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ABSTRACT

In anomaly detection (AD), one seeks to identify whether a test sample is abnor-
mal, given a data set of normal samples. A recent and promising approach to
AD relies on deep generative models, such as variational autoencoders (VAEs),
for unsupervised learning of the normal data distribution. In semi-supervised AD
(SSAD), the data also includes a small sample of labeled anomalies. In this work,
we propose two variational methods for training VAEs for SSAD. The intuitive
idea in both methods is to train the encoder to ‘separate’ between latent vectors
for normal and outlier data. We show that this idea can be derived from principled
probabilistic formulations of the problem, and propose simple and effective algo-
rithms. Our methods can be applied to various data types, as we demonstrate on
SSAD datasets ranging from natural images to astronomy and medicine, and can
be combined with any VAE model architecture. When comparing to state-of-the-
art SSAD methods that are not specific to particular data types, we obtain marked
improvement in outlier detection.

1 INTRODUCTION

Anomaly detection (AD) – the task of identifying samples that are abnormal with respect to some
normal data – has important applications in domains ranging from health-care, to security, and
robotics (Pimentel et al., 2014). In its common formulation, training data is provided only for nor-
mal samples, while at test time, anomalous samples need to be detected. In the probabilistic AD
approach, a model of the normal data distribution is learned, and the likelihood of a test sample
under this model is thresholded for classification as normal or not. Recently, deep generative mod-
els such as variational autoencoders (VAEs, Kingma & Welling 2013) and generative adversarial
networks (Goodfellow et al., 2014) have shown promise for learning data distributions in AD (An
& Cho, 2015; Suh et al., 2016; Schlegl et al., 2017; Wang et al., 2017).

Here, we consider the setting of semi-supervised AD (SSAD), where in addition to the normal
samples, a small sample of labeled anomalies is provided (Görnitz et al., 2013). Most importantly,
this set is too small to represent the range of possible anomalies, making classification methods
(either supervised or semi-supervised) unsuitable. Instead, most approaches are based on ‘fixing’
an unsupervised AD method to correctly classify the labeled anomalies, while still maintaining AD
capabilities for unseen outliers (e.g., Görnitz et al., 2013; Muñoz-Marı́ et al., 2010; Ruff et al., 2019).

In this work, we present a variational approach for learning data distributions in the SSAD problem
setting. We base our method on the VAE, and modify the training objective to account for the labeled
outlier data. We propose two formulations for this problem. The first maximizes the log-likelihood
of normal samples, while minimizing the log-likelihood of outliers, and we effectively optimize this
objective by combining the standard evidence lower bound (ELBO) with the χ upper bound (CUBO,
Dieng et al. 2017). The second method is based on separating the VAE prior between normal and
outlier samples. Effectively, both methods have a similar intuitive interpretation: they modify the
VAE encoder to push outlier samples away from the prior distribution (see Figure 1). Importantly,
our method does not place any restriction on the VAE architecture, and can be used to modify any
VAE to account for outliers. As such, it can be used for general types of data.

We evaluate our methods in the comprehensive SSAD test-suite of Ruff et al. (2019), which includes
both image data and low-dimensional data sets from astronomy, medicine, and other domains, and
report a marked improvement in performance compared to both shallow and deep methods. In
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addition, we demonstrate the flexibility of our method by modifying a conditional VAE used for
generating sampling distributions for robotic motion planning (Ichter et al., 2018) to not generate
way points that collide with obstacles.

normal
outlier

Figure 1: t-SNE of the latent space of a conventional VAE (left), and our proposed dual-prior VAE
(right), trained on the Thyroid dataset, and evaluated on an unseen test sample. Note that latent
vectors for outliers (red crosses) in DP-VAE are pushed away from the normal samples.

2 RELATED WORK

Anomaly detection, a.k.a. outlier detection or novelty detection, is an active field of research. Shal-
low methods such as one-class SVM (OC-SVM, Schölkopf et al. 2001) or support vector data de-
scription (SVDD, Tax & Duin 2004) have shown great success, but rely on hand-crafted features.
Recently, there is growing interest in deep learning methods for AD (Chalapathy & Chawla, 2019).

Most studies on semi-supervised AD also require hand designed features. Muñoz-Marı́ et al. (2010)
proposed S2OC-SVM, a modification of OC-SVM that introduces labeled and unlabeled samples,
Görnitz et al. (2013) proposed an approach based on SVDD, and Blanchard et al. (2010) base their
approach on statistical testing. Deep SSAD has been studied recently in specific contexts such as
videos (Kiran et al., 2018), network intrusion detection (Min et al., 2018), or specific neural network
architectures (Ergen et al., 2017). The most relevant prior work to our study is the recently proposed
deep semi-supervised anomaly detection (Deep SAD) approach of Ruff et al. (2019). Deep SAD is a
general method based on deep SVDD (Ruff et al., 2018), which learns a neural-network mapping of
the input that minimizes the volume of data around a predetermined point. While it has been shown
to work on a variety of domains, Deep SAD must place restrictions on the network architecture,
such as no bias terms (in all layers) and no bounded activation functions, to prevent degeneration
of the minimization problem to a trivial solution. The methods we propose here do not place any
restriction on the network architecture, and can be combined with any VAE model. In addition, we
show improved performance in almost all domains compared to Deep SAD’s state-of-the-art results.

While our focus here is SSAD, for completeness we review recent work on deep AD. Erfani et al.
(2016); Andrews et al. (2016); Cao et al. (2016); Chen et al. (2017) follow a hybrid approach where
deep unsupervised learning is used to learn features, which are then used within a shallow AD
method. Specifically for image domains, Golan & El-Yaniv (2018) learn features using a self-
supervised paradigm – by applying geometric transformations to the image and learning to classify
which transformation was applied. Lee et al. (2018) learn a distance metric in feature space, for
networks pre-trained on image classification. Both of these methods display outstanding AD per-
formance, but are limited to image domains, while our approach does not require particular data or
pre-trained features. Several studies explored using deep generative models (GANs and VAEs) for
AD (e.g., An & Cho, 2015; Suh et al., 2016; Schlegl et al., 2017; Wang et al., 2017). Our work
extends this approach to the SSAD setting.

