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ABSTRACT

Federated learning (FL) is a promising approach in distributed learning keeping
privacy. However, during the training pipeline of FL, slow or incapable clients
(i.e., stragglers) slow down the total training time and degrade performance. Sys-
tem heterogeneity, including heterogeneous computing and network bandwidth,
has been addressed to mitigate the impact of stragglers. Previous studies tackle the
system heterogeneity by splitting a model into submodels, but with less degree-
of-freedom in terms of model architecture. We propose nested federated learning
(NeFL), a generalized framework that efficiently divides a model into submodels
using both depthwise and widthwise scaling. NeFL is implemented by interpreting
forward propagation of models as solving ordinary differential equations (ODEs)
with adaptive step sizes. To address the inconsistency that arises when training
multiple submodels of different architecture, we decouple a few parameters from
parameters being trained for each submodel. NeFL enables resource-constrained
clients to effectively join the FL pipeline and the model to be trained with a larger
amount of data. Through a series of experiments, we demonstrate that NeFL
leads to significant performance gains, especially for the worst-case submodel.
Furthermore, we demonstrate NeFL aligns with recent studies in FL, regarding
pre-trained models of FL and the statistical heterogeneity. Code will be available
after blind reviewing.

1 INTRODUCTION

The success of deep learning owes much to vast amounts of training data where a large amount
of data comes from mobile devices and internet-of-things (IoT) devices. However, privacy regula-
tions on data collection has become a critical concern, potentially impeding further advancement of
deep learning (Dat, 2022; Dou et al., 2021). A distributed machine learning framework, federated
learning (FL) is getting attention to address these privacy concerns. FL enables model training by
collaboratively leveraging the vast amount of data on clients while preserving data privacy. Rather
than centralizing raw data, FL collects trained model weights from clients, that are subsequently ag-
gregated on a server by a method (e.g., FedAvg) (McMahan et al., 2017). FL has shown its potential,
and several studies have explored to utilize it more practically (Hong et al., 2022; He et al., 2020b;
Makhija et al., 2022; Zhuang et al., 2022; He et al., 2021).

Despite its promising perspective, there exist challenges in regarding systems-related heterogeneity
(Kairouz et al., 2021; Li et al., 2020a). For example, clients with heterogeneous resources, including
computing power, communication bandwidth, and memory, introduce stragglers that degrade the
FL performance. The FL server can wait for stragglers leading to longer training times delays.
Alternatively, the server can drop out a few stragglers. However, excluding stragglers can lead
to a trained model biased predominantly toward data from resource-rich clients. Therefore, FL
framework that accommodates clients with heterogeneous resources is required. On the other hand,
one another option is to reduce a model size to accommodate resource-poor clients. However, a
smaller-sized model could result in a performance degradation due to limited model capacity. To
this end, FL with a single global model may not be efficient for heterogeneous clients.

In this paper, we propose Nested Federated Learning (NeFL), a method that embraces existing stud-
ies of federated learning in a nested manner (Horváth et al., 2021; Diao et al., 2021; Kim et al., 2023).
While generic FL trains a model with a fixed size and structure, NeFL trains several submodels of
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adaptive sizes to meet dynamic requirements (e.g., memory, computing and bandwidth dynamics)
of each client. We propose to scale down a model into submodels generally (by widthwise or/and
depthwise). The proposed scaling method provides more degree-of-freedom (DoF) to scale down a
model than previous studies (Horváth et al., 2021; Diao et al., 2021; Kim et al., 2023). The increased
DoF makes submodels be more efficient in size (Tan & Le, 2019) and provides more flexibility on
model size and computing cost. The scaling is motivated by interpreting a model forwarding as solv-
ing ordinary differential equations (ODEs). The ODE interpretation also motivated us to suggest the
submodels with learnable step size parameters and the concept of inconsistency. We also propose
a parameter averaging method for NeFL: Nested Federated Averaging (NeFedAvg) for averaging
consistent parameters and FedAvg for averaging inconsistent parameters of submodels.

Additionally, we verify if NeFL aligns with the recently proposed ideas in FL: (i) pre-trained models
improve the performance of FL in both identically independently distributed (IID) and non-IID set-
tings (Chen et al., 2023) and (ii) simply rethinking the model architecture improves the performance,
especially in non-IID settings (Qu et al., 2022). Through a series of experiments we observe that
NeFL outperforms baselines sharing the advantages of recent studies.

The main contributions of this study can be summarized as follows:

• We propose a general model scaling method employing the concept of ODE solver to deal
with the system heterogeneity. We introduced inconsistent parameters to deal with model-
architectural discrepancies.

• We propose a method for parameter averaging across generally scaled submodels.

• We evaluate the performance of NeFL through a series of experiments and verify the appli-
cability of NeFL over recent studies.

2 RELATED WORKS

Knowledge distillation. Knowledge distillation (KD) aims to compress models by transferring
knowledge from a large teacher model to a smaller student model (Hinton et al., 2015). Several
studies have explored the integration of knowledge distillation within the context of federated learn-
ing (Seo et al., 2020; Zhu et al., 2021). These studies investigate the use of KD to address (i)
reducing the model size and transmitting model weights and (ii) fusing the knowledge of several
models with different architectures. FedKD (Wu et al., 2022) proposes an adaptive mutual distilla-
tion where the level of distillation is controlled based on prediction performance. FedGKT (He et al.,
2020a) presents an edge-computing method that employs knowledge distillation to train resource-
constrained devices. The method partitions the model, and clients transfer intermediate features to
an offloading server for task offloading. FedDF (Lin et al., 2020) introduces a model fusion tech-
nique that employs ensemble distillation to combine models with different architecture. However, it
is worth noting that knowledge distillation-based FL requires shared data or shared generative mod-
els across clients to get the knowledge distillation loss. Alternatively, clients can transfer trained
models to the other clients (Afonin & Karimireddy, 2022).

Compression and sparsification. Several studies have focused on compressing uploaded gradi-
ents by quantization or sparsification to deal with the communication bottleneck (Rothchild et al.,
2020; Haddadpour et al., 2021). FetchSGD (Rothchild et al., 2020) proposes a method that com-
presses model updates using a Count Sketch. Some approaches aim to represent the weights of a
larger network using a smaller network (Ha et al., 2017; Buciluǎ et al., 2006). Pruning is another
technique that can be used to compress models. A model is pruned and retrained after the model is
trained which needs additional communication and computational load for FL (Jiang et al., 2022;
Mugunthan et al., 2022). A global model keeps its model size during training. Otherwise, the pruned
model can be determined at the initialization (Lee et al., 2020) leading a unique pruned model with
the limited capacity to be trained.

Dynamic runtime. The neural network can forward with larger numerical error and less computa-
tional load or forward with smaller numerical error and more computational load (Chen et al., 2018;
Hairer et al., 2000). This approach offers a way to dynamically optimize computation. Split learning
(Vepakomma et al., 2018; Thapa et al., 2022; He et al., 2020a) is another technique that addresses
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Figure 1: Graph visualization of widthwise/depthwise model scaling inspired by ODE solver.

the issue of resource-constrained clients by leveraging richer computing resources, such as cloud or
edge servers. These methods enable clients with system-related heterogeneity to participate in the
FL pipeline.

