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ABSTRACT

Bayesian inference offers a theoretically grounded and general way to train neural
networks and can potentially give calibrated uncertainty. It is, however, challenging
to specify a meaningful and tractable prior over the network parameters. More
crucially, many existing inference methods assume mean-field approximate poste-
riors, ignoring interactions between parameters in high-dimensional weight space.
To this end, this paper introduces two innovations: (i) a Gaussian process-based
hierarchical model for the network parameters based on recently introduced unit
embeddings that can flexibly encode weight structures, and (ii) input-dependent
contextual variables for the weight prior that can provide convenient ways to
regularize the function space being modeled by the network through the use of
kernels. Furthermore, we develop an efficient structured variational inference
scheme that alleviates the need to perform inference in the weight space whilst
retaining and learning non-trivial correlations between network parameters. We
show these models provide desirable test-time uncertainty estimates, demonstrate
cases of modeling inductive biases for neural networks with kernels and demon-
strate competitive predictive performance of the proposed model and algorithm
over alternative approaches on a range of classification and active learning tasks.

1 INTRODUCTION

Bayesian neural networks (BNNs) (see e.g. MacKay, 1992; Neal, 1993; Ghahramani, 2016) are
one the research frontiers on combining Bayesian inference and deep learning, potentially offering
flexible modelling power with calibrated predictive performance. In essence, applying probabilistic
inference to neural networks allows all plausible network parameters, not just the most likely, to
be used for predictions. Despite some earlier success in supervised learning tasks (Guyon et al.,
2005; Quinonero-Candela et al., 2006), BNNs has enjoyed limited recent practical applications. This
could be attributed to: (i) the need to choose an appropriate weight prior as commonly modelers
care about functions priors rather than weight priors but require the power and expressivity of
weight-based models, and (ii) recently developed approximate inference methods are not able to
capture complicated posterior correlations in large networks. As such, addressing these challenges is
an active research area.

This paper attempts to remedy the aforementioned limitations for Bayesian neural networks by
extending previous work on unit-based representations for neural networks with a unit-based Gaussian
process hierarchical prior over network parameters, which flexibly models the correlations between
weights in a layer and across layers while forgoing the need for a parametric hyper-network. Moreover,
input-dependent contextual variables are used for modulating the GP-function and in turn specifying
input-dependent weight priors which draw from the tools from the kernel literature to imbue neural
networks with inductive biases. This may yield more desirable uncertainty estimates at test time, or
restrict function spaces to generalize in particular ways. A structured variational inference approach
is employed that side-steps the need to do inference in the weight space whilst retaining weight
correlations in the approximate posterior. These theoretical benefits translate to competitive practical
performance on a range of supervised and active learning tasks. The paper is organized as follows:
in the next section, we will briefly review mean-field variational inference for BNNs and a recently
proposed hierarchical model for BNNs. The proposed model and inference scheme are discussed in
section 3 and section 4, respectively, followed by a discussion on related work in section 5. We then
validate the performance of the proposed model and algorithm in section 6.
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2 BACKGROUND

In this section, we lay out the groundwork for the paper by providing a concise summary of variational
approaches to Bayesian neural networks and a recent approach to learning meta-representations of
neural networks.

2.1 BAYESIAN NEURAL NETWORKS AND VARIATIONAL INFERENCE

Consider a training set comprising of N input-output pairs, D = {xn, yn}Nn=1, and a neural net-
work parameterised by weights and biases, w, that describes the distribution over an output yn
given an input xn, p(yn|w,xn). We follow a Bayesian approach by placing a prior distribution
over the network parameters, p(w), and obtaining the posterior distribution p(w|D), which in-
volves calulation of the marginal likelihood p(D) =

