50.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé, III, and John Langford.
Learning to search better than your teacher. In Proceedings of the 32Nd International Con-
ference on International Conference on Machine Learning - Volume 37, ICML’15, pp. 2058–
2066. JMLR.org, 2015. URL http://dl.acm.org/citation.cfm?id=3045118.
3045337.

Hal Daumé, Iii, John Langford, and Daniel Marcu. Search-based structured prediction. Mach.
Learn., 75(3):297–325, June 2009. ISSN 0885-6125. doi: 10.1007/s10994-009-5106-x. URL
http://dx.doi.org/10.1007/s10994-009-5106-x.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. 03 2017.

Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Lee Isbell. Imitating latent
policies from observation. ArXiv, abs/1805.07914, 2018.

Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imita-
tion learning via meta-learning. 09 2017.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, 2016.

Stephen James, Michael Bloesch, and Andrew Davison. Task-embedded control networks for few-
shot imitation learning. 10 2018.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Pro-
ceedings of the 36th International Conference on Machine Learning, pp. 3703–3712, 2019.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask
representation learning. The Journal of Machine Learning Research, 17(1):2853–2884, 2016.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou,
and Byron Boots. Agile autonomous driving using end-to-end deep imitation learning. In
Proceedings of Robotics: Science and Systems, Pittsburgh, Pennsylvania, June 2018. doi:
10.15607/RSS.2018.XIV.056.

D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
Computation, 3(1):88–97, March 1991. doi: 10.1162/neco.1991.3.1.88.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668, 2010.

Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation learning via interactive no-
regret learning. ArXiv, abs/1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635, 2011.

9

http://dl.acm.org/citation.cfm?id=3045118.3045337
http://dl.acm.org/citation.cfm?id=3045118.3045337
http://dx.doi.org/10.1007/s10994-009-5106-x


Under review as a conference paper at ICLR 2020

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere I: Overview and
the geometric picture. IEEE Transactions on Information Theory, 63(2):853–884, 2017.

Wen Sun, J. Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combining
reinforcement learning and imitation learning. ArXiv, abs/1805.11240, 2018.

Wen Sun, Anirudh Vemula, Byron Boots, and J Andrew Bagnell. Provably efficient imitation learn-
ing from observation alone. arXiv preprint arXiv:1905.10948, 2019.

Umar Syed and Robert E Schapire. A reduction from apprenticeship learning to classification. In
Advances in Neural Information Processing Systems 23, pp. 2253–2261. 2010.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, pp. 5026–5033. IEEE, 2012. ISBN 978-1-4673-1737-5. URL http:
//dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In IJCAI,
2018.

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Joshua B. Tenenbaum. Learning to see
physics via visual de-animation. In NIPS, 2017.

10

http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12


Under review as a conference paper at ICLR 2020

A PROOFS FOR BEHAVIORAL CLONING

We prove Theorem 4.1 in this section by proving Lemma 4.2,4.3. In this section, we abuse notation
and define `µ(φ, f) := `µ(πφ,f ), where `µ is defined in Equation 4. Let f̂φx = arg min

f∈F
`x(φ, f) be

the optimal task specific parameter for task µ by fixing representation φ. Thus by our definitions in
Section 4, we get πφ,x = πφ,f̂

φ
x . We assume w.l.o.g. thatA = [K]. Remember that ` : 4(A)×A →

R is defined as `(v, a) = − log(va) for some v ∈ RK and va is the coordinate corresponding to
action a ∈ A = [K]. We define a new function class and loss function that will be useful for our
proofs

F ′ = {x→Wx |W ∈ RK×d, ‖W1‖2, . . . , ‖WK‖2 ≤ 1} (8)

`′(v, a) = − log(softmax(v)a),v ∈ RK , a ∈ A (9)

We basically offloaded the burden of computing softmax from the class F to the loss `. We can
convert any function f ′ ∈ F ′ to one in F by transforming it to softmax(f ′).