Model splitting. Various approaches have been proposed to address the heterogeneity of clients
by splitting global network based on their capabilities. LG-FedAvg (Liang et al., 2020) introduced a
method to split the model and decouple layers into global and local layers, reducing the number of
parameters involved in communication. While FjORD (Horváth et al., 2021) and HeteroFL (Diao
et al., 2021) split a global model widthwise, DepthFL (Kim et al., 2023) splits a global model
depthwise. Unlike widthwise scaling, DepthFL incorporates an additional bottleneck layer and an
independent classifier for every submodel. It has been studied that deep and narrow models as
well as shallow and wide models are inefficient in terms of the number of parameters or floating-
point operations (FLOPs). Prior studies have shown that carefully balancing the depth and width
of a network can lead to improved performance (Zagoruyko & Komodakis, 2016; Tan & Le, 2019).
Therefore, a balanced network should be considered for FL that splits a global model into submodels.
Our proposed NeFL provides a scaling method both widthwise and depthwise for submodels to be
well-balanced.

3 BACKGROUND

We propose to scale down the models inspired by solving ODEs in a numerical way (e.g., Euler
method). Modern deep neural networks stack residual blocks that contain skip-connections that
bypass the residual layers. A residual block is written as Yj+1 = Yj + Fj(Yj , ϕj), where Yj is
the feature map at the jth layer, ϕj denotes the jth block’s network parameters, and Fj represents a
residual module of the jth block. These networks can be interpreted as solving ODEs by numerical
analysis (Chang et al., 2018; He et al., 2016).

Consider an initial value problem to find y at t given dy
dt = f(t, y) and y(t0) = y0. We can obtain y

at any point by integration: y = y0 +
∫ t

t0
f(t, y)dt. It can be approximated by Taylor’s expansion as

y = y0 + f(t0, y0) (t− t0) and approximated after more steps as follows:

yn+1 = yn + hf(tn, yn) = y0 + hf(t0, y0) + · · ·+ hf(tn−1, yn−1) + hf(tn, yn), (1)

where h denotes the step size. An ODE solver can compute with less steps by using larger step
size as: yn+1 = y0 + 2hf(t0, y0) + · · · + 2hf(tn−1, yn−1) when n is odd. The results would be
numerically less accurate than fully computing with a smaller step size. Note that the equation looks
like the equation of residual connections. An output of a residual block is rewritten as follows:

Yj+1 = Yj + Fj(Yj , ϕj) = Y0 + F0(Y0, ϕ0) + · · ·+ Fj−1(Yj−1, ϕj−1) + Fj(Yj , ϕj). (2)

Motivated by this interpreting the neural networks as solving ODEs, we proposed that few residual
blocks can be omitted during forward propagation. For example, Y3 = Y0+F0+F1+F2 could be
approximated by Y3 = Y0+F0+2F1 omitting the F2 block. Here, we propose learnable step size
parameters (Touvron et al., 2021; Bachlechner et al., 2021). Instead of pre-determining the step size
parameters (h’s in the equation (1)), we let step size parameters be trained along with the network
parameters. For example, when we omit F2 block, output is formulated as Y3 = Y0+ s0F0+ s1F1
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Figure 2: FL with generally split submodels. NeFL aggregates weights of submodels, where
the submodels are scaled by both widthwise and depthwise. The weights include consistent and
inconsistent parameters.

where si’s are also optimized. This enables to scale down the network depthwise. Furthermore,
it is also possible to scale each residual block by width (e.g., the size of filters in convolutional
layers). The theoretical background behind width-wise scaling is provided by the Eckart-Young-
Mirsky theorem (Eckart & Young, 1936). A width-wise scaled residual block represents the optimal
k-rank approximation of the original (full) block (Horváth et al., 2021).

Our model scaling method inpired by ODE solver is displayed in Figure 1. The black line represents
a function to approximate, while the red line represents output approximated by a full nerual netowk.
The blue color line represents the depthwise-scaled submodel. The model omitted to compute block
F2(·) at the point Y2 and instead, larger step size for computing F1(Y1, ϕ1) compensates the omit-
ted block (Chang et al., 2018). The green colored line represents the widthwise-scaled submodel that
has less parameters ϕ in each block. Following the theorem that a widthwise-scaled model with less
parameters is an approximation of a model with more parameters (Eckart & Young, 1936), output
from a widthwise-scaled model has larger numerical error.

4 NEFL: NESTED FEDERATED LEARNING

NeFL is FL framework that accommodates resource-poor clients. Instead of requiring every client
to train a single global model, NeFL allows resource-poor clients to train submodels that are scaled
in both widthwise and depthwise (Figure 2c), based on dynamic nature of their environments. This
flexibility enables more clients, even with constrained resources, to pariticipate in the FL pipeline,
thereby making the model be trained with a more data. Referring to Algorithm 1, in NeFL pipeline,
NeFL server broadcast the weights to clients that heterogeneous clients have an ability to deter-
mine their submodel at every iteration (Figure 2b), allowing them to adapt to varying computing or
communication bottlenecks in their respective environments. The NeFL server subsequently aggre-
gates the parameters of these different submodels, resulting in a collaborative and comprehensive
global model. Furthermore, during test-time1, clients have a flexibility to select an appropriate sub-
model based on their specific background process burdens, such as runtime memory constraints or
CPU/GPU bandwidth dynamics. This allows clients to balance between performance and factors
like memory usage or latency, tailoring to their individual needs and constraints. To this end, NeFL
is twofold: scaling a model into submodels and aggregating the parameters of submodels.

1At test-time, trained submodels are utilized for inference.
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Algorithm 1 NeFL: Nested Federated Learning
Input: Submodels {Fk}Ns

k=1, total communication round T , the number of local epochs E
1: for t← 0 to T − 1 do // Global iterations
2: NeFL server broadcasts the weights {θc,Ns , θic,1, . . . θic,Ns} to clients in Ct
3: wi ← θj ∈ {θ1, . . . , θNs} ∀i ∈ Ct
4: for k ← 0 to E − 1 do // Local iterations
5: Client i updates wi ∀i ∈ Ct
6: Client i transmits the weights wi to the NeFL server ∀i ∈ Ct
7: {θc,Ns , θic,1, . . . θic,Ns} ← ParameterAverage({wi}i∈Ct ) ▷ Algorithm 2

NeFL scales a global model FG into Ns submodels F1, . . . ,FNs with corresponding weights
θ1, . . . , θNs . Without loss of generality, we suppose FG = FNs . The scaling method is described
in following Section 4.1. During each communication round t, each client in subset Ct (which is
subset of M clients) selects one of the Ns submodels based on their respective environments and
trains the model by the local epochs E. Then, clients transmit their trained weights {wi}i∈Ct

to
the NeFL server, which aggregates them into {θc,Ns

, θic,1, . . . θic,Ns
} where θc,k and θic,k denote

consistent and inconsistent parameters of a submodel k. Note that θc,k ⊂ θc,Ns
∀k. The aggregated

weights are then distributed to the clients in Ct+1, and this process continues for the total number of
communication rounds.

4.1 MODEL SCALING

We propose a global network scaling method, which combines both widthwise scaling and depthwise
scaling. We scale the model widthwise by ratio of γW and depthwise by ratio of γD. For example,
a global model is represented as γ = γW γD = 1 and a submodel that has 25% parameters of a
global model can be scaled by γW = 0.5 and γD = 0.5. Flexible widthwise/depthwise scaling
provides more degree of freedom to split models. We further describe on the scaling strategies in
the following sections.