3 BACKGROUND

We consider deep unsupervised learning under the standard variational inference setting (Kingma
& Welling, 2013). Given some data x, one aims to fit the parameters θ of a latent variable model
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pθ(x) = Ep(z) [pθ(x|z)], where the prior p(z) is known. For general models, the typical maximum-
likelihood objective maxθ log pθ(x) is intractable due to the marginalization over z, and can be
approximated using the following variational inference methods.

3.1 EVIDENCE LOWER BOUND (ELBO)

The evidence lower bound (ELBO) states that for some approximate posterior distribution q(z|x):

log pθ(x) ≥ Eq(z|x) [log pθ(x|z)]−DKL(q(z|x)‖p(z)),

where the Kullback-Leibler divergence is DKL(q(z|x)‖p(z)) = Eq(z)
[
log q(z|x)

p(z)

]
. In the varia-

tional autoencoder (VAE, Kingma & Welling 2013), the approximate posterior is represented as
qφ(z|x) = N (µφ(x),Σφ(x)) for some neural network with parameters φ, the prior is p(z) =
N (µ0,Σ0), and the ELBO can be maximized using the reparameterization trick. Since the resulting
model resembles an autoencoder, the approximate posterior qφ(z|x) is also known as the encoder,
while pθ(x|z) is termed the decoder.

3.2 χ UPPER BOUND (CUBO)

Recently, Dieng et al. (2017) derived variational upper bounds to the data log-likelihood. The χn-

divergence is given by Dχn(p‖q) = Eq(z;θ)
[(

p(z|X)
q(z;θ)

)n
− 1
]
. For n > 1, Dieng et al. (2017)

propose the following χ upper bound (CUBO):

log pθ(x) ≤ 1

n
logEq(z|x)

[(
pθ(x|z)p(z)
q(z|x)

)n]
.
= CUBOn(q(z|x)).

For a family of approximate posteriors qφ(z|x), one can minimize the CUBO using Monte
Carlo (MC) estimation. However, MC gives a lower bound to CUBO and its gradients are
biased. As an alternative, Dieng et al. (2017) proposed the following optimization objective:
L = exp{n · CUBOn(qφ(z|x))}. By monotonicity of exp, this objective reaches the same optima
as CUBOn(qφ(z|x)). Moreover, MC produces an unbiased estimate, and the number of samples
only affects the variance of the gradients.

4 DEEP VARIATIONAL SEMI-SUPERVISED ANOMALY DETECTION

In the anomaly detection problem, the goal is to classify whether a sample x was generated from
some normal distribution pnormal(x), or not – making it an anomaly. In semi-supervised anomaly
detection (SSAD), we are given Nnormal samples from pnormal(X), which we denote Xnormal. In
addition, we are given Noutlier examples of anomalous data, denoted by Xoutlier, and we assume
that Noutlier � Nnormal. In particular, Xoutlier does not cover the range of possible anomalies,
and thus classification methods (neither supervised nor semi-supervised) are not applicable.

Our approach for SSAD is to approximate pnormal(x) using a deep latent variable model pθ(x),
and to decide whether a sample is anomalous or not based on thresholding its predicted likelihood.
In the following, we propose two variational methods for learning pθ(x). The first method, which
we term max-min likelihood VAE (MML-VAE), maximizes the likelihood of normal samples while
minimizing the likelihood of outliers. The second method, which we term dual-prior VAE (DP-
VAE), assumes different priors for normal and outlier samples.

4.1 MAX-MIN LIKELIHOOD VAE

In this approach, we seek to find model parameters based on the following objective:

max
θ

log pθ(Xnormal)− γ log pθ(Xoutlier), (1)

where γ ≥ 0 is a weighting term. Note that, in the absence of outlier data or when γ = 0, Equation 1
is just maximum likelihood estimation. For γ > 0, however, we take into account the knowledge
that outliers should not be assigned high probability.
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We model the data distribution using a latent variable model pθ(x) = Ep(z) [pθ(x|z)], where the
prior p(z) is known. To optimize the objective in Equation 1 effectively, we propose the following
variational lower bound:

log pθ(Xnormal)− γ log pθ(Xoutlier) ≥ ELBOQ1
(Xnormal)− γCUBOQ2

(Xoutlier), (2)

where Q1(z|x), Q2(z|x) are the variational auxiliary distributions. In principle, the objective in
Equation 2 can be optimized using the methods of Kingma & Welling (2013) and Dieng et al. (2017),
which would effectively require training two encoders: Q1 and Q2, and one decoder pθ(x|z),1
separately on the two datasets. However, it is well-known that training deep generative models
requires abundant data. Thus, there is little hope for learning an informative Q2 using the small
datasetXoutlier. To account for this, our main idea is to use the same variational distributionQ(z|x)
for both loss terms, which effectively relaxes the lower bound as follows:

log pθ(Xnormal)− γ log pθ(Xoutlier) ≥ ELBOQ(Xnormal)− γCUBOQ(Xoutlier). (3)

In other words, we use the same encoder for both normal and anomalous data. Finally, the loss
function of the MML-VAE is: L = γCUBOQ(Xoutlier)− ELBOQ(Xnormal).

To gain intuition about the effect of the CUBO term in the loss function, it is instructive to assume
that pθ(x|z) is fixed. In this case, maximizing the lower bound only affects the variational distri-
bution q(z|x). Note that the ELBO term seeks to minimize the KL distance between q(z|Xnormal)
and p(z|Xnormal), which ‘pushes’ q(z|Xnormal) toward high-likelihood regions of p(z), while the

CUBO term is proportional to 1
n logEq(z|x)

[(
p(z|Xoutlier)
q(z|Xoutlier)

)n]
, and thus seeks to maximize the χn

distance between q(z|Xoutlier) and p(z|Xoutlier). Now, assume that for some outlier, p(z|Xoutlier)
falls within a high-likelihood region of p(z). In this case, the CUBO term will ‘push’ q(z|Xoutlier)
away from p(z). Thus, intuitively, the CUBO term seeks to separate the latent distributions for
normal samples, which will concentrate on high-likelihood regions of p(z), and outlier samples.

For the common choice of Gaussian prior and approximate posterior distributions (Kingma &
Welling, 2013), the CUBO component of the loss function is given by:

LCUBO = exp{−2 · LR + log |Σq|+ µTq Σ−1q µq+

logEq
[

exp{−zT z + zTΣ−1q z − 2zTΣ−1q µq}
]
}.

