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Figure 5: Mode connectivity in the loss landscape when tuning CLIP for image classification. Inter-
active 3D figures are available in the supplementary material

A 3D VISUALIZATIONS OF CLIP’S LOSS LANDSCAPE

We propose here further visualizations of the mode connectivity between LoRA, RandLoRA and
standard fine-tuning. To compute the loss value between the minimas reached by LoRA, RandLoRA
and fine-tuning, define a 2D plane using 3 equidistant points representing LoRA, standard fine-
tuning and RandLoRA and we then solve for interpolation coefficients α1..3 so that their sum equals
1. The weights of the model we evaluate is then W0 + α1LoRA + α2FT + α3RandLoRA. The
loss is evaluated on a fixed 5% subset of the training set. Since the process of evaluating the loss
at all coordinates on the plane is time consuming, we only perform this study for the CLIP-ViT-
B/32 architecture where RandLoRA is especially successful. In all visualizations, the number of
trainable parameters for LoRA and RandLoRA are the same. We clamp loss values 20% above
the shallowest minima to improve visualization. 3D representation as well as the associated 2D
elevation projection is provided in Figure 5. The interactive 3D figures are provided in the HTML
format in the supplementary material.

B ADDITIONAL RESULTS

KroneckerWe report here further results on the General Language Understanding Evaluation
(GLUE) (Wang et al., 2019) and End-to-end (E2E) (Novikova et al., 2017) generation benchmarks.
While GLUE is a text classification task, E2E is a natural language generation task. We also report
results comparing RandLoRA and LoRA with a prompt tuning baseline (Zhang et al., 2024b) for
classification using CLIP’s vision backbone as in section 5.2 in appendix B.3

B.1 GLUE RESULTS

We report results for RandLoRA and compare with LoRA and VeRA on the SST-2, MRPC, COLA,
QNLI, RTE and STS-N tasks. We report Matthew’s correlation for CoLA, Pearson correlation for
STS-B, and accuracy for the remaining tasks. We report results using the RoBERTa network Liu
et al. (2019) in the base and large configurations and perform 5 runs to report average performance
and one standard deviation. Results are displayed in Table 4. We find that for the smaller RoBERTa-
base architecture (125M parameters), all algorithms reach the same performance. For the larger
RoBERTa-large variant (355M parameters), a larger gap is observed where RandLoRA improves
over the performance of VeRA and LoRA. These findings are in line with the experiments in the
main body of the paper where we find that RandLoRA provided larger improvements for larger
models in Figure 3.

B.2 E2E RESULTS

We train RandLoRA and LoRA on the E2E dataset using the GPT-2 medium architecture (Radford
et al., 2019) (355M parameters).
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Table 4: Results on GLUE datasets with the RoBERTa-base and RoBERTa-large models.

RoBERTa-base

Method Params SST-2 MRPC COLA QNLI RTE STS-N Average

VeRA-1024 0.26M 91.9 ± 0.4 88.4 ± 1.2 59.9 ± 2.2 90.5 ± 0.4 74.9 ± 1.5 90.4 ± 0.2 82.7 ± 0.3
LoRA-4 0.7M 94.4 ± 0.5 87.3 ± 0.2 58.4 ± 0.8 92.7 ± 0.2 71.5 ± 1.2 90.5 ± 0.1 82.4 ± 0.3
RandLoRA-64 0.7M 92.2 ± 0.3 88.0 ± 1.5 59.4 ± 2.1 91.3 ± 0.4 74.7 ± 1.9 90.3 ± 0.2 82.6 ± 0.5

RoBERTa-large

VeRA-256 0.26M 95.8 ± 0.3 89.3 ± 1.2 65.3 ± 1.1 94.1 ± 0.3 81.6 ± 0.8 91.8 ± 0.1 86.3 ± 0.3
LoRA-4 1.8M 95.5 ± 0.2 87.2 ± 0.7 64.7 ± 1.2 94.5 ± 0.1 83.6 ± 0.4 91.8 ± 0.1 86.2 ± 0.3
RandLoRA-100 1.8M 95.5 ± 0.3 90.1 ± 0.4 67.4 ± 0.3 94.1 ± 0.3 84.5 ± 0.3 91.4 ± 0.6 87.2 ± 0.1