We now proceed to proving the lemmas

Proof of Lemma 4.2. We can then rewrite the various loss functions from Section 4 as follows

L̂(φ) =
1

T

T∑
i=1

min
f∈F ′

1

n

n∑
j=1

`′(f(φ(s)), a)

L(φ) = E
µ∼η

min
f∈F ′

E
(s,a)∼µ

`′(f(φ(s)), a)

L̄(φ) = E
µ∼η

E
x∼µn

E
(s,a)∼µ

`′(f̂ ′
φ

x(φ(s)), a)

where f̂ ′
φ

µ ∈ arg minf ′∈F ′ `
x(φ,softmax(f ′)). It is easy to show that both `′(·, a) `′(f ′(·), ·) are

2-lipschitz in their arguments for every a ∈ A and f ′ ∈ F ′. Using a slightly modified version of
Theorem 2(i) from Maurer et al. (2016), we get that for φ̂ ∈ arg minφ∈Φ L̂(φ), with probability at
least 1− δ over the choice of X

L̄(φ̂)−min
φ∈Φ

L(φ) ≤ 2
√

2πG(Φ(S))

T
√
n

+
√

2πQ′ sup
φ∈Φ

√√√√ E
µ∼η,(s,a)∼µ

‖φ(s)‖2

n
+

√
8 log(4/δ)

T

L̄(φ̂)−min
φ∈Φ

L(φ) ≤ cG(Φ(S))

T
√
n

+ c′
Q′R√
n

+ c′′
√

log(4/δ)

T
(10)

where Q′ = sup
y∈Rdn\{0}

1
‖y‖E sup

f∈F ′

n,K∑
i=1,j=1

γijf
′(yi)j . First we discuss why we need a modified

version of their theorem. Our setting differs from the setting for Theorem 2 from Maurer et al.
(2016) in the following ways

• F ′ is a class of vector valued function in our case, whereas in Maurer et al. (2016) it is assumed
to contain scalar valued. The only place in the proof of the theorem where this shows up is in the
definition of Q′, which we have updated accordingly.

• Maurer et al. (2016) assumes that `′(·, a) is 1-lipschitz for every a ∈ A and that f ′(·) is L lipschitz
for every f ′ ∈ F ′. However the only properties that are used in the proof of Theorem 16 are that
`′(·, a) is 1-lipschitz and that `′(f ′(·), a) is L-lipschitz for every a ∈ A, which is exactly the
property that we have. Hence their proof follows through for our setting as well.

Lemma A.1. Q′ := sup
y∈Rdn\{0}

1
‖y‖E sup

f∈F ′

n,K∑
i=1,j=1

γijf
′(yi)j ≤ K

11



Under review as a conference paper at ICLR 2020

Proof.

Q′ := sup
y∈Rdn\{0}

1

‖y‖
E sup
f∈F ′

n,K∑
i=1,j=1

γijf
′(yi)j

= sup
y∈Rdn\{0}

1

‖y‖
E sup

(W1,...,WK),‖Wi‖≤1

n,K∑
i=1,j=1

γij〈Wj , yi〉

= sup
y∈Rdn\{0}

1

‖y‖
E sup

(W1,...,WK),‖Wi‖≤1

K∑
j=1

〈Wj ,

n∑
i=1

γijyi〉

= sup
y∈Rdn\{0}

K∑
j=1

1

‖y‖
E

∥∥∥∥∥
n∑
i=1

γijyi

∥∥∥∥∥ ≤
K∑
j=1

1

‖y‖

√√√√E

∥∥∥∥∥
n∑
i=1

γijyi

∥∥∥∥∥
2

K∑
j=1

1

‖y‖

√√√√ n∑
i=1

‖yi‖2 =

K∑
j=1

1

‖y‖
√
‖y‖2 = K

Plugging in Lemma A.1 into Equation 10 completes the proof.

We now proceed to prove the next lemma.