Where LR = − log pθ(x|z) is the reconstruction error. The expectation is approximated with MC.
In our experiments, we found that computing exp(logE [exp(·)]) is numerically more stable, as we
can employ the log-sum-exp trick.

In practice, we found that updating only the encoder according to the CUBO loss (i.e., ignoring the
LR term) results in better performance and stabler training. The reason for this is that CUBO seeks
to maximize the reconstruction error, which does not produce informative updates for the decoder.
Since this decoder is shared with the ELBO term, the CUBO update can decrease performance
for normal samples as well. Complete algorithm details and derivation of the CUBO objective are
provided Appendix A.4.

4.2 DUAL PRIOR VAE

The second method we propose is a simple yet effective modification of the VAE for SSAD, which
we term dual-prior VAE (DP-VAE). Here, we assume that both normal and outlier data are generated
from a single latent variable model pθ(x) = Ep(z,y) [pθ(x|z, y)], where y is an additional Bernoulli
variable that specifies whether the sample is normal or not. Additionally, we assume the following
conditional prior for z:2

p(z|y) =

{
N (µnormal,Σnormal), y = 1
N (µoutlier,Σoutlier), y = 0

.

Since our data is labeled, y is known for every x and does not require inference. Deriving the ELBO
for normal and outlier samples in this case gives:

ELBOnormal(x) = −LR(x) +DKL[Q(z|x)‖p(z|y = 1)],

1Based on the ELBO and CUBO definitions, the decoder pθ(x|z) is the same for both terms.
2This method can easily be extended to non-Gaussian priors, so long as the two priors are different.

4



Under review as a conference paper at ICLR 2020

ELBOoutlier(x) = −LR(x) +DKL[Q(z|x)‖p(z|y = 0)].

Here, similarly to the MML-VAE above, we assume the same encoder Q(z|X) for normal and
outlier samples. The loss function we minimize is

L = − [ELBOnormal(Xnormal) + ELBOoutlier(Xoutlier)] .

In our implementation, we set Σnormal = Σoutlier = I , µnormal = 0, and µoutlier = αI where
α 6= 0. In this case, this loss function has the intuitive interpretation of training an encoder that
separates between latent variables for normal and outlier data.

As L is simply a combination of VAE loss functions, optimization using the reparametrization trick
is straightforward.3 Similarly to the MML-VAE method, we freeze the decoder when minimizing
ELBOoutlier, as we do not expect for an informative reconstruction of the outlier distribution from
the limited data Xoutlier.

4.3 ANOMALY DETECTION WITH MML-VAE AND DP-VAE

We next describe an SSAD algorithm based on MML-VAE and DP-VAE. After training an MML-
VAE, the ELBO provides an approximation of the normal data log-likelihood. Thus, given a novel
sample x, we can score its (log) likelihood of belonging to normal data as:

score(x) = ELBO(x).

After training a DP-VAE, ELBOnormal provides a similar approximation, and in this case we set
score(x) = ELBOnormal(x). Finally, for classifying the sample, we threshold its score.

At this point, the reader may wonder why we pick the ELBO and not the CUBO for scoring a
sample. The reason is that most of our data is used for training the ELBO, while the CUBO term
(and ELBOoutlier in DP-VAE) is trained with a much smaller outlier data, which is not informative
enough to accurate approximate the normal data likelihood.

4.4 VAE ARCHITECTURES AND ENSEMBLES

Both MML-VAE and DP-VAE simply add loss terms to the objective function of the conventional
VAE. Thus, they can be applied to any type of VAE without any restriction on the architecture. In
addition, they can be used with ensembles of VAEs, a popular technique to robustify VAE training
(Chen et al., 2017; Mirsky et al., 2018). We train K different VAEs (either MML-VAE or DP-VAE)
with random initial weights, and set the score to be the average over the ELBOs in the ensemble. We
found that ensembles significantly improve the SSAD performance of our methods, as demonstrated
in our experiments.

5 EXPERIMENTS

In our experiments, we follow the evaluation methods and datasets proposed in the extensive work of
Ruff et al. (2019). These evaluations include strong baselines of state-of-the-art shallow, deep, and
hybrid algorithms for AD and SSAD. Hybrid algorithms are defined as shallow SSAD methods that
are trained on features extracted from a deep autoencoder trained on the raw data. A brief overview
of the methods is provided in Appendix A.2, and we refer the reader to Ruff et al. (2019) for a more
detailed description. Performance is evaluated by the area under the curve of the receiver operating
characteristic curve (AUROC), a commonly used criterion for AD. There are two types of datasets:
(1) high-dimensional datasets which were modified to be semi-supervised and (2) classic anomaly
detection benchmark datasets. The first type includes MNIST, Fashion-MNIST and CIFAR-10, and
the second includes datasets from various fields such as astronomy and medicine. For strengthen-
ing the baselines, Ruff et al. (2019) grant the shallow and hybrid methods an unfair advantage of
selecting their hyper-parameters to maximize AUROC on a subset (10%) of the test set. Here we
also follow this approach. When comparing with the state-of-the-art Deep SAD method, we used

3We also experimented with a hybrid model, trained by combining the loss functions for MML-VAE and
DP-VAE, and can be seen as a DP-VAE with the additional loss of minimizing the likelihood of outlier samples
in ELBOnormal(x). This model obtained similar performance, as we report in the appendix.
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the same network architecture but include bias terms in all layers. For the MNIST dataset, we found
that this architecture did not work well, and instead used a standard convolutional neural network
(CNN) architecture (see appendix for full details). Our implementation is done in PyTorch (Paszke
et al., 2017) and we run our experiments on a machine with an Nvidia RTX 2080 GPU. For all of
the experiments, our methods use an ensemble of size K = 5.

5.1 IMAGE DATASETS

MNIST, Fashion-MNIST and CIFAR-10 datasets all have ten classes. Similarly to Ruff et al.
(2019), we derive ten AD setups on each dataset. In each setup, one of the ten classes is set to
be the normal class, and the remaining nine classes represent anomalies. During training, we set
Xnormal as the normal class samples, and Xoutlier as a small fraction of the data from only one
of the anomaly classes. At test time, we evaluate on anomalies from all anomaly classes. For pre-
processing, pixels are scaled to [0, 1]. Unlike Ruff et al. (2019) which did not report on using a
validation set to tune the hyper-parameters, we take a validation set (20%) out of the training data to
tune hyper-parameters.