∫
dwp(w)p(D|w). However, obtaining

p(w|D) and p(D) exactly is intractable when N is large or when the network is large and as
such, approximation methods are often required. In particular, mean-field Gaussian variational
inference (MFVI) has recently become a method of choice for approximate inference for Bayesian
neural networks due to its simplicity and the recently popularised reparameterization trick (Sal-
imans & Knowles, 2013; Kingma & Welling, 2013; Titsias & Lázaro-Gredilla, 2014; Blundell
et al., 2015). MFVI sidesteps the intractability by positing a diagonal Gaussian approximation
q(w) = N (w;µµµ,diag(σσσ2)) and optimising an approximate lower bound to the marginal likelihood
LMFVI(q(w)) ≈ −KL[q(w)||p(w)] + 1

K

∑K
k=1

∑N
n=1 log p(yn|wk,x), where wk = µµµ + σσσ � εk

and εk ∼ N (0, I), i.e. wk is a sample from q(w). Note that the mean-field variational Gaussian
approximation with a standard normal prior, presented in is often outperformed by point estimation
in certain settings (Trippe & Turner, 2018). Despite being practical and able to give reasonable
uncertainty estimates, improving MFVI is still an active research area, and the main focuses of which
are (i) improving the reparameterization gradient estimator to enable faster convergence (Miller et al.,
2017; Wu et al., 2018), (ii) replacing the typical standard Normal prior, p(w) = N (w;0, I) by a
structured prior that better models the structures present in the weight a-priori (Ghosh et al., 2018;
Neal, 2012; Blundell et al., 2015), and (iii) using structured variational approximations that can
potentially capture weight correlations in the posterior (Louizos & Welling, 2016; Zhang et al., 2017).
This paper builds on the two latter themes and proposes a hierarchical model for the prior and a
structured variational scheme that explicitly model and infer weight structures.

2.2 META-REPRESENTING WEIGHTS AND NETWORKS

Our work builds on and expands the class of hierarchical neural network models based on the concept
of latent variables associated with units in a network as proposed in Karaletsos et al. (2018). In
these models, each unit (visible or hidden) of the l-th layer of the network has a corresponding latent
hierarchical variable zl,i, possibly of high dimensions Dz , where i denotes the index of the unit in
a layer. Note that these latent variables do not describe the activation of units, but rather constitute
latent features associated with a unit. These latent variables are then used to construct the weights in
the network. Their construction is judiciously chosen such that a weight in the l-th weight layer, wl,i,j
is linked to the latent variables z’s of the i-th input unit and the j-th output unit of the weight layer.
We can summarize this relationship by introducing the concept of weight codes Cw(z) consisting of
the set of weight encodings for each individual weight in the network cwl,i,j

=
[
zl+1,i, zl,j

]
, which

can be deterministically constructed from the collection of unit latent variables z by concatenating
them correctly. Mathematically, the probabilistic description of the relationship between the weight
codes (summarizing the structured latent variables) and the weights w is:

p(w|z) = p(w|Cw(z)) =

L−1∏
l=1

Hl∏
i=1

Hl+1∏
j=1

p(wl,i,j |zl+1,i, zl,j), (1)

where l denotes a visible or hidden layer and Hl is the number of units in that layer, and w denotes
all the weights in this network.

The central motivations for this parameterization are three-fold. First, weights in a layer and across
layers are explicitly correlated in the modelling stage, as they share latent variables if they are
connected to the same unit, unlike the standard normal prior typically used as described in the last
section. Second, the number of visible and hidden units in a neural network is typically much smaller
than the number of weights. For example, for the l-th weight layer, there are Hl ×Hl+1 weights
compared to Hl +Hl+1 associated latent variables. This encourages the development of inference
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schemes that can work in the lower-dimensional hierarchical latent space directly without the need to
infer the weights. Third, as hierarchical latent variables are associated with units in the network and
have the same cardinalities, inferring these latent variables conditioning on observed data could be
thought of as a form of network representation learning.