Proof of Lemma 4.3. Suppose L̄(φ) = E
µ∼η

E
x∼µn

`µ(πφ,x) ≤ ε. Consider a task µ ∼ η and samples

x ∼ µn and let εµ(x) = `µ(πφ,x) so that L̄(φ) = E
µ∼η

E
x∼µn

εµ(x). Since π∗µ is deterministic, we get

E
s∼ν∗µ

E
a∼πφ,x

I{a 6= π∗µ(s)} = E
s∼ν∗µ

[1− πφ,xπ∗µ(s)]

≤ E
s∼ν∗µ

[− log(1− (1− πφ,xπ∗µ(s)))]

= E
s∼ν∗µ

[− log(πφ,xπ∗µ(s))] = εµ(x)

where we use the fact that x ≤ − log(1 − x) for x < 1. for the first inequality. Thus by using
Theorem 2.1 from Ross et al. (2011), we get that Jµ(πφ,x)−Jµ(π∗) ≤ H2εµ(x). Taking expectation
w.r.t. µ ∼ η and x ∼ µn completes the proof.

Proof of Theorem 4.1. By using Assumption 4.2, we first get that

L(φ∗) = E
µ∼η

min
π∈Πφ∗

E
s∼ν∗µ

− log(π(s)π∗µ)

≤ E
µ∼η

E
s∼ν∗µ

− log(πµ(s)π∗µ)

≤ E
µ∼η

E
s∼ν∗µ

− log(1− γ) ≤ 2γ

where in the last step we used − log(1 − x) ≤ 2x for x < 1/2. Hence from Lemma 4.2 we get
L̄(φ̂) ≤ 2γ + εgen,h, which combining with Lemma 4.3 gives the desired result.

B PROOFS FOR OBSERVATION ALONE

Before proving Theorem 5.1, we introduce the following loss functions, as we did in the proof sketch
for the behavioral cloning setting. We again abuse notation and define `µ(φ, f) := `µ(πφ,f ), where

12



Under review as a conference paper at ICLR 2020

`µ is defined in Equation 6. Let f̂φx = arg min
f∈F

`x(φ, f) be the optimal task specific parameter for

task µ by fixing representation φ. As before, we define the following

L̄h(φh) = E
µ∼η

E
x∼µnh

`µh(φ, f̂φhx )

We first show a guarantee on the performance of representations (φ̂1, . . . , φ̂H) as measured by the
functions L̄1, . . . , L̄H .
Theorem B.1. With probability at least 1− δ in the draw of X = (X(1), . . . ,X(H)), ∀h ∈ [H]

L̄h(φ̂h) ≤ min
φ∈Φ

Lh(φ) + cεgen,h(Φ) + c′εgen,h(F ,G) + c′′
√

ln(H/δ)

T

where εgen,h(Φ) = KG(Φ(Sh))
T
√
n

and εgen,h(F ,G) = KG(G(S̃h))
n + G(G(S̄h))

n + RK2
√
n

We then connect the losses L̄h to the expected cost on the tasks.
Theorem B.2. Consider representations (φ1, . . . , φH) with L̄h(φh) ≤ εh. Let x = (x1, . . . ,xH)
be samples at different levels for a newly sampled task µ ∼ η such that xh ∼ µnh . Let πφ,x =
(πφ1,x1 , . . . , πφH ,xH ) be policies learned using the samples, then under Assumption 5.1,

E
µ∼η

E
x
J(πφ,x)− E

µ∼η
J(π∗µ) ≤

H∑
h=1

(2H − 2h+ 1)εh +O(H2)εφbe

where εφbe = E
µ∼η

E
x

[επ
φ,x

be ] is the average inherent Bellman error.

It is easy to show that under Assumption 5.2, minφ∈Φ Lh(φ) = 0 for every h ∈ [H]. Thus from

Theorem B.1, we get that L̄h(φ̂h) ≤ εgen,h, where εgen,h = εgen,h(Φ)+εgen,h(F ,G)+c′′
√

ln(H/δ)
T .