The experiment we perform, similarly to Ruff et al. (2019), is evaluating the model’s detection
ability as a function of the ratio of anomalies presented to it during training. We set the ratio of
labeled training data to be γl = Noutlier/(Nnormal +Noutlier), and we evaluate different values of
γl in each scenario. In total, there are 90 experiments per each value of γl. Note that for γl = 0, no
labeled anomalies are presented, and we revert to standard unsupervised AD, which in our approach
amounts to training a standard VAE ensemble.

Our results are presented in Table 1.4 The complete table with all of the competing methods can be
found in the appendix A.1.1. Note that even a small fraction of labeled outliers (γl = 0.01) leads to
significant improvement compared to the standard unsupervised VAE (γl = 0). Also, our methods
outperform other baselines in most domains. Comparing between our two proposed methods,we
noticed a slight advantage for DP-VAE on most datasets.

OC-SVM OC-SVM SSAD SSAD Deep Supervised MML DP
Data γl Raw Hybrid Raw Hybrid SAD Classifier VAE VAE

MNIST .00 96.0±2.9 96.3±2.5 96.0±2.9 96.3±2.5 92.8±4.9 94.2±3.0 94.2±3.0
.01 96.6±2.4 96.8±2.3 96.4±2.7 92.8±5.5 97.3±2.1 97.0±2.3
.05 93.3±3.6 97.4±2.0 96.7±2.4 94.5±4.6 97.8±1.6 97.5±2.0
.10 90.7±4.4 97.6±1.7 96.9±2.3 95.0±4.7 97.8±1.6 97.6±2.1
.20 87.2±5.6 97.8±1.5 96.9±2.4 95.6±4.4 **.*±*.* 97.9±1.8

F-MNIST .00 92.8±4.7 91.2±4.7 92.8±4.7 91.2±4.7 89.2±6.2 90.8±4.6 90.8±4.6
.01 92.1±5.0 89.4±6.0 90.0±6.4 74.4±13.6 91.2±4.8 90.9±6.7
.05 88.3±6.2 90.5±5.9 90.5±6.5 76.8±13.2 91.6±4.8 92.2±4.6
.10 85.5±7.1 91.0±5.6 91.3±6.0 79.0±12.3 **.*±*.* 91.7±6.0
.20 82.0±8.0 89.7±6.6 91.0±5.5 81.4±12.0 **.*±*.* 92.1±5.7

CIFAR-10 .00 62.0±10.6 63.8±9.0 62.0±10.6 63.8±9.0 60.9±9.4 52.7±10.7 52.7±10.7
.01 73.0±8.0 70.5±8.3 72.6±7.4 55.6±5.0 71.7±9.7 74.5±8.4
.05 71.5±8.1 73.3±8.4 77.9±7.2 63.5±8.0 **.*±*.* 79.1±8.0
.10 70.1±8.1 74.0±8.1 79.8±7.1 67.7±9.6 **.*±*.* 81.1±8.1
.20 67.4±8.8 74.5±8.0 81.9±7.0 80.5±5.9 **.*±*.* 82.8±7.3

Table 1: Results for image datasets. We report the average and standard deviation of AUROC over
90 experiments, for various ratios of labeled anomalies in the data γl.

CatsVsDogs Dataset: In addition to the test domains of Ruff et al. (2019), we also evaluate on
the CatsVsDogs dataset, which is notoriously difficult for anomaly detection (Golan & El-Yaniv,
2018). This dataset contains 25,000 images of cats and dogs in various positions, 12,500 in each
class. Following Golan & El-Yaniv (2018), We split this dataset into a training set containing 10,000
images, and a test set of 2,500 images in each class. We also rescale each image to size 64x64.
We follow a similar experimental procedure as described above, and average results over the two
classes. We chose a VAE architecture similar to the autoencoder architecture in Golan & El-Yaniv
(2018), and for the Deep SAD baseline, we modified the architecture to not use bias terms and
bounded activations. We report our results in Table 2, along with the numerical scores for baselines

4Cells marked with * denote experiments that have not finished running until the paper deadline and will be
updated later.
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taken from Golan & El-Yaniv (2018). Note that without labeled anomalies, our method is not
informative, predicting roughly at chance level, and this aligns with the baseline results reported by
Golan & El-Yaniv (2018). However, even just 1% labeled outliers is enough to significantly improve
predictions and produce informative results. This demonstrates the potential of the SSAD approach.
However, in this domain, using the geometric transformations of Golan & El-Yaniv (2018) allow
for significantly better performance even without labeled outliers. While this approach is domain
specific, incorporating similar self-supervised learning ideas into probabilistic AD methods is an
interesting direction for future research.

OC-SVM OC-SVM Deep MML DP
Data γl Raw Hybrid DAGMM DSEBM ADGAN DADGT SAD VAE VAE

CatsVsDogs .00 51.7 52.5 47.7 51.6 49.4 88.8 49.9 50.7 50.7
.01 54.1 59.4 64.0
.05 60.1 68.4 70.3
.10 64.4 71.5 75.3
.20 67.2 73.3 78.2

Table 2: Results of the experiment where we increase the ratio of labeled anomalies γl in the training
set, on the CatsVsDogs dataset.

5.2 CLASSIC ANOMALY DETECTION DATASETS

AD is a well-studied field of research, and as a result, there are many publicly available AD bench-
marks (Shebuti, 2016) with well-established baselines. These datasets are lower-dimensional than
the image datasets above, and by evaluating our method on them, we aim to demonstrate the flexibil-
ity of our method for general types of data. We follow Ruff et al. (2019), and consider random train-
test split of 60:40 with stratified sampling to ensure correct representation of normal and anomaly
classes. We evaluate over ten random seeds with 1% of anomalies, i.e., γl = 0.01. There are no
specific anomaly classes, thus we treat all anomalies as one class. For pre-processing we preform
standardization of the features to have zero mean and unit variance. As most of these datasets have a
very small amount of labeled anomalous data, it is inefficient to take a validation set from the train-
ing set. To tune the hyper-parameters, we measure AUROC performance on the training data, and
we also follow Ruff et al. (2019) and set a 150 training epochs limit. The complete hyper-parameters
table can be found in Appendix A.3.2.