In Karaletsos et al. (2018), a small parametric neural network regression model (conceptually
a structured hyper-network) is chosen to map the latent variables to the weights. The network
either assumes a Gaussian noise model which factorizes over weights, p(wl,i,j |zl+1,i, zl,j) =
N (wl,i,j ;µl,i,j , σ

2
l,i,j , θ), where (µl,i,j , log σl,i,j) = NNθ([zl+1,i, zl,j ]), or models dependence

between weights implicitly as p(w|Cw(z), θ) ∝
∫
p(ε)

∏
l,i,j

NNθ([zl+1,i, zl,j , ε])dε, where ε is a

random variate, wl,i,j = NNθ([zl+1,i, zl,j , ε]), and θ denotes the parameters of the neural network
mapping. We will call this network a meta mapping. Note that given the collection of sampled unit
variables z, the weights (or theirs mean and variance) can be obtained efficiently in parallel. A prior
over the latent variables z, p(z) = N (z;0, I), completes the model specification. We can thus write
down the joint density of the resulting hierarchical model as follows,

p(D,w, z|θ) =

[
L∏
l=1

p(zl)

]
[p(w|Cw(z), θ)]

[
N∏
n=1

p(yn|w,xn)

]
. (2)

Variational inference was employed in prior work to infer z (and w implicitly), and to obtain a point
estimate of θ, as a by-product of optimising the variational lower bound.

3 META-REPRESENTATIONS WITH GAUSSIAN PROCESS MAPPINGS AND
CONTEXTUAL LATENT VARIABLES

In this section, we present two novel extensions of the hierarchical model in section 2.2 that aim to
increase the robustness in the small data settings and improve its out-of-sample uncertainty estimates.

Figure 1: Graphical depiction of various models: vanilla BNNs, BNNs with hierarchical GP-
MetaPriors, and BNNs with hierarchical GP-MetaPriors and auxiliary variables.

3.1 META-REPRESENTING WEIGHTS WITH GAUSSIAN PROCESSES

Notice that in section 2.2, the meta mapping from the hierarchical latent variables to the weights is
a parametric non-linear function, specified by a neural network. We replace the parametric neural
network by a probabilistic functional mapping and place a nonparametric Gaussian process (GP)
prior over this function. That is,

p(wl,i,j |f, cwl,i,j
) = N (wl,i,j ; f([zl+1,i, zl,j ]), σ

2
w);

p(f |γ) = GP(f ;0, kcw(·, ·|γ)), (3)

where we have assumed a zero-mean GP, kγ(·, ·) is a covariance function and γ is a small set of
hyper-parameters. The representational effect is that the latent function introduces correlations for
the individual weight predictions,

P (w|Z) = P (w|Cw(Z)) =

∫
p(f)

[ L−1∏
l=1

Hl+1∏
i=1

Hl∏
j=1

p(wl,i,j |f, zl+1,i, zl,j)
]
df. (4)
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Figure 2: Marginal and conditional covariance structures
over weights in a 1x50x1 neural network. Sampling from the
posterior of the hierarchical model reveals that even a diago-
nal GP approximation can capture off-diagonal correlations
induced through unit correlations. Also note the off-diagonal
bands in the marginal plots above, which indicate the corre-
lation structures induced by the latent variables of the hidden
units connecting the layers.

Here, we present a homoscedastic
noise model for the weights, but the
model is readily adaptable to a het-
eroscedastic noise model which we
omit for clarity. For a more de-
tailed discussion on GPs and their
applications, please see Rasmussen
& Williams (2005). It is worth not-
ing that whilst the number of latent
variables and weights can be large,
the input dimension to the GP map-
ping is only 2Dz , where Dz is the di-
mensionality of each latent variable z.
The GP mapping effectively performs
one-dimensional regression from la-
tent variables to individual weights
while capturing their correlations. We
will refer to this mapping as a GP-
MetaPrior (metaGP).

In general, the form of the covariance
function and the values of the hyper-
parameters encapsulate prior knowl-
edge about the unknown function. We
note that GPs benefit from the fact
that kernels are compositional and can
thus be used to represent correlation
structures explicitly. We exploit this
fact and define the following factor-
ized kernel at the example of two weights in the network,

kcw(cw1 , cw2) = k([zl1+1,i1 , zl1,j1 ], [zl2+1,i2 , zl2,j2 ])

= kout(zl1+1,i1 , zl2+1,i2) · kin(zl1,j1 , zl2,j2).
(5)