B.3 COMPARISON WITH PROMPT-TUNING

Prompt tuning is a popular alternative for PEFT where learnable tokens are appended to human-
designed prompts and optimized on to improve accuracy. We choose to report the Maple Khattak
et al. (2023a) + DePT Zhang et al. (2024b) state-of-the-art configuration as it is shown in Zhang
et al. (2024b) to be a highly competitive configuration for image classification. Table 5 reports the
results for 4 and 16 shots over the 11 datasets used in Zhang et al. (2024b). We train on ViT-B/32
with all algorithms training approximately 3M parameters. We report that although competitive
for low shots, prompt tuning struggles to keep up in the 16-shot setting. We note in particular
that prompt tuning struggles on datasets that require more adaptation (e.g. FGVCAircraft) whereas
LoRA and RandLoRA in particular manage to more largely improve results. We additionally report
that Maple + DePT requires a much longer training time and VRAM usage. For example, 16-shots
on ImageNet requires 3.5h and 18GB of VRAM for Maple + DePT while it requires 2 minutes and
4.5GB of VRAM for RandLoRA. Because prompt tuning is largely orthogonal to LoRA-type weight
updates we suggest that future research should study how to combine these approaches together.

Table 5: Comparison of LoRA and RandLoRA with a state-of-the-art prompt tuning algorithm.
CLIP ViT-B/32.
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LoRA-16 64.9 92.0 88.2 63.9 87.9 82.6 30.3 68.2 61.1 89.4 74.7 73.0
RandLoRA-10 63.9 91.7 86.4 67.0 89.9 80.8 34.0 69.7 62.4 84.4 74.9 73.2
Maple + DePT 62.1 95.0 89.5 68.7 90.5 79.6 28.3 70.2 61.7 81.4 76.6 73.1

16
LoRA-16 65.8 91.7 89.5 80.1 94.9 81.8 42.5 73.5 72.0 91.2 81.5 78.6
RandLoRA-10 66.3 95.6 91.1 77.4 94.5 84.0 45.0 73.7 72.5 94.1 81.7 79.6
Maple + DePT 67.7 96.0 90.5 79.1 96.3 81.7 36.9 74.5 70.3 90.3 82.1 78.7

B.4 COMMONSENSE REASONING RESULTS FOR DORA

We compare RandLoRA with DoRA (Liu et al., 2024) for tuning LLama3 in Table 6. We find that
RandLoRA outperforms both DoRA and LoRA for larger parameter budgets (rank 32), while DoRA
and LoRA are competitive at ”Efficient” budgets (rank 16).

C IMPLEMENTATION DETAILS

C.1 CLASSIFICATION DATASETS

We fine-tune vision architectures on 22 vision datasets (21 for pure vision backbones where Ima-
geNet is removed for brevity). We train for 10 epochs on the few-shot experiments and increase the
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Table 6: Further comparison with DoRA related methods on LLama3-8b. Results averaged over 8
commonsense reasoning tasks. We bold the best accuracy.

Method Efficient Performant

15k 170k 15k 170k

LoRA 82.7 84.4 83.1 85.2
DoRA 82.8 84.3 82.5 85.2
RandLoRA 81.0 84.6 81.3 85.6

number of epochs according to dataset constraints for 50% and 100% fine-tuning. Table 7 reports
details of the 22 datasets we use as well as the number of epochs used as in (Zhang et al., 2024a).