In Table 3 we present the results of the best-performing algorithms along with our methods. The
complete table with all the competing methods can be found in Appendix A.1.2. Our methods
outperform all of the other methods on most datasets, demonstrating the flexibility of our approach
for general types of data.

OC-SVM SSAD Supervised Deep MML DP
Dataset Raw Raw Classifier SAD VAE VAE VAE

arrhythmia 84.5±3.9 86.7±4.0 39.2±9.5 75.9±8.7 85.6± 2.4 85.7± 2.3 86.7± 1.7
cardio 98.5±0.3 98.8±0.3 83.2±9.6 95.0±1.6 95.5± 0.8 99.2± 0.4 99.1± 0.4
satellite 95.1±0.2 96.2±0.3 87.2±2.1 91.5±1.1 77.7± 1.0 92.0± 1.5 89.2± 1.6
satimage-2 99.4±0.8 99.9±0.1 99.9±0.1 99.9±0.1 99.6± 0.6 99.7± 0.3 99.9± 0.1
shuttle 99.4±0.9 99.6±0.5 95.1±8.0 98.4±0.9 98.1± 0.6 99.8± 0.1 99.9± 0.04
thyroid 98.3±0.9 97.9±1.9 97.8±2.6 98.6±0.9 86.9± 3.7 99.9± 0.04 99.9± 0.04

Table 3: Results on classic AD benchmark datasets in the setting with a ratio of labeled anomalies
of γl = 0.01 in the training set. We report the avg. AUROC with st.dev. computed over 10 seeds.

5.3 ABLATIVE ANALYSIS

We perform an ablative analysis of DP-VAE method on the cardio and satellite datasets (with 1%
outliers). We evaluate our method with the following properties: (1) Frozen and unfrozen decoder,
(2) separate and same encoder for normal data and outliers and (3) the effect of using ensembles of
VAEs instead of one. Table 4 summarizes the analysis. It can be seen that using the same encoder
is necessary as we expected, since training a neural network requires sufficient amount of data.
Moreover, when dealing with a small pool of outliers, the effect on the decoder is minimal. Hence,
freezing the decoder contributes little to the improvement.
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Cardio Satellite
Encoder Decoder Ensemble AUROC AUROC

Separate Unfreeze 5 96.6±0.6 65.3±1.1
Separate Freeze 5 96.6±0.6 66.9±1.2
Same Unfreeze 5 98.8±0.06 88.9±1.7
Same Freeze 5 99.1±0.4 91.7±1.5
Same Freeze 1 97.8±1.1 87.6±1.7

Table 4: Ablative analysis of the Dual Prior method. AUROC is reported over average of 10 seeds.

Figure 2: Motion planning with VAE. Following the work of Ichter et al. (2018), a conditional
VAE is trained to generate robot configurations to be used within a sampling based motion planning
algorithm. The VAE generates 6D robot configurations (robot position and velocity; here projected
onto the 2D plane) given an image of obstacles, an initial state (blue) and a goal state (red). Using
our DP-VAE method, we added to the VAE training negative samples on obstacle boundaries. We
compare samples from the standard VAE (left) and DP-VAE (right) on three unseen obstacle maps.
Note that our method results in much more informative samples for planning obstacle avoidance.

5.4 SAMPLE-BASED MOTION PLANNING APPLICATION

While our focus is on SSAD, our methods can be used to enhance any VAE generative model when
negative samples are available. We demonstrate this idea in a motion planning domain (Latombe,
2012). Sampling-based planning algorithms search for a path for a robot between obstacles on a
graph of points sampled from the feasible configurations of the system. In order to accelerate the
planning process, Ichter et al. (2018) suggest to learn non-uniform sampling strategies that concen-
trate in regions where an optimal solution might lie, given a training set of planning problems to
learn from. Ichter et al. (2018) proposed a conditional VAE that samples configurations conditioned
on an image of the obstacles in the domain, and is trained using samples of feasible paths on a set of
training domains. Here, we propose to enhance the quality of the samples by including a few outliers
(5% of the normal data) during training, which we choose to be points on the obstacle boundaries –
as such points clearly do not belong to the motion plan. We used the publicly available code base
of Ichter et al. (2018), and modified only the CVAE training using our DP-VAE method. Exemplary
generated samples for different obstacle configurations (unseen during training) are shown in Figure
2. It can be seen that adding the outliers led to a VAE that is much more focused on the feasible
parts of the space, and thus generates significantly less useless points in collision with obstacles.

6 CONCLUSION

We proposed two VAE modifications that account for negative data examples, and used them for
semi-supervised anomaly detection. We showed that these methods can be derived from natural
probabilistic formulations of the problem, and that the resulting algorithms are general and effective
– they outperform the state-of-the-art on diverse datasets. We further demonstrated that even a small
fraction of outlier data can significantly improve anomaly detection on various datasets, and that our
methods can be combined with VAE applications such as in motion planning.

We see great potential in the probabilistic approach to AD using deep generative models: it has
a principled probabilistic interpretation, it is agnostic to the particular type of data, and it can be
implemented using expressive generative models. For specific data such as images, however, dis-
criminative approaches that exploit domain specific methods such as geometric transformations are
currently the best performers. Developing similar self-supervised methods for generative approaches
is an exciting direction for future research.
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OC-SVM OC-SVM IF IF KDE KDE Deep SSAD SSAD Deep Supervised MML DP
Data γl Raw Hybrid Raw Hybrid Raw Hybrid CAE SVDD Raw Hybrid SS-DGM SAD Classifier VAE VAE

MNIST .00 96.0±2.9 96.3±2.5 85.4±8.7 90.5±5.3 95.0±3.3 87.8±5.6 92.9±5.7 92.8±4.9 96.0±2.9 96.3±2.5 92.8±4.9 94.2±3.0 94.2±3.0
.01 96.6±2.4 96.8±2.3 89.9±9.2 96.4±2.7 92.8±5.5 97.3±2.1 97.0±2.3
.05 93.3±3.6 97.4±2.0 92.2±5.6 96.7±2.4 94.5±4.6 97.8±1.6 97.5±2.0
.10 90.7±4.4 97.6±1.7 91.6±5.5 96.9±2.3 95.0±4.7 97.8±1.6 97.6±2.1
.20 87.2±5.6 97.8±1.5 91.2±5.6 96.9±2.4 95.6±4.4 **.*±*.* 97.9±1.8