Invoking Theorem B.2 on the representations {φ̂h} completes the proof.

B.1 PROOF OF THEOREM B.1

Before proving the theorem, we discuss important lemmas. In yet another abuse of no-
tation, we define `µh(φ, f, g) = E(s,a,s̃,s̄)∼µh [Kπφ,f (a|s)g(s̃) − g(s̄)] and `xh(φ, f, g) =

1
n

n∑
j=1

[Kπφ,f (aj |sj)g(s̃j)− g(s̄j)].

Let m̂x(φ) = min
f∈F

max
g∈G

ˆ̀x
h(φ, f, g) = ˆ̀x

h(φ, f̂φx , ĝ
φ
x), m̄µ,x(φ) = max

g∈G
`µh(φ, f̂φx , g), mµ(φ) =

min
f∈F

max
g∈G

`µh(φ, f, g). Note that Lh(φ) = E
µ∼η

m(φ), L̄h(φ) = E
µ∼η

E
x∼µn

m̄µ,x(φ). Define the distri-

bution ρh where x ∼ ρh is the same as µ ∼ η and then x ∼ µnh .
Lemma B.3. For every φ ∈ Φ and h ∈ [H],

E
µ∼η

E
x∼µn

sup
f∈F

sup
g∈G

[
ˆ̀x
h(φ, f, g)− `µh(φ, f, g)

]
≤ εgen,h(F ,G)

Lemma B.4. With probability 1− δ, for every φ ∈ Φ,

L̄h(φ)− E
x∼ρh

m̂x(φ) ≤ εgen,h(F ,G)

Lemma B.5. With probability 1− δ, for every φ ∈ Φ,

E
x∼ρh

m̂x(φ)− 1

T

∑
i

m̂x(i)(φ) ≤ εgen,h(Φ) +O

√ log( 1
δ )

T


We prove these lemmas later. First we prove Theorem B.1 using them. If φ∗h = arg min

φ∈Φ
Lh(φ), then

L̄h(φ̂h)− Lh(φ∗h) =

(
L̄h(φ̂h)− E

x∼ρh
m̂x(φ)

)

13



Under review as a conference paper at ICLR 2020

+

(
E

x∼ρh
m̂x(φ)− 1

T

∑
i

m̂x(i)(φ̂h)

)

+

(
1

T

∑
i

m̂x(i)(φ̂h)− 1

T

∑
i

m̂x(i)(φ∗h)

)

+

(
1

T

∑
i

m̂x(i)(φ∗h)− E
x∼ρh

m̂x(φ∗h)

)
+ E
µ∼η

[ E
x∼µn

m̂x(φ∗h)−mµ(φ∗h)]

≤ 2εgen,h(F ,G) + εgen,h(Φ) +O

√ log( 1
δ )

T


where for the first part we use Lemma B.4, second part we use Lemma B.5, third part is upper

bounded by 0 by optimality of φ̂h, fourth is upper bounded by O(

√
log( 1

δ )

T ) by Hoeffding’s inequal-
ity and fifth is bounded by the following argument: let fφ, gφ = arg min

f∈F
arg max

g∈G
`µ(φ, f, g)

E
x∼µn

m̂x(φ∗h) = E
x∼µn

min
f∈F

max
g∈G

ˆ̀x
h(φ∗h, f, g)

≤ E
x∼µn

max
g∈G

ˆ̀x
h(φ∗h, f

φ∗h , g) = E
x∼µn

ˆ̀x
h(φ∗h, f

φ∗h , g̃)

≤ `µh(φ∗h, f
φ∗h , g̃) + εgen,h(F ,G)

≤ `µh(φ∗h, f
φ∗h , gφ

∗
h) + εgen,h(F ,G) = mµ(φ∗h) + εgen,h(F ,G)

where the second inequality uses Lemma B.3.