4.1.1 DEPTHWISE SCALING

Residual networks, such as ResNets (He et al., 2016) and ViTs (Dosovitskiy et al., 2021), have
gained popularity due to their significant performance improvements on deep networks. The out-
put of a residual block can be seen as a function multiplied by a step size as Yj+1 = Yj +
sjF (Yj , ϕj) = Y0 +

∑
j sjF (Yj , ϕj). Note that ViTs’ forward operation with skip connec-

tions can be represented in a similar way by choosing F (·) as either self-attention (SA) layers or
feed-forward networks (FFN):

Yj+1 = Yj + sjSA(Yj , ϕj), Yj+2 = Yj+1 + sj+1FFN(Yj+1, ϕj+1).

The depthwise scaling can be implemented by skipping any of residual blocks of ResNets or encoder
blocks of ViTs. For example, ResNets (e.g., ResNet18, ResNet34) have a downsampling layer
followed by residual blocks, each consisting of two convolutional layers. ResNet18 has 8 residual
blocks and ResNet34 has 16 residual blocks. ViT/B-16 has 12 encoder blocks where embedding
patches are inserted as inputs to following transformer encoder blocks. Each block can have different
number of the parameters and computational complexity. A submodel is scaled by omitting few
blocks satisfying the number of parameters to be scaled by γD according to system requirements of
a client. We can observe that skipping a few blocks in a network still allows it to operate effectively
(Chang et al., 2018). This observation is in line with the concept of stochastic depth proposed in
(Huang et al., 2016), where a subset of blocks is randomly bypassed during training and the all of
the blocks are used during testing.

The step size parameters s’s can be viewed as dynamically training how much forward pass should
be made at each step. They allow each block to adaptively contribute to useful representations, and
larger step sizes are multiplied to blocks that provide valuable information. Referring to Figure 1
and numerical analysis methods (e.g., Euler method, Runge-Kutta methods (Hairer et al., 2000)),
adaptive step sizes rather than uniformly spaced steps, can effectively reduce numerical errors. Note
that DepthFL (Kim et al., 2023) is a special case of the proposed depthwise scaling.
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Figure 3: Weights of trained five submodels by NeFL

4.1.2 WIDTHWISE SCALING

Previous studies have been conducted on reducing the model size in the width dimension (Li et al.,
2017; Liu et al., 2017). In the context of NeFL, widthwise scaling is employed to slim down the
network by utilizing structured contiguous pruning (ordered dropout in (Horváth et al., 2021)) along
with learnable step sizes. We apply contiguous channel-based pruning to the convolutional networks
(He et al., 2017) and node removal to the fully connected layers. The parameters of narrow-width
submodel constitute a subset of the parameters of the wide-width model. Consequently, parameters
of the slimmest model are trained on any submodel by every client, while the parameters of the
larger model is trained less frequently. This approach ensures that the parameters of the slimmest
model capture the most of useful representations. Note that each block stated in Section 4.1.1 can
have different width, but we suppose throughout the paper that every block has same widthwise
scaling ratio γW without loss of generality.

We can obtain further insights from a toy example. Given an optimal linear neural network y = Ax
and data from uniform distribution x ∼ X , the optimal widthwise-scaled submodel y = AWx is
the best k-rank approximation2 by Eckart–Young–Mirsky theorem (Horváth et al., 2021; Eckart &
Young, 1936). Given a linear neural network of of rank k, widthwise-scaled model of scaling ratio
γW has rank of ⌈γW k⌉. Then, minEx∼X ∥AWx−Ax∥2F = min ∥AW −A∥2F , where F denotes
Frobenius norm. In our framework, similar tedency is observed. Inspired by the magnitude-based
pruning (Han et al., 2015; Li et al., 2017), we present the L1 norm of weights averaged by the
number of weights at each layer of five trained submodels in Figure 3b. The submodel 1 which
is the slimmest model, has similar tendency of L1 norm to the widest model and the gap between
submodel gets smaller as the model size gets wider. The slimmest model might have learned the
most useful representation while additional parameters for larger models obtain still useful, but less
useful information.

4.2 PARAMETER AVERAGING

Inconsitency. NeFL enables training several submodels on local data for subsequent aggregation.
However, submodels of different model architectures (i.e., different width and depth) have different
characteristics (Acar et al., 2021; Chen et al., 2022; Li et al., 2020b; Santurkar et al., 2018). Refer-
ring to Figure 1, if depthwise-scaled model omits a block, it can be compensated by optimizing step
size of adjacent blocks. For widthwise-scaled model, numerical errors are induced from each block
and they can be mitigated by optimizing step size for each block. We can infer that each submodel
requires different step sizes to compensate for the numerical errors according to its respective model
architecture. Furthermore, submodels with different model architectures have different loss land-
scapes. Consider the situation where losses are differentiable. A stationary point of a global model
is not necessarily the stationary points of individual submodels (Acar et al., 2021; Li et al., 2020b).
Different trainability of neural networks, which varies depending on network architecture, may lead
the convergence of submodels to become non-stationary.

2Note that we have learnable step sizes that can further improve the performance of widthwise scaled sub-
model over best k-rank approximation (refer to Appendix C).
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Algorithm 2 ParameterAverage
Input: Trained weights from clients W = {wi}i∈Ct

1: for submodel index k in {1, . . . , Ns} do
2: Mk ← {wi|wi = θk}i∈Ct

3: for block ϕj in θc,Ns do // NeFedAvg ▷ Consistent parameters
4: M′ ←M = {Mk}Ns

k=1
5: for k in {1, . . . , Ns} do
6: M′ ←M′ \Mk if ϕj /∈ θc,k

7: k′ ← 0, ϕj,0 = ∅
8: for k in {k|Mk ∈M′} do
9: ϕj,k \ ϕj,k′ ←

∑
{i|wi∈

⋃
l≥k,Ml∈M′ Ml}

ϕi
j,k \ ϕi

j,k′/
∑

l≥k,Ml∈M′ |Ml|
10: k′ ← k
11: θc,Ns ←

⋃
j ϕj

12: for k in {1, . . . , Ns} do // FedAvg (McMahan et al., 2017) ▷ Inconsistent parameters
13: θic,k ←

∑
{i|wi∈Mk}

θiic,k/|Mk|

The motivation led us to introduce a decoupled set of parameters (Liang et al., 2020; Arivazhagan
et al., 2019) for respective submodels that require different parameter averaging method. We re-
fer to these different characteristics between submodels as inconsistency. To this end, we propose
the concept of separating a few parameters, referred to as inconsistent parameters, from individual
submodels. We address step size parameters and batch normalization layers as inconsistent param-
eters. Note that batch normalization can improve Lipschitzness of loss, which is sensitive to the
convergence of FL (Santurkar et al., 2018; Li et al., 2020c). Figure 3a presents the trained step
size parameters of submodels. We further demonstrate the benefits of inconsistent parameters by
ablation study in Appendix A.

Meanwhile, consistent parameters are averaged across submodels. Since the weights of a submodel
are subset of the weights of the largest submodel, the averaging of these weights should be different
from conventional FL. The parameters of the submodels are denoted as θ1 = {θc,1, θic,1}, . . . , θNs

=
{θc,Ns

, θic,Ns
} where θc denotes consistent parameters and θic denotes inconsistent parameters. Note

that the global parameters, which are broadcasted to clients for the next FL iteration, encompass
θc,Ns , θic,1, . . . , θic,Ns . Note that θc,k ⊂ θc,Ns∀k.