Table 7: Vision datasets used for the image classification experiments

# Datasets Classes Splits Epochs

train val test

(1) Cars 196 7,330 814 8,041 35
(2) DTD 47 3,384 376 1,880 76
(3) EuroSAT 10 21,600 2,700 2,700 12
(4) GTSRB 43 23,976 2,664 12,630 11
(5) MNIST 10 55,000 5,000 10,000 5
(6) RESISC45 45 17,010 1,890 6,300 15
(7) SUN397 397 17,865 1,985 19,850 14
(8) SVHN 10 68,257 5,000 26,032 4
(9) CIFAR10 10 45,000 5,000 10,000 5
(10) CIFAR100 100 45,000 5,000 10,000 6
(11) ImageNet 1,000 1,276,167 5,000 50,000 10
(12) STL10 10 4,500 500 8,000 4
(13) Food101 101 70,750 5,000 25,250 15
(14) Caltech101 101 6,941 694 1,736 10
(15) Caltech256 257 22,037 2,448 6,122 8
(16) FGVCAircraft 100 3,334 3,333 3,333 60
(17) Flowers102 102 1,020 1,020 6,149 40
(18) OxfordIIITPet 37 3,312 368 3,669 5
(19) CUB200 200 5,395 599 5,794 20
(20) PascalVOC 20 7,844 7,818 14,976 10
(21) Country211 211 31,650 10,550 21,100 15
(22) UCF101 101 7,639 1,898 3,783 20

C.2 CLIP

We utilize the pytorch AdamW optimizer with weight decay 0.1 and a cosine decaying learning rate
schedule. To accommodate the full batch size on a single A100 GPU for the ViT-L/14 and ViT-H/14
CLIP architectures, we accumulate 2 batches of 64. This is excepted for the standard fine-tuning of
the ViT-H/14 for standard fine-tuning where we need to accumulate 4 batches of 32 due to increas-
ing memory costs. We acquire the pre-trained weights from the openclip repository (Cherti et al.,
2023) where the use the ”openai” weights from ViT-B/32 and ViT-L/14 and the ”laion2b s32b b79k”
weights for ViT-H/14.

C.3 PURE VISION BACKBONES

For pure vision backbones, we use the same configuration as vision and language fine-tuning
of CLIP except that we increase the learning rate to 10−2 for LoRA and RandLoRA. We train
RandLoRA-6 for ViT-B/32 and RandLoRA-8 for Dinov2’s ViT-B/14 and CLIP’s ViT-L/14.

C.4 COMMONSENSE REASONING

Our evaluation protocol assesses the model’s versatility and reasoning capabilities across eight di-
verse datasets: BoolQ (Clark et al., 2019) (yes/no question answering), PIQA (Bisk et al., 2020)
(physics commonsense questions), SIQA (Sap et al., 2019) (social implications reasoning), Hel-
laSwag (Zellers et al., 2019) (multi-choice scenario completion), WinoGrande (Sakaguchi et al.,
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Table 8: Hyper-parameters for different algorithms. Multiple values for hyperparameters denote
variances accross the ViT-B/32, ViT-L/14 and ViT-H/14 architectures respectively.

Algorithm FT LoRA NoLA VeRA RandLoRA

Batch size 128/64/32 128/64/64
Learning Rate (LR) 1e-5 1e-3 1e-3 1e-2 1e-3
Scaling coefficient 1 1

r
1
r

1
r

10
r

Basis rank (r) – 32 1 256/256/1024 6/8/10
Number of basis (n) – – 1024 1 128

Table 9: LLM fine-tuning hyper-parameters for different algorithms. Multiple values for hyper-
parameters denote variances accross the Qwen2 -0.5b, Phi3-8b and LLama3-8b architectures re-
spectively.

Algorithm LoRA NoLA VeRA RandLoRA

Batch size 16/8/4
Learning Rate (LR) 10−4

Scaling coefficient 2 2√
n

2 2√
n

Basis rank (r) 32 1 256/1024/1024 6/10/15
Number of basis (n) – 1024 1 149/153/136

2021) (binary sentence completion), ARC-c and ARC-e (Clark et al., 2018) (challenging and easy
science questions at a grade-school level), and OBQA (Mihaylov et al., 2018) (multi-step reasoning).
These datasets collectively pose a wide range of challenges, from natural language understanding
and commonsense reasoning to physical and social inference. For further details on these datasets,
we refer readers to the survey by Hu et al. (Hu et al., 2023). We train using the hugginface2 trans-
formers library and follow the implementation3 of Liu et al (Liu et al., 2024). We train for 3 epochs
using a learning rate of 1×10−4 and a base scaling coefficient of 2 for the weight update. To prevent
overfitting, we add a dropout layer in each of the adapter’s layers with a dropout probability of 0.05
and perform early stopping using the same validation set of size 120, drawn from the training set.
We maintain hyper-parameters the same across architectures and algorithms except for the scaling
ratio of the weight update for NoLA and RandLoRA which we further multiply by 1/

√
n where n

is the number of bases to account for the increasing norm of the sum of random matrices.