B.2 PROOF OF THEOREM B.2

Consider a task µ. For simplicity of notation, we use πh instead πφh,xh , π instead of πφ,x. Let νπh
and ν∗h be the state distributions at level h induced by πφ,x and π∗µ respectively. Let

εh(xh) = max
g∈G

E
s∼ν∗h

[ E
a∼πh
s′∼Ps,a

g(s′)− E
a∼π∗h
s′∼Ps,a

g(s′)]

be the loss of policy πh at level h. By definition, εh = E
µ∼η

E
x∼µnh

εh(x). Using Lemma C.1 from Sun

et al. (2019), we have

J(πφ,x)− J(π∗µ) =

H∑
h=1

∆̄h =

H∑
h=1

E
s∼νπh

[
E

a∼πh(·|s),s′∼Ps,a
V ∗h+1(s′)− E

a∼π∗h(·|s),s′∼Ps,a
V ∗h+1(s′)

]
Observe that

∆̄h = E
s∼νπh

[ E
a∼πh(·|s),s′∼Ps,a

V ∗h+1(s′)− E
a∼π∗h(·|s),s′∼Ps,a

V ∗h+1(s′)]

≤ max
g∈G

E
s∼ν∗h

[ E
a∼πh(·|s),s′∼Ps,a

g(s′)− E
a∼π∗h(·|s),s′∼Ps,a

g(s′)]+

max
g∈G

[ E
s∼νπh

Γπ
h g(s)− E

s∼ν∗h
Γπ
h g(s)] + [ E

s∼ν∗h
Γ∗hV

∗
h+1(s)− E

s∼νπh
Γ∗hV

∗
h+1(s)]

≤ εh(xh) + max
g∈G

[ E
s∼νπh

Γπ
h g(s)− E

s∼ν∗h
Γπ
h g(s)] + max

g∈G
[ E
s∼νπh

g(s)− E
s∼ν∗h

g(s)]

Lemma B.6. Defining ∆h = max
g∈G
| E
s∼νπh

g(s)− E
s∼ν∗h

g(s)|, we have

max
g∈G

[ E
s∼νπh

Γπ
h g(s)− E

s∼ν∗h
Γπ
h g(s)] ≤ ∆h + 2επbe

14



Under review as a conference paper at ICLR 2020

Using the above lemma, we get ∆̄h ≤ εh(xh) + 2∆h + 2επbe. We now bound ∆h

∆h = max
g∈G

∣∣∣∣∣∣ E
s∼νπh−1

E
a∼πh−1

s′∼Ps,a

g(s′)− E
s∼ν∗h

g(s)

∣∣∣∣∣∣
= max

g∈G

∣∣∣∣∣∣ E
s∼νπh−1

E
a∼πh−1

s′∼Ps,a

g(s′)− E
s∼ν∗h−1

E
a∼πh−1

s′∼Ps,a

g(s)

∣∣∣∣∣∣+ max
g∈G

∣∣∣∣∣∣ E
s∼ν∗h−1

E
a∼πh−1

s′∼Ps,a

g(s′)− E
s∼ν∗h

g(s)

∣∣∣∣∣∣
= max

g∈G

∣∣∣∣∣ E
s∼νπh−1

Γπ
h−1g(s′)− E

s∼ν∗h−1

Γπ
h−1g(s)

∣∣∣∣∣+ εh−1(xh−1)

≤ ∆h−1 + 2επbe + εh−1(xh−1)

Thus ∆h ≤ 2(h− 1)επbe + ε1:h−1(x1:h−1) and so ∆̄h ≤ ε1:h(x1:h) + ε1:h−1(x1:h−1) + (4h− 2)επbe.
This implies that

J(πφ,x)− J(π∗) =
H∑
h=1

∆̄h ≤
H∑
h=1

(2H − 2h+ 1)εh(xh) +O(H2)επ
φ,x

be

Taking expectation wrt µ ∼ η and x ∼ µn completes the proof.