In this section and what follows, we will use the popular exponentiated quadratic kernel with ARD
lengthscales, k(x1,x2) = σ2

k exp
(∑2Dz

d=1
−(x1,d−x2,d)

2

2l2d

)
, where {ld}2Dz

d=1 are the kernel lengthscales

and σ2
k is the kernel variance. For the model considered here, this admits the following separation in

the kernel computation:

kwl1,i1,j1
,wl2,i2,j2

= σ2
k exp

(
Dz∑
d=1

−(zl1,i1,d − zl2,i2,d)2

2l2d

)
exp

(
Dz∑
d=1

−(zl1+1,j1,d − zl2+1,j2,d)
2

2l2Dz+d

)
,

that is, the computation of the covariance matrix between all the weights can be computed efficiently
as a product of two sub-covariance matrices that are computed using the latent variables.

3.2 CONTEXTUAL VARIABLES FOR MODULATING FUNCTION PRIORS

We first note that whilst the hierarchical latent variables and meta mappings introduce non-trivial
coupling between the weights a priori, the weights and latent variables are inherently global. That is, a
function drawn from the model, represented by a set of weights, does not take into account the inputs
at which the function will be evaluated. Inspired by recent work on using contextual information or
dataset summary to drive supervised learning predictions (Edwards & Storkey, 2016; Garnelo et al.,
2018), we introduce the input variable into the weight codes cwl,i,j

=
[
zl+1,i, zl,j , x

]
. In turn, this

yields input-conditional weight models p(wn,l,i,j |f, zl+1,i, zl,j ,xn). We again turn to compositional
kernels and introduce a new input kernel Kx which we use as follows,

kcw(cw1 , cw2) = k([zl1+1,i1 , zl1,j1 , x1], [zl2+1,i2 , zl2,j2 , x2])

= kout(zl1+1,i1 , zl2+1,i2) · kin(zl1,j1 , zl2,j2) · kx(x1, x2).
(6)

As a result of having private contextual inputs to the meta mapping, the weights are now also local to
each data point. In effect, each function drawn from this model explicitly needs the input locations
we are interested in, in a similar vein to how functions are drawn from a Gaussian process.
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What effects should we expect from such a modulation? As usual, the modeler has to choose the
input kernel. Consider the use of an exponentiated quadratic kernel: we would expect data which lies
far away from training data to receive small kernel values from Kx. This, in turn, would modulate
the entire kernel Kcw for that data point to small values, leading to a weight model that reverts
increasingly to the prior. We would hope such a model would help with modeling uncertainty by
resetting weights to uninformative distributions away from training data. However, one may also
want to use this mechanism to model inductive biases for the network, such as adding structure to
the weight prior that can be captured with a kernel function. This is a potentially appealing avenue,
as multiple useful kernels have been found in the GP literature that allow modelers to describe
relationships between data, but was not a tool that was previously accessible to neural network
modelers. We consider this a novel form of functional regularization, as the entire network can be
given structure that will constrain its function space. Unfortunately, we cannot easily apply this
method directly to high dimensional inputs as commonly used kernel functions fail in this setting. To
overcome this limitation, we introduce {εεεn}Nn=1, one for each training instance, which can be then
used to as an extra input dimension for the meta mapping to generate weights instead of the actual
inputs. In detail, each auxiliary input is obtained via a (potentially nonlinear)transformation applied
to an input: εεεn = g(Vxn), where V ∈ RDe×Dx , and De and Dx are the dimensionality of εεεn and
xn, respectively, and g(·) is an arbitrary transformation. We may also layer these transformations in
general. We typically set De � Dx so this transformation could be thought of as a dimensionality
reduction operation. For low dimensional inputs, we can directly set εεεn = xn. The auxiliary variable
is then augmented to the input of the meta mapping as follows,

p(wn,l,i,j |f, zl,i, zl+1,j ,xn,V) = N (wn,l,i,j ; f([zl,i, zl+1,j , εεεn]), σ2
w), (7)

that is, the input dimension of the meta mapping is now 2Dz +De. The covariance matrices can be
decomposed and computed efficiently as Kronecker products Kcw = Kout⊗Kin⊗Kx, as Kx maps
over data (N ×N ) instead of over weights (W ×W ) like the previous kernels and so their product
requires efficient approximation to avoid calculating an object of size (WN ×WN )1. Additionally,
we also place a prior over the linear transformation: p(V) = N (V;0, I).