F-MNIST .00 92.8±4.7 91.2±4.7 91.6±5.5 82.5±8.1 92.0±4.9 69.7±14.4 90.2±5.8 89.2±6.2 92.8±4.7 91.2±4.7 89.2±6.2 90.8±4.6 90.8±4.6
.01 92.1±5.0 89.4±6.0 65.1±16.3 90.0±6.4 74.4±13.6 91.2±4.8 90.9±6.7
.05 88.3±6.2 90.5±5.9 71.4±12.7 90.5±6.5 76.8±13.2 91.6±4.8 92.2±4.6
.10 85.5±7.1 91.0±5.6 72.9±12.2 91.3±6.0 79.0±12.3 **.*±*.* 91.7±6.0
.20 82.0±8.0 89.7±6.6 74.7±13.5 91.0±5.5 81.4±12.0 **.*±*.* 92.1±5.7

CIFAR-10 .00 62.0±10.6 63.8±9.0 60.0±10.0 59.9±6.7 59.9±11.7 56.1±10.2 56.2±13.2 60.9±9.4 62.0±10.6 63.8±9.0 60.9±9.4 52.7.*±10.7 52.7.*±10.7
.01 73.0±8.0 70.5±8.3 49.7±1.7 72.6±7.4 55.6±5.0 71.7±9.7 74.5±8.4
.05 71.5±8.1 73.3±8.4 50.8±4.7 77.9±7.2 63.5±8.0 **.*±*.* 79.1±8.0
.10 70.1±8.1 74.0±8.1 52.0±5.5 79.8±7.1 67.7±9.6 **.*±*.* 81.1±8.1
.20 67.4±8.8 74.5±8.0 53.2±6.7 81.9±7.0 80.5±5.9 **.*±*.* 82.8±7.3

Table 5: Complete results of the experiment where we increase the ratio of labeled anomalies γl in the training set. We report the avg. AUROC with st.dev.
computed over 90 experiments at various ratios γl.
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A APPENDIX

A.1 COMPLETE RESULTS

A.1.1 MNIST, FASHION-MNIST, CIFAR-10

Table 5 includes the complete results.

A.1.2 CLASSIC ANOMALY DETECTION

Table 6 includes the complete results. MML-DP VAE combines both suggested objectives when
training the VAE, i.e. MML and DP, and as reflected in the results, its performance is on par with
them.

A.2 COMPETING METHODS

We compare our methods to reported performance of both deep and shallow learning approaches,
as detailed by Ruff et al. (2019) and Golan & El-Yaniv (2018). For completeness, we give a brief
overview of the methods.

OC-SVM/SVDD The one-class support vector machine (OC-SVM) is a kernel based method for
novelty detection (Schölkopf et al., 2001). It is typically employed with an RBF kernel, and learns a
collection of closed sets in the input space, containing most of the training samples. SVDD (Tax &
Duin, 2004) is equivalent to to OC-SVM for the RBF kernel. OC-SVM are both granted an unfair
advantage by selecting its hyper-parameters to maximize the AUROC on a subset (10%) of the test
set to establish a strong baseline.

Isolation Forest (IF) Proposed by Liu et al. (2008), IF is a tree-based method that explicitly
isolates anomalies instead of constructing a profile of normal instances and then identify instances
that do not conform to the normal profile as anomalies. As recommended in the original paper, the
number of trees is set to t = 100, and the sub-sampling size to ψ = 256.

Kernel Density Estimator (KDE) The bandwidth h of the Gaussian Kernel is selected via 5-fold
cross-validation using the log-likelihood following Ruff et al. (2018).

Semi-Supervised Anomaly Detection (SSAD) A kernel method suggested by Görnitz et al.
(2013) which is a generalization to SVDD to both labeled and unlabled examples. Also granted
the same unfair adavantage as OC-SVM/SVDD.

Convolutional Autoencoder (CAE) Autoencoders with convolution and deconvolution layers in
the encoder and decoder, respectively. We use the same architectures described in A.3.1 for our
VAE.

Hybrid Methods In all of the the hybrid methods mentioned in the results, the inputs are repre-
sentations from a converged autoencoder, instead of raw inputs.

Unsupervised Deep SVDD Two end-to-end variants of OC-SVM methods called Soft-Boundary
Deep SVDD and One-Class Deep SVDD proposed by Ruff et al. (2018). They use an objective
similar to that of the classic SVDD to optimize the weights of a deep architecture.

Deep Semi-supervised Anomaly Detection (Deep SAD) Recently proposed by Ruff et al. (2019),
Deep SAD is a general method based on deep SVDD, which learns a neural-network mapping of
the input that minimizes the volume of data around a predetermined point.

Semi-Supervised Deep Generative Models (SS-DGM) Kingma et al. (2014) proposed a deep
variational generative approach to semi-supervised learning. In this approach, a classifier is trained
on the latent space embeddings of a VAE, which are lower in dimension than the original input.
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OC-SVM OC-SVM Deep SSAD SSAD Deep Supervised MML DP MML-DP
Data Raw Hybrid CAE SVDD Raw Hybrid SS-DGM SAD Classifier VAE VAE VAE VAE

arrhythmia 84.5±3.9 76.7±6.2 74.0±7.5 74.6±9.0 86.7±4.0 78.3±5.1 50.3±9.8 75.9±8.7 39.2±9.5 85.6± 2.4 85.7± 2.3 86.7± 1.7 87.3± 1.7
cardio 98.5±0.3 82.8±9.3 94.3±2.0 84.8±3.6 98.8±0.3 86.3±5.8 66.2±14.3 95.0±1.6 83.2±9.6 95.5± 0.8 99.3± 0.3 99.1± 0.4 99.2± 0.4
satellite 95.1±0.2 68.6±4.8 80.0±1.7 79.8±4.1 96.2±0.3 86.9±2.8 57.4±6.4 91.5±1.1 87.2±2.1 77.7± 1.0 92.0± 1.5 89.2± 1.6 91.7± 1.5
satimage-2 99.4±0.8 96.7±2.1 99.9±0.0 98.3±1.4 99.9±0.1 96.8±2.1 99.2±0.6 99.9±0.1 99.9±0.1 99.6± 0.6 99.7± 0.3 99.9± 0.1 99.8± 0.1
shuttle 99.4±0.9 94.1±9.5 98.2±1.2 86.3±7.5 99.6±0.5 97.7±1.0 97.9±0.3 98.4±0.9 95.1±8.0 98.1± 0.6 99.8± 0.1 99.9± 0.04 **± *.*
thyroid 98.3±0.9 91.2±4.0 75.2±10.2 72.0±9.7 97.9±1.9 95.3±3.1 72.7±12.0 98.6±0.9 97.8±2.6 86.9± 3.7 99.9± 0.04 99.9± 0.04 99.9± 0.03

Table 6: Complete results on classic AD benchmark datasets in the setting with a ratio of labeled anomalies of γl = 0.01 in the training set. We report the avg.
AUROC with st.dev. computed over 10 seeds.
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They also propose a probabilistic model that describes the data using the available labels. These two
models are fused together to a stacked semi-supervised model.