B.3 PROOFS OF LEMMAS

Proof of Lemma B.3. Again we defineF ′ as in Equation 8. Let `(v, α, β, a) = Ksoftmax(v)aα−
β, and let `′µh (φ, f ′, g) = `′µh (φ,softmax(f ′), g) = E

(s,a,s̃,s̄)∼µh
`(f ′(φ(s)), g(s̃), g(s̄), a) for f ′ ∈

F ′ and similarly define ˆ̀′x
h(φ, f ′, g) = ˆ̀x

h(φ,softmax(f ′), g). Notice that `(·, α, β, a) is 2K-
lipschitz, `(v, ·, β, a) is K-lipschitz and `(v, α, ·, a) is 1-lipschitz, Using Theorem 8(i) from Maurer
et al. (2016), we get that

E
µ∼η

E
x∼µn

sup
f∈F

sup
g∈G

[
ˆ̀x
h(φ, f, g)− `µh(φ, f, g)

]
= E
µ∼η

E
x∼µn

sup
f ′∈F ′

sup
g∈G

[
ˆ̀′x
h(φ, f ′, g)− `′µh (φ, f ′, g)

]
≤
√

2π ExG(`(F ′(φ(Sh)),G(S̄h),G(S̃h),a))

n

≤ 2
√

2πKG(F ′(φ(Sh)),a)

n
+

√
2πKG(G(S̄h))

n
+

√
2πG(G(S̃h))

n

≤ cRK
2

√
n

+ c′
KG(G(S̄h))

n
+ c′′

G(G(S̃h))

n
≤ εgen,h(F ,G)

where we used lipschitzness and Slepian’s lemma for second inequality and a similar computation
to Lemma A.1 for the third.

Proof of Lemma B.4.

L̄h(φ)− E
x∼ρh

m̂x(φ) = E
µ∼η

E
x∼µn

m̄µ,x(φ)− E
µ∼η

E
x∼µn

m̂x(φ)

= E
µ∼η

E
x∼µn

max
g∈G

`µh(φ, f̂φx , g)−max
g∈G

ˆ̀x
h(φ, f̂φx , g)

≤ E
µ∼η

E
x∼µn

max
g∈G

[`µh(φ, f̂φx , g)− ˆ̀x
h(φ, f̂φx , g)]

≤ E
µ∼η

E
x∼µn

max
f∈F

max
g∈G

[`µh(φ, f, g)− ˆ̀x
h(φ, f, g)]

≤ εgen,h(F ,G)

where we use the definition of L̄h, obviousness for the first inequality and Lemma B.3 for the
last.

15



Under review as a conference paper at ICLR 2020

Proof of Lemma B.5. We wil be using Slepian’s lemma

Lemma B.7 (Slepian’s lemma). Let {X}s∈S and {Y }s∈S be zero mean Gaussian processes such
that

E(Xs −Xt)
2 ≤ E(Ys − Yt)2,∀s, t ∈ S

Then

E sup
s∈S

Xs ≤ E sup
s∈S

Ys

Using Theorem 8(ii) from Maurer et al. (2016), we get that

sup
φ∈Φ

[
E

x∼ρh
m̂x(φ)− 1

T

∑
i

m̂x(i)(φ)

]
≤
√

2π

T
G(S) +

√
9 ln(2/δ)

2T
(11)

where S = {(m̂(φ)x1
, . . . , m̂(φ)xT ) : φ ∈ Φ}. We bound the Gaussian average of S using Slepian’s

lemma. Define two Gaussian processes indexed by Φ as

Xφ =
∑
i

γim̂(φ)x(i) and Yφ =
2K√
n

∑
i

γijkφ(sij)k

For x = {(sj , aj , s̃j , s̄j)}, consider 2 representations φ and φ′,

(m̂(φ)x − m̂(φ′)x)2 = (min
f∈F

max
g∈G

ˆ̀x
h(φ, f, g)−min

f∈F
max
g∈G

ˆ̀x
h(φ′, f, g))2

≤ ( sup
f∈F,g∈G

|ˆ̀xh(φ, f, g)− ˆ̀x
h(φ′, f, g)|)2

=

 sup
f∈F,g∈G

∣∣∣∣∣∣ 1n
∑
j

[Kπφ,f (aj |sj)g(s̃j)−Kπφ
′,f (aj |sj)g(s̃j)]