Parameter averaging. We propose averaging method for the uploaded weights from clients in
Algorithm 2 (Figure 2a). Locally trained weights W = {wi}i∈Ct

from clients are provided as
input. The NeFL server verifies the correspondence of each client’s updated weights to specific
submodels and stores these weights separately for each submodel. M = {M1, . . . ,MNs}, where
Mk denotes weights set from clients who trained k-th submodel, is set of uploaded weights sorted by
submodels. The consistent parameters are averaged in a nested manner (Nested Federated Averaging
(NeFedAvg)). The parameters are averaged by weights from clients who trained the parameters in
this round t. For NeFedAvg, the server accesses parameters block by block (ϕj). For each block,
the server checks which submodel has the block (line 6 in Algorithm 2). Then, parameters are
averaged by width in a nested manner (line 9 in Algorithm 2). The parameters of a block with
the smallest width are included in the parameters of a block with larger width. Hence, the block
parameters are averaged by weights of clients (ϕi

j,k; j-th block parameters of k-th submodel that
i-th client updated) who updated the parameters. For averaging inconsistent parameters, FedAvg
(McMahan et al., 2017) is employed. Each submodel has the same size of inconsistent parameters
that the inconsistent parameters are averaged for respective submodels. Note that θiic,k denotes the
inconsistent parameters of k-th submodel that i-th client has updated. The example for Algorithm 2
is provided in Appendix B.3.

5 EXPERIMENTS

In this section, we demonstrate the performance of our proposed NeFL over baselines. We provide
the experimental results of NeFL that trains submodels from scratch. We also demonstrate whether
NeFL aligns with the recently proposed ideas in FL through experiments to verify (i) the perfor-

7



Under review as a conference paper at ICLR 2024

Table 1: Results of NeFL for CIFAR-10 dataset under IID (left) and non-IID (right) settings are
presented: Top-1 classification accuracies (%) for the worst-case submodel and the average of the
performance of five submodels.

Model Method
IID non-IID

Worst Avg Worst Avg

ResNet18

HeteroFL 80.62 (± 0.24) 84.26 (± 1.95) 76.25 (± 1.05) 80.11 (± 2.03)

FjORD 85.12 (± 0.22) 87.32 (± 1.21) 75.81 (± 5.65) 77.99 (± 6.50)

DepthFL 64.80 (± 10.49) 82.44 (± 10.17) 59.61 (± 5.16) 76.89 (± 9.60)

NeFL (ours) 86.86 (± 0.22) 87.88 (± 0.68) 81.26 (± 2.44) 81.71 (± 3.14)

ResNet34

HeteroFL 79.51 (± 0.44) 83.16 (± 1.96) 76.03 (± 1.34) 79.63 (± 5.24)

FjORD 85.12 (± 0.25) 87.36 (± 1.19) 74.70 (± 3.66) 76.01 (± 5.24)

DepthFL 25.73 (± 4.25) 75.30 (± 24.88) 30.42 (± 9.34) 70.76 (± 21.04)

NeFL (ours) 87.71 (± 0.37) 89.02 (± 0.80) 80.76 (± 2.82) 83.31 (± 2.94)

Table 2: Results of NeFL employing pre-trained models as initial weights for CIFAR-10 dataset
under IID (left) and non-IID (right) settings are presented: Top-1 classification accuracies (%) for
the worst-case submodel and the average of the performance of five submodels.

Model Method
IID non-IID

Worst Avg Worst Avg

Pre-trained
ResNet18

HeteroFL 78.26 (± 0.15) 84.48 (± 3.04) 71.95 (± 1.32) 76.17 (± 3.39)

FjORD 86.37 (± 0.18) 88.91 (± 1.37) 81.81 (± 1.10) 81.96 (± 5.76)

DepthFL 47.76 (± 8.54) 82.86 (± 17.98) 39.78 (± 3.74) 67.71 (± 16.88)

NeFL (ours) 88.61 (± 0.08) 89.60 (± 0.70) 82.91 (± 0.47) 85.85 (± 2.43)

Pre-trained
ResNet34

HeteroFL 79.97 (± 0.53) 84.34 (± 2.33) 72.33 (± 1.59) 78.2 (± 3.29)

FjORD 87.08 (± 0.29) 89.37 (± 1.30) 78.2 (± 4.39) 78.90 (± 6.23)

DepthFL 52.08 (± 5.30) 83.63 (± 15.97) 42.09 (± 2.79) 79.86 (± 18.13)

NeFL (ours) 88.36 (± 0.11) 91.14 (± 1.42) 83.62 (± 0.68) 86.48 (± 2.18)

mance of NeFL with initial weights loaded from pre-trained model (Chen et al., 2023) and (ii) the
performance of NeFL with ViTs in non-IID settings (Qu et al., 2022). We conduct experiments
using the CIFAR-10 dataset (Krizhevsky et al.) for image classification with ResNets and ViTs.

Experimental setup. The experiments in Table 1 and Table 2 are evaluated with five submodels
(Ns = 5 where γ1 = 0.2, γ2 = 0.4, γ3 = 0.6, γ4 = 0.8, γ5 = 1) and the experiments in Table 3 are
evaluated with three submodels (Ns = 3 where γ1 = 0.5, γ2 = 0.75, γ3 = 1). Pre-trained models
we use for evaluation are trained on the ImageNet-1k dataset(Deng et al., 2009; Pyt, 2023). The pre-
trained weights trained on ImageNet-1k dataset (Deng et al., 2009) are loaded on the initial global
models and subsequently NeFL was performed. To take system heterogeneity into account, each
client is assigned one of the submodels at each iteration, and statistical heterogeneity was imple-
mented by label distribution skew following the Dirichlet distribution with concentration parameter
0.5 (Yurochkin et al., 2019; Li et al., 2021a). Training details are provided in Appendix B.1.

Comparison with state-of-the-art model splitting FL methods. For fair comparison across dif-
ferent baselines, we designed each submodel to have similar number of parameters (Table 8 in
Appendix A). As illustrated in Table 1, NeFL outperforms baselines in terms of both the perfor-
mance of the worst-case submodel (γ = 0.2) and the average performance across five submodels
in IID and non-IID settings. Notably, the performance gain is greater in non-IID settings, which
belong to practical FL scenarios. It is worth noting that our proposed depthwise scaling method has
performance gain over depthwise scaling baselines, while our proposed widthwise scaling method
also has performance gain over widthwise scaling baselines (refer to the Appendix A). Furthermore,
beyond the performance gain from using depthwise or widthwise scaled submodels, NeFL provides
a federated averaging method that can incorporate widthwise or/and depthwise scaled submodels.
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Table 3: Results of NeFL with three submodels for CIFAR-10 dataset under IID (left) and non-
IID (right) settings. A initial weights for global model was given with the pre-trained model with
ImageNet-1k. We report Top-1 classification accuracies (%) for the submodels.

Model Param. #
IID non-IID

Worst Avg Worst Avg

Pre-trained ViT 86.4M 93.02 (± 0.06) 95.96 (± 2.10) 87.56 (± 0.16) 92.74 (± 3.95)

Pre-trained Wide ResNet101 124.8M 90.9 (± 0.16) 91.35 (± 0.39) 87.17 (± 0.04) 87.74 (± 1.06)

This characteristic of embracing any submodel with different architecture extracted from a single
global model enhances flexibility, enabling more clients to participate in the FL pipeline.