Deep Structured Energy-Based Models (DSEBM) Proposed by Zhai et al. (2016), DSEBM is
a deep neural technique, whose output is the energy function (negative log probability) associated
with an input sample. The chosen architecture, as decribed by Golan & El-Yaniv (2018) is the same
as that of the encoder part in the convolutional autoencoder used by OC-SVM Hybrid.

Deep Autoencoding Gaussian Mixture Model (DAGMM) Proposed by Zong et al. (2018),
DAGMM is an end-to-end deep neural network that leverages Gaussian Mixture Modeling to per-
form density estimation and unsupervised anomaly detection in a low-dimensional space learned by
deep autoencoder. It simultaneously optimizes the parameters of the autoencoder and the mixture
model in an end-to-end fashion, thus leveraging a separate estimation network to facilitate the pa-
rameter learning of the mixture model. The architecture, as decribed by Golan & El-Yaniv (2018)
is the same as of the autoencoder we used is similar to that of the convolutional autoencoder used in
OC-SVM Hybrid.

Anomaly Detection with a Generative Adversarial Network (ADGAN) A GAN-based model,
proposed by Deecke et al. (2018). Anomaly detection is done with GANs by searching the gen-
erator’s latent space for good sample representations. In the experiments performed by Golan &
El-Yaniv (2018), the generative model of the ADGAN had the same architecture used by the authors
of the original paper.

Deep Anomaly Detection using Geometric Transformations (DADGT) A stae-of-the-art deep
anomaly detection in images method proposed by Golan & El-Yaniv (2018). In this method, features
are learned using a self-supervised paradigm – by applying geometric transformations to the image
and learning to classify which transformation was applied.

A.3 IMPLEMENTATION DETAILS

We provide essential implementation information and describe how we tuned our models5.

A.3.1 NETWORK ARCHITECTURES

Our work is based on deep variational autoencoders which require an encoder network and a decoder
network. For the architectures, we follow Ruff et al. (2019) architectures for the autoencoders, with
the only differences being the use of bias weights in our architectures and instead of autoencoders
we use variational autoencoders (i.e. the encoder outputs mean and standard deviation of the latent
variables).

For the image datasets, LeNet-type convolutional neural networks (CNNs) are used. Each convolu-
tional layer is followed by batch normalization and leaky ReLU activations (α = 0.1) and 2×2-max
pooling. On Fashion-MNIST, we use two convolutional layers, one the first with 16× (5× 5) filters
and second with 32× (5× 5) filters. Following are two dense layers of 64 and 32 units respectively.
On CIFAR-10, three convolutional layers of sizes 32 × (5 × 5) ,64 × (5 × 5) and 128 × (5 × 5)
filters are followed by a final dense layer of 128 units (i.e. the latent space is of dimension 128).
For MNIST, we use a different architecture where the first layer is comprised of 64× (4× 4)-filters
and the second 128 × (4 × 4)-filter with ReLU activations and no batch normalization. We use
two dense layers, the first with 1024 units and the final has 32 units. For CatsVsDogs we follow
Golan & El-Yaniv (2018) architecture for the autoencoder. We employ three convolutional layers,
each followed by batch normalization and ReLU activation. The number of filters in each layer are
128 × (3 × 3), 256 × (3 × 3) and 512 × (3 × 3) respectively. The final dense layer has 256 units,
which is the latent space dimension.

For the classic AD benchmark datasets, we use regular multi-layer perceptrons (MLPs). On arrhyth-
mia, a 3-layer MLP with 128-64-32 units. On cardio, satellite, satimage-2 and shuttle, we use a
3-layer MLP with 32-16-8 units. On thyroid a 3-layer MLP with 32-16-4 units.

5Our code will be published upon acceptance for publication
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For the motion planning, we follow Ichter et al. (2018) and use two-layer MLP with 512 hidden
units and latent space dimension of 256. We use dropout (p = 0.5) as regularization and ReLU
activation for the hidden layers.

A.3.2 HYPER-PARAMETERS AND TUNING

Tuning models in a semi-supervised setting is not a trivial task, as usually there is abundance of data
from one class and a small pool of data from the other classes. Thus, it is not clear whether one
should allocate a validation set out of the training set (and by doing that, reducing the number of
available samples for training) or just evaluate the performance on the training set and hope for the
best. Ruff et al. (2019) didn’t use a validation set, but predetermined the total number of epochs to
run and finally evaluated the performance on the test set. We, on the other hand, decided to take a
validation set out of the training set for the image datasets, as we have enough data. The validation
set is composed of unseen samples from the normal class and samples from the current outlier
class unlike the test set, which is composed of samples from all ten classes (9 outlier classes). On
the classic AD benchmark datasets, as there is very few outlier data, we evaluate the performance
during training on the training set itself without taking a validation set. Finally, we evaluate the
performance on the test set. For all datasets, we used a batch size of 128 and an ensemble of 5
VAEs. For the image datasets, we run 200 epochs and for the classical AD benchmarks we run
150 epochs. For the MML method, we found γ = 1 to perform well on all datasets. Furthermore,
similarly to the additional hyper-parameter βKL in the ELBO term, we add βCUBO to the CUBO
term as derived in Equation 4. The motivation for adding this balancing hyper-parameter is that
since L = exp{n ·CUBOn(qφ(z|x))} reaches the same optima as CUBOn(qφ(z|x)) as explained
earlier, so does L = exp{β ·n·CUBOn(qφ(z|x))}. Finding a good value for βCUBO can contribute
to the performance, as reflected in the results. Tables 7 and 8 summarize all the hyper-parameters
chosen for our model per dataset.