4 INFERENCE AND LEARNING USING STOCHASTIC STRUCTURED
VARIATIONAL INFERENCE

Performing inference is challenging due to the non-linearity of the neural network and the need
to infer an entire latent function f . To address these problems, we derive a structured variational
inference scheme that makes use of innovations from inducing point GP approximation literature
(Titsias, 2009; Hensman et al., 2013; Quiñonero-Candela & Rasmussen, 2005; Matthews et al., 2016;
Bui et al., 2017) and previous work on inferring meta-representations (Karaletsos et al., 2018). As a
reminder, we write down the joint density of all variables in the model specified in section 3:

p(D,w, z, f,V) = p(z)p(V)p(f)p(w|f, z,V,x)p(y|w,x)

= p(z)p(V)p(f) [p(w|f,Cw(z,xn,V))]

[
N∏
n=1

p(yn|w,xn)

]
.

We first partition the space Z of inputs to the function f into a finite set of M variables called
inducing inputs zu and the remaining inputs, Z = {xu,Z 6=xu}. The function f is partitioned
identically, f = {u, f6=u}, where u = f(xu). We can then rewrite the GP prior as follows, p(f) =
p(f6=u |u, zu)p(u|zu).2 The inducing inputs and outputs, {xu,u}, will be used to parameterize the
approximation. In particular, a variational approximation is judiciously chosen to mirror the form of
the joint density:

q(w, z, f,V) = q(z)q(V)p(f 6=u |u, zu)q(u)p(w|f, z,V,x), (8)

where the variational distribution over w is made to explicitly depend on remaining variables through
the conditional prior, q(z) and q(V) are chosen to be diagonal (mean-field) Gaussian densities,
q(z) = N (z;µµµz,diag(σσσ2

z)) and q(V) = N (V;µµµV,diag(σσσ2
V)), respectively, and q(u) is chosen to

be a correlated multivariate Gaussian, q(u) = N (u;µµµu,Σu). This approximation allows convenient

1we can solve this in complexity dominated by the decomposition of the largest kernel in the product
2The conditioning on Z6=xu in p(f 6=u |u, zu) is made implicit here and in the rest of this paper.
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cancellations yielding a tractable variational lower bound as follows,

LmetaGP(·) =

∫
w,z,f,V

q(w, z, f,V) log
p(z)p(V)((((((p(f 6=u |u, zu)p(u|zu)(((((((

p(w|f, z,V,x)p(y|w,x)

q(z)q(V)((((((p(f 6=u |u, zu)q(u)(((((((
p(w|f, z,V,x)

≈ −KL[q(z)||p(z)]−KL[q(V)||p(V)]−KL[q(u)||p(u|xu)]

+
1

K

K∑
k=1

∫
w,f

q(w, f |zk,Vk) log p(y|w,x)

where the last expectation has been partly approximated using simple Monte Carlo with the repa-
rameterization trick, i.e. zk ∼ q(z) and Vk ∼ q(V). We will next discuss how to approximate the
expectation Fk =

∫
w,f

q(w, f |zk,Vk) log p(y|w,x). Note that we have splitted f into f 6=u and u,
and that we can integrate f6=u out exactly to give, q(w|zk,u,Vk) = N (w;A(k)u,B(k)),

A(k) = K
(k)
f6=uu

K−1uu; B(k) = K
(k)
l,f6=uf6=u

−K
(k)
f6=uu

K−1uuK
(k)
uf6=u

+ σ2
wI. (9)

At this point, we can either (i) sample u from q(u), or (ii) integrate u out analytically. We opt for the
second approach, which gives

q(w|zk,Vk) = N (w;A(k)µµµu,B
(k) + A(k)ΣuA

ᵀ,(k)). (10)