Performance enhancement by employing pre-trained models. We investigate the performance
improvement from incorporating pre-trained models into NeFL and verify that NeFL is still effective
when employing pre-trained models. Recent studies on FL have figured out that FL gets benefits
from pre-trained models even more than centralized learning (Kolesnikov et al., 2020; Chen et al.,
2023). It motivates us to evaluate the performance of NeFL on pre-trained models. The pre-trained
model that is trained in a common way using ImageNet-1k is loaded from PyTorch (Paszke et al.,
2019). Even when a pre-trained model was trained as a full model without any submodel being
trained, NeFL made better performance with these pre-trained models. The results in Table 2 show
that the performance of NeFL has been enhanced through pre-training in both IID and non-IID
settings following the results of the recent studies. Meanwhile, baselines such as HeteroFL and
DepthFL, which do not have any inconsistent parameters, have no effective performance gain when
trained with pre-trained models compared to to models trained from scratch.

Impact of model architecture on statistical heterogeneity. We now present an experiment using
ViTs and Wide ResNet (Zagoruyko & Komodakis, 2016) on NeFL. Previous studies have examined
the effectiveness of ViTs in FL scenarios, and it has been observed that ViTs can effectively alleviate
the adverse effects of statistical heterogeneity due to their inherent robustness to distribution shifts
(Qu et al., 2022). Building upon this line of research, Table 3 demonstrates that ViTs outperform
ResNets in our framework, with the larger number of parameters, in both IID and non-IID settings.
Particularly in non-IID settings, ViTs exhibit less performance degradation of average performance
when compared to IID settings. Note that when comparing the performance gap between IID and
non-IID settings, the worst-case ViT submodel experiences more degradation than the worst-case
ResNet submodel. Nevertheless, despite this degradation, ViT still maintains higher performance
than ResNet. Consequently, we verify that ViT on NeFL is also effective following the results in Qu
et al. (2022).

Additional experiments. We provide experimental results of NeFL on other datasets and with dif-
ferent number of clients, along with ablation study in Appendix A. The performance gain of NeFL
increases when dealing with more challenging datasets. For example, the performance gain of NeFL
with ResNet34 on CIFAR-100 is 7.63% over baselines. We also verify that NeFL shows the best
performance across all different number of clients. In our ablation study, we present the effective-
ness of inconsistent parameters including learnable step sizes and the performance comparison of
proposed scaling methods.

6 CONCLUSION

In this work, we have introduced Nested Federated Learning (NeFL), a generalized FL framework
that addresses the challenges of system heterogeneity. By leveraging proposed depthwise and width-
wise scaling, NeFL efficiently divides models into submodels employing the concept of ODE solver,
leading to improved performance and enhanced compatibility with resource-constrained clients. We
propose to decouple few parameters as inconsistent parameters for respective submodels that Fe-
dAvg are employed for averaging inconsistent parameters while NeFedAvg was utilized for aver-
aging consistent parameters. Our experimental results highlight the significant performance gains
achieved by NeFL, particularly for the worst-case submodel. Furthermore, we also explore NeFL in
line with recent studies of FL such as pretraining and statistical heterogeneity.
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Supplementary Material

A ADDITIONAL EXPERIMENTS

A.1 OTHER DATASET

We evaluate the performance for other dataset such as CIFAR-100 (Krizhevsky et al.), CINIC-10
(Darlow et al., 2018) SVHN (Netzer et al., 2011) and we observe a similar tendency in terms of
Top-1 accuracy of the worst-case submodel and average accuracy over submodels. Note that we set
total communication round T = 100 for training SVHN. The results are presented in Table 4.

Table 4: Results of NeFL with five submodels for CIFAR-100 (left), CINIC10 (center) and SVHN
(right) dataset under IID settings. We report Top-1 classification accuracies (%) for the worst-case
submodel and the average of the performance of five submodels.

Model Method
CIFAR-100 CINIC-10 SVHN

Worst Avg Worst Avg Worst Avg

ResNet18

HeteroFL 41.33 47.09 67.55 70.40 91.82 93.46

FjORD 49.29 52.67 71.95 74.98 94.31 93.97

DepthFL 31.68 49.56 54.51 71.42 91.54 93.97

NeFL (ours) 52.63 53.62 74.16 75.29 94.45 94.94

ResNet34

HeteroFL 34.96 39.75 67.39 69.62 89.86 92.39

FjORD 47.59 50.7 71.58 74.19 93.83 94.63

DepthFL 14.51 46.79 32.05 67.04 74.33 89.96

NeFL (ours) 55.22 56.26 75.02 76.68 94.72 95.22

A.2 DIFFERENT NUMBER OF CLIENTS

We conduct further experiments across different numbers of clients. In Table 5, we observe that as
the number of clients increases, the performance of NeFL as well as baselines degrades. The results
align with previous studies (Kim et al., 2023; Thapa et al., 2022; Wang et al., 2020). The more the
number of clients, trained weights deviates further from the weights trained by IID data. While the
IID sampling of the training data ensures the stochastic gradient to be an unbiased estimate of the full
gradient, the non-IID sampling leads to non-guaranteed convergence and model weight divergence
in FL (Li et al., 2020b; 2021b; Zhao et al., 2018). The local clients train their own network with
multiple epochs and upload the weights so that the uploaded weights get more deviated. In this
regard, our proposed algorithm remains effective across different numbers of clients; however, the
performance (e.g., accuracy and convergence) degrades by the data distribution among clients varies
more as their number increases.

A.3 ABLATION STUDY

In this section, we provide ablation study for evaluating the performance gains of both
width/depthwise scaling, inconsistent parameters and learnable step size parameters. NeFL-W de-
notes that all submodels are scaled widthwise, NeFL-D denotes that all submodels are scaled depth-
wise and NeFL-WD that submodels are scaled both widthwise and depthwise. We further refer
to NeFL-DO that has different initial step sizes with NeFL-D. Referring to Table 12, NeFL-DO
has larger magnitude step sizes aligning with the principles of ODE solver, compared to NeFL-D.
NeFL-D scales submodels by skipping a subset of blocks of a global model, thus reducing the depth
of the model. NeFL-D does not compensate for the skipped blocks by using larger step sizes. For
example, a submodel in NeFL-D is given the initial step sizes as s0 = 1, s1 = 1, s2 = 0 and output
after Block 2 without Block 2 is Y3 = Y0 + F0 + F1. Meanwhile, NeFL-DO reduces the size of
the global model by skipping a subset of block functions F (·) and gives larger initial step sizes to
compensate it. The step sizes are determined based on the number of blocks that are skipped. For a
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Table 5: Results of NeFL of five submodels with a global model ResNet18 for CIFAR-10 dataset
under IID settings across different number of clients. We report Top-1 classification accuracies (%)
for the worst-case submodel and the average of the performance of five submodels..

# of Clients Model size
Method

NeFL (ours) FjORD HeteroFL DepthFL

100 Worst 86.86 85.12 80.62 64.8

Avg 87.88 87.32 84.62 82.44

50 Worst 88.42 86.19 84.67 52.07

Avg 89.14 88.43 87.23 82.04

20 Worst 89.2 87.76 88.74 24.94

Avg 89.88 89.6 88.71 76.54

submodel without Block 2, initial output after Block 2 is initially computed as Y3 = Y0+F0+2F1

given s0 = 1, s1 = 2, s2 = 0. We also refer that submodel with no learnable step sizes by N/L (i.e.,
constant step sizes are kept with given intial values).

The performance comparison between NeFL-WD and NeFL-WD (N/L) as well as the comparison
between NeFL-W and FjORD (Horváth et al., 2021) provides the effectiveness of learnable step
sizes and comparison between NeFL-W and HeteroFL (Diao et al., 2021) provides the effectiveness
of inconsistent parameters including learnable step sizes. Similarly, the comparison between NeFL-
D and NeFL-D (N/L) provides the effectiveness of learnables step sizes and comparison between
NeFL-D and DepthFL (Kim et al., 2023) provides the effectiveness of inconsistent parameters in-
cluding learnable step sizes. We summarized the NeFL with various scaled submodels in Table 7.
We also provide the parameter sizes and average FLOPs of submodels by scaling in Table 8.