∣∣∣∣∣∣
2

= K2

 sup
f∈F,g∈G

∣∣∣∣∣∣ 1n
∑
j

(f(φ(sj))aj − f(φ′(sj))aj )g(s̃j)

∣∣∣∣∣∣
2

≤ K2

n
sup
f∈F

∑
j

(
f(φ(sj))aj − f(φ′(sj))aj

)2
≤ 4K2

n

∑
j

|φ(sj)− φ′(sj)|2 =
4K2

n

∑
j,k

(φ(sj)k − φ′(sj)k)2

where we prove the first inequality later, second inequality comes from g being upper bounded by 1
and by Cauchy-Schwartz inequality, third inequality comes from the 2-lipschitzness of f .

E(Xφ −Xφ′) =
∑
i

(m̂(φ)x(i) − m̂(φ′)x(i))2

≤ 4K2

n

∑
i,j,k

(φ(sij)k − φ′(sij)k)2 = E(Yφ − Yφ′)2

Thus by Slepian’s lemma, we get

G(S) = E sup
φ∈Φ

Xφ ≤ E sup
φ∈Φ

Yφ =
2K√
n
G(Φ({sij}))

Plugging this into Equation 11 completes the proof. To prove the first inequality above, notice that

min
f∈F

max
g∈G

ˆ̀x
h(φ, f, g)−min

f∈F
max
g∈G

ˆ̀x
h(φ′, f, g) = ˆ̀x

h(φ, f, g)− ˆ̀x
h(φ′, f ′, g′)

≤ ˆ̀x
h(φ, f ′, g′′)− ˆ̀x

h(φ′, f ′, g′)

≤ ˆ̀x
h(φ, f ′, g′′)− ˆ̀x

h(φ′, f ′, g′′)

16



Under review as a conference paper at ICLR 2020

≤ sup
f∈F,g∈G

|ˆ̀xh(φ, f, g)− ˆ̀x
h(φ′, f, g)|

By symmetry, we also get that min
f∈F

max
g∈G

ˆ̀x
h(φ, f, g)−min

f∈F
max
g∈G

ˆ̀x
h(φ′, f, g) ≤ sup

f∈F,g∈G
|ˆ̀xh(φ, f, g)−

ˆ̀x
h(φ′, f, g)|.

Proof of Lemma B.6. Let ḡ = arg max
g∈G

(
E

s∼νπh
Γπ
h g(s)− E

s∼ν∗h
Γπ
h g(s)

)
and g′ = arg min

g∈G
|g −

Γπ
h ḡ|(νπh+ν∗h)/2.

max
g∈G

(
E

s∼νπh
Γπ
h g(s)− E

s∼ν∗h
Γπ
h g(s)

)
= E
s∼νπh

[
Γπ
h ḡ(s)− E

s∼ν∗h
Γπ
h ḡ(s)

]
≤ | E

s∼νπh
g′(s)− E

s∼ν∗h
g′(s)|+ | E

s∼νπh
[g′(s)− Γπ

h ḡ(s)]|+ | E
s∼ν∗h

[g′(s)− Γπ
h ḡ(s)]|

≤ max
g∈G
| E
s∼νπh

g(s)− E
s∼ν∗h

g(s)|+ 2 E
s∼(νπh+ν∗h)/2

[|g′(s)− Γπ
h ḡ(s)]|]

≤ ∆h + 2επbe

C DATA SET COLLECTION DETAILS

C.1 DATASET FROM TRAJECTORIES

Given n expert trajectories for a task µ, for each trajectory τ = (s1, a1, . . . , sH , aH) we can sample
an h ∼ U([H]) and select the pair (sh, ah) from that trajectory5. This gives us n i.i.d. pairs
{(sj , aj)}nj=1 for the task µ. We collect this for T tasks and get datasets x(1), . . . ,x(T ).