In contrast to GP regression and classification in which the likelihood term is factorised point-wise
w.r.t. the parameters and thus their expectations only involve a low dimensional integral, we have to
integrate out w in this case, which is of much higher dimensions. When necessary or practical, we
resort to Kronecker factored models or make an additional diagonal approximation as follows,

q̂(w|zk,Vk) = N (w;A(k)µµµu,diag(B(k) + A(k)ΣuA
ᵀ,(k))). (11)

Whilst the diagonal approximation above might look poor from the first glance, it is conditioned on a
sample of the latent variables zk and thus the weights’ correlations are retained after integrating out
z. Such correlation is illustrated in fig. 2 where we show the marginal and conditional covariance
structures for the weights of a small neural network, separated into diagonal and full covariance
models. The diagonal approximation above has been observed to give pathological behaviours in the
GP regression case (Bauer et al., 2016), but we did not observe these in practice. Fk is approximated
by Fk ≈

∫
w
q̂(w|zk,Vk) log p(y|w,x) which can be subsequently efficiently estimated using the

local reparameterization trick (Kingma et al., 2015). The final lower bound is then optimised to
obtain the variational parameterers of q(u), q(z) and q(V), and estimates for the noise in the meta-GP
model, the kernel hyper-parameters and the inducing inputs.

5 RELATED WORK

Bayesian neural networks have recently garnered a resurgence of interests in the community. There
is, however, a long history of research on developing approximate Bayesian inference methods for
these networks. Notable work include extended Kalman filtering (Singhal & Wu, 1989), Laplace’s
approximation (MacKay, 1992), Hamiltonian Monte Carlo (Neal, 1993; 2012), variational inference
(Hinton & Van Camp, 1993; Barber & Bishop, 1998; Graves, 2011; Blundell et al., 2015; Gal &
Ghahramani, 2016), and approximate expectation propagation (Hernández-Lobato & Adams, 2015;
Li et al., 2015; Hernández-Lobato et al., 2016). The work in this paper is orthogonal to these as the
model employs a hierarchical prior, and inference is done in a lower-dimensional latent space instead
of the weight space. The variational approximation is chosen such that the marginal distribution
over the weights is non-Gaussian and the correlations between weights are retained, in contrast
to the popular mean-field Gaussian approximation. Additionally, a standard multivariate Normal
distribution is typically used as the prior over the network weights and biases. Imposing additional
structures over the weights a prior or carefully choosing the right prior variances have been observed
to improve the predictive performance (Ghosh et al., 2018; Neal, 2012; Blundell et al., 2015). In
this vein, the proposed model in this paper imposes a class of flexible structures over the network
parameters and learn a posterior over them conditioned on observed data. Another related theme
is hyper-networks, the core idea of which is to generate network parameters using another network
(see e.g. Ha et al., 2016; Stanley et al., 2009). The proposed model could be thought of as a GP
hyper-network, but utilizes latent variables for nodes as introduced in (Karaletsos et al., 2018),
thus avoiding overparametrized, monolithic models over weight tensors. Instead, the model uses
hierarchical modeling, conditional probabilities, and the unit nodes to perform one-dimensional
regression to weights maintaining modeling correlations.
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6 EXPERIMENTS

In this section, we evaluate the proposed model and inference scheme on several toy and benchmark
datasets. We compare the proposed approach primarily to maximum a posteriori estimation (MAP)
and MFVI, both of which use a standard Normal prior over the weights. These were implemented
using PyTorch (Paszke et al., 2017) and the code will be available upon acceptance. Additional results
are included in the appendices. We use M = 50 inducing points for all experiments in this section.

6.1 TOY REGRESSION AND CLASSIFICATION EXAMPLES
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Figure 3: Illustration of the performance of Bayesian neural networks with a standard Normal prior
over the weights and a mean-field Gaussian variational approximation [MFVI], a meta-NN prior,
a meta-GP prior and a meta-GP prior with auxiliary inputs. Top: 1-D regression on 100 noisy
observations. The plots show the predictive mean and uncertainty as well as the training points.
Middle and bottom: Multiclass classification on a toy four-class dataset of 100 examples. The
background colour matches the entropy of the predictive probability distribution, e.g. darker is more
certain. Each pair of plots show the behaviour around and away from the training points when
zooming out. Best viewed in colour.