Learnable step size parameters & inconsistent parameters. Referring to the Table 6, the per-
formance improvements of NeFL-WD over NeFL-WD (N/L), NeFL-W over FjORD (Horváth et al.,
2021) and NeFL-D over NeFL-D (N/L) provide the effectiveness of learnable step sizes. The effec-
tiveness of the inconsistent parameters including learn step sizes is also verified by NeFL-D over
DepthFL (Kim et al., 2023) and NeFL-W over HeteroFL (Diao et al., 2021).

Scaling method. We also observe that NeFL-D and NeFL-WD have better performance over
widthwise scaling. The performance gap of depthwise scaling over widthwise scaling gets larger
for narrow and deep networks. Note that ResNet56 and ResNet110 has smaller (i.e., narrower)
channel sizes with more layers (i.e., deeper) than ResNet18 and ResNet34 He et al. (2016). Further-
more, we have a finding that NeFL-D outperforms NeFL-DO in most cases. The rationale comes
from the empirical results that trained step sizes are not as large as initial value for NeFL-DO that
large initial values for NeFL-DO degrades the trainability of depthwise-scaled submodels.

We evaluated the experiments by similar number of parameters for several scaling methods and
depthwise scaling requires slightly more FLOPs than widthwise scaling for ResNet18, ResNet34 and
ResNet110 and less FLOPs for ResNet56. Usually depthwise scaled models have more FLOPs than
widthwise scaled models while scaling by both widthwise and depthwise models are in between. It
is because of the model architecture and limited DoF of submodels. ResNets consist of convolution
layers that have FLOPs of the parameters multiplied by feature sizes. The feature sizes get smaller
as forwarding the layers and depthwise scaled submodels that omitted the latter layers make a model
to require more FLOPs than widthwise scaled submodels that is scaled across all the layers.

It is worth noting that beyond the performance improvement (including that our proposed scaling
method NeFL-W and NeFL-D over baselines in Table 6), NeFL provides the more DoF for width-
wise/depthwise scaling that can be determined by the requirements of clients. It results in more
clients to be participate in the FL pipeline. Also refer to Table 9 that has different scaling ratio γ.
Note that in this case, FjORD (Horváth et al., 2021) outperforms NeFL-W. In this case with severe
scaling factors (the worst model has 4% parameters of a global model), step sizes could not com-
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Table 6: Ablation study by NeFL with five submodels for CIFAR-10 dataset under IID settings.
We report Top-1 classification accuracies (%) for the worst-case submodel and the average of the
performance of five submodels.

Model Method Worst Avg

ResNet18

HeteroFL 80.62 84.26

FjORD 85.12 87.32

NeFL-W 85.13 87.36
DepthFL 64.80 82.44

NeFL-D (N/L) 86.29 88.12

NeFL-DO (N/L) 86.24 88.22

NeFL-D 86.06 87.94
NeFL-DO 85.98 88.20

NeFL-WD 86.86 87.88
NeFL-WD (N/L) 86.85 88.21

Model Method Worst Avg

ResNet34

HeteroFL 79.51 83.16

FjORD 85.12 87.36

NeFL-W 85.65 87.97
DepthFL 25.73 75.30

NeFL-D (N/L) 87.40 89.12

NeFL-DO (N/L) 86.47 88.49

NeFL-D 87.71 89.02
NeFL-DO 87.06 88.71

NeFL-WD 86.73 88.42
NeFL-WD (N/L) 86.2 88.16

Model Method Worst Avg

Pre-trained
ResNet18

HeteroFL 78.26 84.06

FjORD 86.37 88.91

NeFL-W 86.1 89.13
DepthFL 47.76 82.85

NeFL-D (N/L) 86.95 89.77

NeFL-DO (N/L) 86.24 89.76

NeFL-D 87.13 90.00
NeFL-DO 87.02 89.72

NeFL-WD 88.61 89.60
NeFL-WD (N/L) 88.57 89.70

Model Method Worst Avg

Pre-trained
ResNet34

HeteroFL 79.97 84.34

FjORD 87.08 89.37

NeFL-W 87.41 89.75
DepthFL 52.08 83.63

NeFL-D (N/L) 87.95 90.79

NeFL-DO (N/L) 87.44 90.58

NeFL-D 88.36 91.14
NeFL-DO 87.86 90.90

NeFL-WD 87.69 90.18
NeFL-WD (N/L) 87.37 89.78

Model Method Worst Avg

ResNet56

HeteroFL 65.09 74.13

FjORD 81.38 84.77

NeFL-W 82.05 85.48
DepthFL 72.94 86.19

NeFL-D (N/L) 84.38 86.13

NeFL-DO (N/L) 83.08 85.59

NeFL-D 84.38 86.13
NeFL-DO 81.97 85.37

NeFL-WD 83.92 86.00
NeFL-WD (N/L) 83.68 85.85

Model Method Worst Avg

ResNet110

HeteroFL 54.83 67.33

FjORD 81.70 85.16

NeFL-W 81.67 85.32
DepthFL 73.56 82.42

NeFL-D (N/L) 85.23 86.34

NeFL-DO (N/L) 84 85.97

NeFL-D 85.96 86.66
NeFL-DO 82.74 85.66

NeFL-WD 84.41 86.28
NeFL-WD (N/L) 83.58 85.73

pensate the limited number of parameters and degraded the trainability with auxiliary parameters.
However, NeFL-WD shows the best performance over other baselines that verify the well-balanced
submodels show the better performance than ill-conditioned (too shallow or too narrow) submodels.
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Table 7: Summarization of NeFL and baselines for ablation study

Depthwise scaling Widthwise scaling Adaptive step sizes

DepthFL ✓

FjORD, HeteroFL ✓

NeFL-D ✓ ✓

NeFL-W ✓ ✓

NeFL-WD ✓ ✓ ✓

Table 8: Details of average FLOPs of submodels of γ = [0.2, 0.4, 0.6, 0.8, 1]

Model Metric Method
Width/Depthwise scaling Widthwise scaling Depthwise scaling

ResNet18
Param # 6.71M 6.71M 6.68M

FLOPs 87.8M 85M 102M

ResNet34
Param # 12.6M 12.8M 12.9M

FLOPs 181M 176M 193M

ResNet56
Param # 0.51M 0.52M 0.51M

FLOPs 530M 534M 526M

ResNet110
Param # 1.05M 1.06M 1.04M

FLOPs 158M 159M 234M

Table 9: Results of NeFL with five submodels (γ = [0.04, 0.16, 0.36, 0.64, 1]) for CIFAR-10 dataset
on ResNet110. Results of NeFL with five submodels for CIFAR-10 dataset under IID settings.
We report Top-1 classification accuracies (%) for the worst-case submodel and the average of the
performance of five submodels.

Model Method
Model size

Worst Avg

ResNet110

HeteroFL 46.58 63.62

FjORD 69.61 81.46

NeFL-W 68.27 80.98

DepthFL 11.00 53.91

NeFL-D 75.4 84.31
NeFL-WD 76.60 84.02
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B EXPERIMENTAL DETAILS

B.1 TRAINING DETAILS

The experiments in Table 1, Table 2, Table 4, Table 5 and Table 6 are evaluated by a total 500
communication rounds (T ) with 100 clients (M ). At each round, a fraction rate of 0.1 is used,
indicating that 10 clients (|Ct| = 10) transmit their weights to the server. During the training process
of clients, local batch size of 32 and a local epoch of E = 5 are used. For training, we employ
SGD optimizer (Ruder, 2016) without momentum and weight decay. The initial learning rate is set
to 0.1 and decreases by a factor of 1

10 at the halfway point and 3
4 of the total communication rounds.