C.2 DATASET FROM TRAJECTORIES AND INTERACTION

Given 2n expert trajectories for a task µ, we use first n trajectories to get independent samples from
the distributions ν∗1,µ, . . . , ν

∗
H,µ respectively for the s̄ states in the dataset. Using the next n trajecto-

ries, we get samples from ν∗0,µ, . . . , ν
∗
H−1,µ for the s states in the dataset, and for each such state we

uniformly sample an action a fromA and then get a state s̃ from Ps,a by resetting the environment to
s and playing action a. We collect this for T tasks and get datasets X(i) = {x(i)

1 , . . . ,x
(i)
H } for every

i ∈ [T ], where each dataset x(i)
h a set of n tuples obtained level h. Rearranging, we can construct

the datasets Xh = {x(1)
h , . . . ,x

(T )
h }.

D EXPERIMENT DETAILS

Experiment Setup We first describe the construction of the NoisyCombinationLock environment.
The state space is R40. Each state s is in the form of [sreal, snoise], while sreal ∈ R20 is either a one-
hot vector or a zero vector, and snoise ∈ R20 is sampled from N (0, I). The action space is discrete
and has size 2. For each MDP, we have a sequence of actions a∗ ∈ [2]20. This is the sequence of
optimal actions. We use different a∗ to define different environments. The transition model is that:
If sreal = ei for some i and the action is a∗i , then s′real = ei+1 and we’ll get reward 1. Otherwise s′real
will be all zero and the reward is 0. snoise will always be sampled from the Gaussian distribution.
Note that once sreal is all zero, it will not change and the reward will always be 0. The maximum
horiozn is set to 20 and therefore, the optimal policy has return 20. The initial sreal is always e1.

The representation has dimension of 10. We limit the function φ to be a linear mapping from R40 to
R10. Although the dimension of representation is smaller than the number of states, there still exists
a linear mapping from states to representation such that we can find a linear optimal policy.

5In practice one can use all pairs from all trajectories, even though the samples are not strictly i.i.d.

17



Under review as a conference paper at ICLR 2020

Figure 3: The total rewards by different algorithms in DirectedSwimmer.

For each expert, we collect 200 state-action pairs to train the representation φ. The trajectories are
generated by the optimal policy.

When training the policy using an RL algorithm, to reduce the impact of initialization, the last full
connected layer is initialized to 0. We use the PPO (Schulman et al., 2017) algorithm to train our
policy. We reduce the number of epochs in each PPO iteration to make the difference more evident.

DirectedSwimmer A DirectedSwimmer environment is the same as Swimmer in OpenAI Gym
(Brockman et al., 2016), except the following. The reward function is parametrized by a direction d
with ‖d‖ = 1, and is defined as the traveled distance along the direction d. For each task, we sample
a random direction. The state space is still R8. The original action space in Swimmer is R2, and we
discretize the action space, such that each entry can be only one of {−1,−0.5, 0, 0.5, 1}. We also
reduce the maximum horizon from 1000 to 100. We trained the experts for 1 million steps by PPO
to make sure it converges.

The function φ we use has two fully connected layers and two ReLU layers. The number of hidden
units is 100, so is the dimension of representation.

We also include the total rewards that each algorithm can get at figure 3. Note even though the
baseline has a high validation loss, its performance can be quite good.

18


	Introduction
	Preliminaries
	Bi-level Optimization Framework
	Representation Learning for Behavioral Cloning
	Proof sketch

	Representation Learning for Observations Alone Setting
	Experiments
	Related Work
	Conclusion
	Proofs for Behavioral Cloning
	Proofs for Observation Alone
	Proof of Theorem B.1
	Proof of Theorem B.2
	Proofs of Lemmas

	Data Set Collection Details
	Dataset from trajectories
	Dataset from trajectories and interaction

	Experiment Details