We first illustrate the performance of the proposed model on two toy examples, one regression and
one classification. In both cases, a Bayesian neural network with one hidden layer of 50 hidden units
is used. Additionally, the hierarchical latent variables have two dimensions. For the regression case,
we generate 100 data points from a toy function suggested by Louizos et al. (2019). For classification,
a four-class dataset of 100 data points is used. Figure 3 shows the predictive performance of the
proposed models, MFVI and a meta-NN on both tasks. Notably, the proposed model with contextual
inputs (and thus input dependent network weights) gives uncertainty estimates that are reminiscent to
that of a GP regression model, despite being a neural network under the hood. Following Bradshaw
et al. (2017), we also show the uncertainty for data further from the training instances. The model
with auxiliary inputs remains uncertain as expected for these points whilst MFVI produces arguably
overconfident predictions. We also attempt to summarise the distribution of the weights in the network
in appendix A.2 in the appendices.

6.2 INPUT DEPENDENT NEURAL NETWORKS FOR UNCERTAINTY QUANTIFICATION

Motivated by the performance of the proposed metaGP model with auxiliary inputs in the toy
examples in fig. 3, this section tests the ability of this model class to produce calibrated predictive
uncertainty to out-of-distribution samples. That is, for test samples that do not come from the
same training distribution, a robust and well-calibrated model should produce uncertain predictive
distribution and thus high predictive entropy. Such a model could find applications in safety-critical
tasks where the cost of making confident but wrong predictions is high, or in area where detecting
unfamiliar inputs is crucial such as active learning or reinforecement learning. In this work, we first
train a neural network classifier with one hidden layer of 100 rectified linear units on the MNIST
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dataset, and apply the metaGP prior only to the last layer of the network. The dimensions of the
latent variables and the auxiliary inputs are both 2. After training, we compute the entropy of the
predictions on various test sets, including notMNIST, fashionMNIST, Kuzushiji-MNIST, and uniform
and Gaussian noise inputs. Following (Lakshminarayanan et al., 2017; Louizos & Welling, 2017),
the CDFs of the predictive entropies for various methods are shown in fig. 4. A calibrated classifier
should give a CDF that bends towards the top-left corner of the plot for in-distribution examples and,
vice versa, towards the bottom-right corner of the plot for out-of-distribution inputs. In most out-of-
distribution sets considered, except Gaussian random noise, metaGP and metaGP with local auxiliary
variables demonstrate competitive performance to Gaussian MFVI. Notably, MAP estimation, often
deployed in practice, tends to give wildly poor uncertainty estimates on out-of-distribution samples.
We illustrate this behaviour and that of other models and methods on representative inputs of the
MNIST and Kuzushiji-MNIST datasets in fig. 4.

Figure 4: The CDFs of predictive entropies on in-distribution and out-of-distribution test sets for
various methods [Left] and the predictive class probability by these methods for representative
samples from an in-distribution test set [Top right] and an out-of-distribution test test [Bottom right].
Best viewed in colour.

6.3 MODELING INDUCTIVE BIASES FOR NEURAL NETWORKS WITH INPUT-DEPENDENT
KERNELS

We further explore the utility of the contextual variable towards modeling inductive biases for neural
networks and evaluate on predictive performance on a regression example. In particular, we generate
100 training points from a synthetic sinusoidal function and create two test sets that contains in-sample
inputs and out-of-sample inputs, respectively. We test an array of models and inference methods,
including BNN with MFVI, metaGP and metaGP with contextual variables. In particular, as noted in
section 3.1 we can choose the covariance function to be used for the auxiliary variables to encode our
belief about how the weights should be modulated by the input. We pick exponentiated quadratic
and periodic kernels (MacKay, 1998) in this example. The predictive performance are measured
by the root mean squared error (RMSE) and the log-likelihood (LL) on the test examples. Figure 5
summarises the results and illustrate the qualitative difference between models. It could be noted that
the periodic kernel allows the model to discover and encode periodicity, allowing for more long-range
confident predictions compared to that of the exponentiated quadratic kernel In this example, MetaGP
with contextual variables is superior to other methods, demonstrating good RMSE and LL on both
in-distribution and out-of-distribution examples.