The experiments in Table 3 are evaluated with the number of clients is M = 10, all of whom
participate in the NeFL pipeline (with a fraction rate of 1). The experiment consists of T = 100
communication rounds, and each client performs local training for a single epoch (E = 1). We use
a cosine annealing learning rate scheduling (Loshchilov & Hutter, 2017) with 500 steps of warmup
and an initial learning rate 0.03. The input images are resized to a size of 256 and randomly cropped
to a size of 224 with a padding size of 28. Note that utilizing layer normalization layers as consistent
parameters, as opposed to BN layers that are inconsistent parameters, yields better performance.

B.2 MODEL ARCHITECTURES

The ResNet18 architecture and ResNet34 architecture consist of four layers, while ResNet56 and
ResNet110 have three layers. These layers are composed of blocks with different channel sizes,
specifically (64, 128, 256, 512) for ResNet18/32 and (16, 32, 64) for ResNet56/110. Wide
ResNet101 2 comprises four layers of bottleneck blocks with channel sizes (128, 256, 512, 1024)
(He et al., 2016; Zagoruyko & Komodakis, 2016). The ViT-B/16 architecture consists of twelve
layers, with each layer containing blocks comprising self-attention (SA) and feed-forward networks
(FFN) (Dosovitskiy et al., 2021). The widthwise splitting for ViT models are implemented by vary-
ing the embedding dimension (D in (Dosovitskiy et al., 2021)).

For the experiments presented in Table 1, Table 2, Table 4, Table 5 and Table 6, we consider five
submodels with γ = [γ1, γ2, γ3, γ4, γ5] = [0.2, 0.4, 0.6, 0.8, 1] and γ = [0.04, 0.16, 0.36, 0.64, 1]
for Table 9. Additionally, for Table 3, we use three submodels with γ = [γ1, γ2, γ3] = [0.5, 0.75, 1].
Submodel details for ResNets and ViTs are detailed in Table 10 (ResNet18), Table 11 (ResNet34),
Table 12 (ResNet56), Table 14 (ResNet110), Table 15 (Wide ResNet101 2) and Table 13 (ViT-B/16
In the tables, 1’s and 0’s denote the initial values of step sizes. A step size of zero indicates that a
submodel does not include the corresponding block. Note that ResNets have a step size parameters
for each block while ViTs have different step size parameters to be multiplied with SA and FFN.
Submodels in NeFL-W are characterized by γD = [1, . . . , 1] and γW with a target size, while
submodels in NeFL-D are characterized by γW = [1, . . . , 1] and γD with a target size. Submodels
in NeFL-WD are characterized by target size γWγD. Corresponding number of parameters and
FLOPs are provided in Table 8.

B.3 EXAMPLE ON PARAMETER AVERAGING

Consider an example with five submodels and suppose that a convolutional layer from the first block
is included in submodel 1, 3, and 5. Assume that submodel 1 and submodel 5 are trained twice
(two clients), while submodel 3 is trained three times at a communication round. Then, we have
|M2| = |M4| = 0, |M1| = |M5| = 2, and |M3| = 3. Now, delving into the parameter averaging
process, the parameters exclusive to submodel 5 (ϕ1,5\ϕ1,3) are averaged using two updated weights
(M5). Likewise, the parameters possessed by submodel 3 but not by submodel 1 (ϕ1,3 \ ϕ1,1) are
averaged using five weights (M5 ∪M3). Finally, the parameters of submodel 1 ϕ1,1, that is trained
seven times, are averaged using seven weights (M5 ∪ M3 ∪ M1). This approach ensures that
consistent parameters are appropriately averaged, taking into account their depthwise inclusion and
the widthwise number of occurrences across different submodels.

B.4 DATASET

CIFAR10/100. The CIFAR10 dataset consists of 60000 images (train dataset consists of 50000
samples and test dataset consists of 10000 samples). 32 × 32 × 3 color images are categorized by
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10 classes, with 6000 images per class (Krizhevsky et al.). For FL with each client has 500 data
samples for M = 100, and 5000 data samples for M = 10. We perform data augmentation and
pre-processing of random cropping (by 32× 32 with padding of 4), random horizontal flip, and nor-
malization by mean of (0.4914, 0.4822, 0.4465) and standard deviation of (0.2023, 0.1994, 0.2010).

CINIC10. The CIFAR10 dataset consists of 270000 32×32×3 color images (train dataset consists
of 90000 samples and validation and test dataset consists of 90000 samples respectively) in 10
classes (Darlow et al., 2018). It is constructed from ImageNet and CIFAR10. We perform data
augmentation and pre-processing of random cropping (by 32 × 32 with padding of 4), random
horizontal flip, and normalization by mean of (0.47889522, 0.47227842, 0.43047404) and standard
deviation of (0.24205776, 0.23828046, 0.25874835).

SVHN. The SVHN dataset consists of 73257 digits for training and 26032 digits for testing
of 32 × 32 × 3 color images (Netzer et al., 2011). The deataset is obtained from house num-
bers in Google Stree view images in 10 classes (digit ‘0’ to digit ‘9’). For FL for M = 100
each client has 732 samples. We perform data augmentation and pre-processing of random crop-
ping (by 32 × 32 with padding of 2), color jitter (by brightness of 63/255, saturation=[0.5,
1.5] and contrast=[0.2, 1.8] implmented by torchvision.transforms.ColorJitter),
and normalization by mean of (0.4376821, 0.4437697, 0.47280442) and standard deviation of
(0.19803012, 0.20101562, 0.19703614).

B.5 BASELINES

HeteroFL & FjORD. HeteroFL (Diao et al., 2021) and FjORD (Horváth et al., 2021) are width-
wise splitting methods designed to address the challenges posed by client heterogeneity in FL. While
both methods aim to mitigate the impact of heterogeneity, these are several key differences between
them. Firstly, HeteroFL does not utilize separate (i.e., inconsistent) parameters for BN layers in its
submodels, whereas FjROD incorporates distinct BN layer for each submodel. This difference in
handling BN layers can impact the learning dynamics and model performance under IID settings.
Secondly, HeteroFL employs static batch normalization, where BN statistics are updated using the
entire dataset after the training process. On the other hand, FjORD updates BN statistics during
training. Lastly, HeteroFL utilizes a masked cross-entropy loss to address the statistical hetero-
geneity among clients. This loss function helps to mitigate the impact of clients with the statistical
heterogeneity. In our implementation of HeteroFL, the masked cross-entropy loss is not utilized.

DepthFL. The model is split depthwise, and an auxiliary bottleneck layer is included as an inde-
pendent classifier. We implement DepthFL (Kim et al., 2023) without separate bottleneck layers for
fair comparison without additional parameters. Then, DepthFL is a special case of NeFL-D without
inconsistent parameters. Furthermore, due to the accuracy degradation, we omitted knowledge dis-
tillation noted in (Kim et al., 2023). Instead, our DepthFL models incorporate downsampling layers
that adjust the feature size to match the input sizes of the classifier. It is important to note that the
auxiliary bottleneck layers for submodels in DepthFL can be interpreted as parameter decoupling,
as discussed in Section 4.2.