Data ND Update Interval Learning Rate βKL µo

MNIST 2 0.001 0.005 10
Fashion-MNIST 2 0.001 0.005 10
CIFAR-10 2 0.001 0.005 10
CatsVsDogs 1 0.001 0.005 10

arrhythmia 1 0.0005 0.5 2
cardio 1 0.001 0.05 5
satellite 1 0.001 0.05 5
satimage-2 1 0.0005 0.05 10
shuttle 1 0.001 0.05 5
thyroid 1 0.0001 0.05 10

Table 7: Hyper-parameters for the Dual Prior VAE

Data ND Update Interval Learning Rate βKL βCUBO

MNIST 2 0.0005 0.005 0.005
Fashion-MNIST 2 0.0005 0.005 0.005
CIFAR-10 2 0.0005 0.005 0.005
CatsVsDogs 1 0.0005 0.005 0.005

arrhythmia 1 0.0005 0.5 0.5
cardio 1 0.001 0.05 0.05
satellite 1 0.001 0.05 0.05
satimage-2 1 0.001 0.05 0.05
shuttle 1 0.001 0.05 0.05
thyroid 1 0.0001 0.05 0.05

Table 8: Hyper-parameters for the Max-Min Likelihood VAE

For training, we follow Kaae Sønderby et al. (2016) recommendations for training VAEs and use a
20-epoch annealing for the KL-divergence component, that is, the KL-divergence coefficient, βKL,
is linearly increased from zero to its final value. Moreover, we allow the VAE to first learn a good
representation of the normal data in a warm-up period of 50 epochs, and then we begin applying the
novelty detection updates. For optimization, we use Adam (Kingma & Ba, 2014) with a learning
rate schedule to stabilize training when outlier samples are fed after the warm-up period.
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A.4 CUBO LOSS DERIVATION

The χ-divergence is defined as follows:

Dχ2(p‖q) = Eq(z;θ)
[( p(z|x)

q(z; θ)

)2 − 1
]

The general upper bound as derived in Dieng et al. (2017):

Lχ2(θ) = CUBO2 =
1

2
logEq(z;θ)

[(p(x, z)
q(z; θ)

)2]
The optimized CUBO:

L = exp{2 · CUBO2(θ)} = Eq(z;θ)
[(p(x, z)
q(z; θ)

)2]
In the our VAE framework, we denote LR = − log p(X|z), the reconstruction error between the
output of the decoder and the original input. We assume that q(z|X) ∼ N (µq(X),Σq(X)) and that
in general, poutlier(z) ∼ N (µo, I), but we note that in our case, we set µo = 0, for both CUBO and
hybrid methods. As the CUBO loss is derived only for the anomalous data, we omit the labels in the
following. βCUBO is a balancing hyper-parameter we add, as mentioned in A.3.2.

LCUBO = Eq(z;θ)
[(p(x, z)
q(z; θ)

)2]
= Eq

[
exp{2 log p(X|z) + 2 log

( p(z)

q(z|X)

)
}
]

=

Eq
[

exp{−2 · LR + 2βCUBO · (log p(z)− log q(z|X))}
]

=

Eq
[

exp{−2·LR+2βCUBO ·
(
− 1

2
(z−µo)T (z−µo)−[−1

2
log |Σq|−

1

2
(z−µq)TΣ−1q (z−µq)]

)
}
]

=

Eq
[

exp{−2 · LR + βCUBO ·
(
− [zT z − 2zTµo + µTo µo] + log |Σq|+

zTΣ−1q z − 2zTΣ−1q µq + µTq Σ−1q µq
)
}
]

=

Eq
[

exp{−2 · LR + βCUBO ·
(

log |Σq|+ µTq Σ−1q µq − µTo µo−
zT z + 2zTµo + zTΣ−1q z − 2zTΣ−1q µq

)
}
]

=

exp{−2 · LR + βCUBO ·
(

log |Σq|+ µTq Σ−1q µq − µTo µo
)
}·

Eq
[

exp{βCUBO ·
(
− zT z + 2zTµo + zTΣ−1q z − 2zTΣ−1q µq

)
}
]

=

exp{−2 · LR + βCUBO ·
(

log |Σq|+ µTq Σ−1q µq − µTo µo
)
}·

exp{logEq
[

exp{βCUBO ·
(
− zT z + 2zTµo + zTΣ−1q z − 2zTΣ−1q µq

)
}
]
} =

exp{−2 · LR + βCUBO ·
(

log |Σq|+ µTq Σ−1q µq − µTo µo
)
+

logEq
[

exp{βCUBO ·
(
− zT z + 2zTµo + zTΣ−1q z − 2zTΣ−1q µq

)
}
]
} (4)

The expectation is estimated with Monte Carlo and for numeric stability we employ the commonly
used log-sum-exp trick.

A.5 ELBO WITH GAUSSIAN PRIOR

We provide the derivation for the ELBO objective function where the prior, p(z) is a Gaussian with
non-zero mean, that is, z ∼ N (µo, I). Under the i.i.d. assumption in the VAE framework, we
assume that zi ∼ N (µoi , 1) and zi|x ∼ N (µqi , σ

2
ii). Thus, it holds that:

Eq[z2i ] = σ2
ii + µ2

qi
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We now derive the KL-divergence component of the ELBO:

DKL[q(z|X)‖p(z)] = Eq
[ log q(z|X)

log p(z)

]
= Eq[log q(z|X)]− Eq[log p(z)]

Eq[log q(z|X)] = −1

2
log |Σq| −

1

2
Eq[(z − µq)TΣ−1q (z − µq)] =

−1

2
log |Σq|+

1

2
µTq Σ−1q µq −

1

2
Eq[zTΣ−1q z] =

−1

2

n∑
i=1

[log σ2
ii −

µ2
qi

σ2
ii

+ 1 +
µ2
qi

σ2
ii

] = −1

2

n∑
i=1

[log σ2
ii + 1]

Eq[log p(z)] = −1

2
Eq[(z − µo)T (z − µo)] =

1

2

n∑
i=1

[σ2
ii + µ2

qi − 2µqiµoi + µ2
oi ]

Finally:

DKL[q(z|X)‖p(z)] = −1

2

n∑
i=1

[1 + log σ2
ii − σ2

ii − µ2
qi + 2µqiµoi − µ2

oi ]
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