6.4 ACTIVE LEARNING

We next stress-test the performance of the proposed model in a pool-based active learning setting for
real-valued regression, where limited training data is provided initially and the target is to sequentially
select points from a pool set to add to the training set. The criterion to select the next best point from
the pool set is based on the entropy of the predictive distribution, i.e. we pick one with the highest
entropy. In practice, we approximate the predictive density by a Gaussian density, which results in
a tractable entropy computation. Note that this selection procedure can be interpreted as selecting
points that maximally reduce the posterior entropy of the network parameters (Houlsby et al., 2011).
Four UCI regression datasets were considered, where each with 40 random train/test/pool splits. For
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Figure 5: Illustration of the effect of local variables and different kernels for the local variables.
The underlying function is a sinusoid. Each subplot shows the training points (black pluses), the
in-distribution test points (magenta crosses), the out-of-distribution test points (magenta filled circles),
the predictive mean (connected line), two standard deviations (shaded area) and added observation
noise (red dashed line). The title of the subplots include the predictive performance on the in-
distribution and out-of-distribution test points, demonstrating the ability of a model to interpolate and
extrapolate, correspondingly. Best viewed in colour.
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Figure 6: Active learning with BNNs using mean-field Gaussian variational inference [MFVI] and a
meta-GP hierarchical prior [MetaGP] on several UCI regression datasets. Each trace shows the root
mean squared error (RMSE) on the test set as more data points are selected and moved from the pool
set to the training set, averaged over 40 runs. The objective function for selecting points from the
pool set is the predictive variance. Best viewed in colour.

each split, the initial train set has 20 data points, the test set has 100 data points, and the remaining
points are used for the pool set, similar to the active learning set-up in Hernández-Lobato & Adams
(2015). We compare the performance of the proposed model and inference scheme to that of Gaussian
mean-field variational inference and show the average results in fig. 6. Across all runs, we observe
that active learning is superior to random selection and more crucially using the proposed model
and inference scheme seems to yield comparable or better predictive errors with a similar number of
queries. We also illustrate the procedure on a toy classification dataset and visualise the predictive
uncertainty as more points are picked and used for training in fig. 7 in the appendix. This simple
setting quantitatively reveals the inferior performance of MFVI, compared to MAP and metaGP.

7 SUMMARY

We have developed a flexible hierarchical neural network model and a structured variational inference
scheme that together (i) enable flexible modelling of the correlations between network parameters,
(ii) allow weight structures to be retained in the approximate posterior without having to perform
direct inference in the high-dimensional weight space, and (iii) allow input-dependent contextual
variables to be used to generate private weights per data point which translates to more desirable
uncertainty estimates in practice and the ability to generalize out of sample with inductive biases
such as periodicity. We plan to evaluate the performance of the model on more challenging decision
making tasks such as contextual bandits or reinforcement learning, and to extend the inference scheme
to handle continual learning.
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A EXTRA EXPERIMENTAL RESULTS

A.1 A TOY ACTIVE LEARNING SETTING

Please see fig. 7 and the associated caption.

Figure 7: Active learning with BNNs using maximum a posteriori estimation [BNN-MAP], mean-
field Gaussian variational inference [BNN-MFVI] and a meta-GP hierarchical prior [BNN-MetaGP]
on a toy multi-class classification task. For each plot, the filled circle markers are the current training
points, with different colours illustrating different classes. The shaded crosses are the examples
in the pool set, one of which we wish to pick and evaluate to be included in the training set. The
unfilled circle markers are the examples from the pool set selected at a step. The objective function
for selecting points from the pool set is the entropy of the predictive probability. Best viewed in
colour.

A.2 PROBABILITY DENSITIES OF WEIGHTS IN THE TOY 1D REGRESSION EXPERIMENT

Please see figs. 8 and 9 and the associated captions.
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