B.6 PRE-TRAINED MODELS

The pre-trained models on Table 2 and Table 3 are trained on ImageNet-1k (Deng et al., 2009) as
following recipes (Pyt, 2023):

ResNet18/34. The models are trained by epochs of 90, batch size of 32, SGD optimizer (Ruder,
2016), learning rate of 0.1 with momentum of 0.9 and weight decay of 0.0001, where learning rate
is decreased by a factor of 0.1 every 30 epochs.

Wide ResNet101 2. The model is trained by epochs of 90, batch size of 32, SGD optimizer
(Ruder, 2016), learning rate of 0.1 with momentum of 0.9 and weight decay of 0.0001, where the
learning scheduler is cosine learning rate (Loshchilov & Hutter, 2017) and warming up restarts for
256 epochs.
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ViT-B/16. The model is trained by epochs of 300, batch size of 512, AdamW optimizer
(Loshchilov & Hutter, 2019) with learning rate of 0.003 and weight decay of 0.3. The learning
scheduler is cosine annealing (Loshchilov & Hutter, 2017) after linear warmup method with decay
of 0.033 for 30 epochs. Additionally, the random augmentation (Cubuk et al., 2020), random mixup
with α = 0.2 (Zhang et al., 2018), cutmix of α = 1 (Yun et al., 2019), repeated augmentation, label
smoothing of 0.11 (Szegedy et al., 2016), clipping gradient norm to 1, model exponential moving
average (EMA) are employed.

B.7 DYNAMIC ENVIRONMENT

We simulate a dynamic environment by randomly selecting which submodel to be trained by each
client during every communication round. In our experiments for Table 1, Table 2, Table 4, Table 5
and Table 6, we have an equal number of five tiers of clients (M/Ns = 20 for all tiers of clients).
The resource-constrained clients (tier 1) randomly select models between γ = 0.2, 0.4, 0.6, clients
in tier 2 randomly select models from the set γ = 0.2, 0.4, 0.6, 0.8, clients in tier 3 randomly select
models from the set γ = 0.2, 0.4, 0.6, 0.8, 1, clients in tier 4 randomly select models from the set
γ = 0.4, 0.6, 0.8, 1, and the resource-richest clients (tier 5) randomly select models from the set
γ = 0.6, 0.8, 1. In our experiments for Table 3 involving three submodels and 10 clients, the tier
1 clients (3 out of 10 total clients) select γ = 0.5, tier 2 clients (3 out of 10 total clients) select
γ = 0.75 and tier 3 clients (4 out of 10 total clients) select γ = 1. By allowing clients to randomly
choose from the available submodels, our setup reflects the dynamic nature in which clients may
encounter communication computing bottlenecks during each iteration.

B.8 PSEUDOCODE FOR PARAMETER AVERAGING

import numpy as np

M = [[] for _ in range(Ns)]
for i in range(len(uploaded_weights)):

for k in range(Ns):
if uploaded_weights[i]==theta[k]: # parameters of submodel k

M[k].append(uploaded_weights[i])

def NeFedAvg(M): # consistent parameters
for block in theta_c[-1]: # global model parameters

for key in block: # depthwise access by block by block
num_submodel_uploaded=[], submodel_idx=[], gamma_W_block=[0]

for k in range(Ns):
if key in theta_c[k]:

submodel_idx.append(k)
num_submodels.append(len(M[k]))
card = np.cumsum(num_submodels[::-1])[::-1] # cardinality
gamma_W_block.append(gamma_W[k])

for i in range(len(submodel_idx)): # widthwise access
start = math.ceil(param_size*gamma_W_block[i])
end = math.ceil(param_size*gamma_W_block[i+1])
for w in M[submodel_idx[i]]:

theta_c_avg[key][start:end]+=w[key][start:end]/card[i]
return theta_c_avg

def InconsistentParamAvg(M): # inconsistent parameters
for k in range(Ns):

for key in theta_ic[k]:
for w in M[k]:
theta_ic_avg[k][key] += w[key]

return theta_ic_avg
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Table 10: Details of γ of NeFL-D and NeFL-WD on ResNet18

Model
index

Model size
γ

γW γD
NeFL-D (ResNet18)

Layer 1 (64) Layer 2 (128) Layer3 (256) Layer 4 (512)
1 0.20 1 0.20 1,1 0,0 1,1 0,0
2 0.38 1 0.38 1,0 0,0 1,0 1,0
3 0.57 1 0.57 1,1 1,1 1,1 1,0
4 0.81 1 0.81 1,0 1,1 0,0 1,1
5 1 1 1 1,1 1,1 1, 1 1,1

Model
index

Model size
γ

γW γD
NeFL-WD (ResNet18)

Layer 1 (64) Layer 2 (128) Layer3 (256) Layer 4 (512)
1 0.20 0.34 0.58 1,1 1,1 1, 1 1,0
2 0.4 0.4 1 1,1 1,1 1, 1 1,1
3 0.6 0.6 1 1,1 1,1 1, 1 1,1
4 0.8 0.8 1 1,1 1,1 1, 1 1,1
5 1 1 1 1,1 1,1 1, 1 1,1

Table 11: Details of γ of NeFL-D and NeFL-WD on ResNet34

Model
index

Model size
γ

γW γD
NeFL-D (ResNet34)

Layer 1 (64) Layer 2 (128) Layer3 (256) Layer 4 (512)
1 0.23 1 0.23 1,0,0 1,0,0,0 1,0,0,0,0,0 1,0,0
2 0.39 1 0.39 1,1,1 1,1,1,1 1,1,0,0,0,1 1,0,0
3 0.61 1 0.61 1,1,1 1,1,1,1 1,1,0,0,0,1 1,0,1
4 0.81 1 0.81 1,1,1 1,0,0,1 1,1,0,0,0,1 1,1,1
5 1 1 1 1,1,1 1,1,1,1 1,1,1,1,1,1 1,1,1

Model
index

Model size
γ

γW γD
NeFL-WD (ResNet34)

Layer 1 (64) Layer 2 (128) Layer3 (256) Layer 4 (512)
1 0.20 0.38 0.53 1,1,1 1,0,0,1 1,0,0,0,0,1 1,0,1
2 0.40 0.63 0.64 1,1,1 1,0,0,1 1,1,1,0,0,1 1,0,1
3 0.60 0.77 0.78 1,1,1 1,1,1,1 1,1,1,1,0,1 1,0,1
4 0.80 0.90 0.89 1,1,1 1,1,1,1 1,1,1,0,0,1 1,1,1
5 1 1 1 1,1,1 1,1,1,1 1,1,1,1,1,1 1,1,1
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C INTERPRETING SCALING WITH ODE SOLVER

We present a toy example of ODE solvers in Figure 4. The black line representing an actual function
is 0.1t+sin(0.2t)+cos(0.3t) and the red line representing a discretized approximation of the actual
function (i.e., a full neural network). Here, it was implemented by ODE solver of step size h = 2.
The green line representing a widthwise scaled submodel has numerical errors on each step. The
blue solid line is a depthwise scaled submodel with step size h = 3. The blue dashed line has
forward with same steps, but with optimized step sizes. It denotes that the optimized step sizes
can decrease the numerical error. The cyan colored line is implemented by improved Euler method
(Hairer et al., 2000) with step size h = 3. It denotes that even with same steps with blue solid
lines, and optimizing dy/dt also contributes to decrease the numerical error. The figure shows a toy
example why each submodel can still work well with less parameters.
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Figure 4: Example of widthwise/depthwise model scaling by ODE solver.
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