C.5 TRAINING TIME, MEMORY CONSUMPTION AND RANDOM BASES

C.5.1 REDUCING MEMORY CONSUMPTION

Basis sharing across layers RandLoRA aims to preserve the memory efficiency and training
speed advantages of LoRA. As shown in Section 4, although RandLoRA trains an amount of param-
eters comparable to LoRA we still have to store N large random bases for each weight update. We
first note that as observed in previous research, (Koohpayegani et al., 2024; Kopiczko et al., 2024)
random bases can be shared across layers. In practice, we generate one pair of random matrices
Bi ∈ RN×Dm×r and A0 ∈ R×r×dm , where Dm and dm represent the largest D and d across all
network layers. During forward and backward passes on a layer of size D × d, we select the first D
rows of B and d columns of A to perform the weight update. This strategy stores only the largest B
and A matrices, which would have to be fit in memory at some point during training anyways. Note
that although we do not study this case, this strategy directly generalizes to having different ranks r
across layers as has been proposed in AutoLoRA (Zhang et al., 2024c) for example. This strategy
allows us to avoid increasing memory as network depth increases, meaning that RandLoRA become
more efficient when network depth increases.

2https://huggingface.co
3https://github.com/NVlabs/DoRA/tree/main/commonsense_reasoning
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Efficient back-propagation with a single random A basis We evidence in section 4.2 that the
Ai matrices do not need to be N dimensional and that a single A matrix modified by N Γi is enough
to acheive full rank. We can thus optimize the backward pass when computing the gradient of Λi

and Gammai so that we only have to store one matrix A ∈ Rr×d for the backward pass, further
reducing memory consumption.

Efficient matrix multiplication in the forward pass We adopt the notations from Section C.5.1
to optimize the matrix multiplication of X ∈ RB×D during the forward and backward passes:
XW . Given the pre-trained weight W0 ∈ D× , LoRA computes Y = XW0 + XBA where we
compute Y = XW0 +

∑N
i=1 (XBi)(ΛiAiΓi). These equations suggest RandLoRA would be N

times slower to run than LoRA but in practice, the XW0 operation dominates the matmul time and
the N RandLoRA operations are naturally parallelized by the CUDA kernel. In practice we observe
a 13% training time increase for the smaller ViT-B-32 models and up to 100% in the worst case for
larger models with large weight matrices such as LLama3.

C.6 SPARSE RANDOM BASES

We continue here the discussion on the possible collinearity of sparse bases. We remind here that
we construct the random bases Bi and Ai by assigning

−1, with probability 1
s

0, with probability 1− 2
s

1, with probability 1
s

where s an integer in [2,
√
D] for W ∈ RD×d. Because of the ternary nature of these matrices,

there is a non-zero probability that two row are collinear across all random matrices, resulting in
non full rank. If we can show that is probability is negligible then the full rank constraint will be
preserved in practice. We compute that the probability of drawing the same size d row twice equates
to p = 2 × ( s

2−4s+6
s2 )d. Taking the example of the ViT-B/32 architectures with W ∈ R768×768

and for the largest recommended optimal sparsity (s =
√
768) we compute p = 2 × 10−49. The

probability of drawing at least two collinear row over N matrices of is p2 = (N +D)(N +D−1)p.
In the RandLoRA-6 configuration for ViT-B, N = 128 resulting in p2 = 8× 10−44 meaning these
events are negligible in practice even with a large number of sparse bases and that the full rank
constraint is preserved.

C.6.1 TRAINING TIME

We report in Table 10 the relative training time of RandLoRA compared to LoRA and standard
fine-tuning on a single RTX4090 GPU (A100 for LLama3 and ViT-H/14). Since we do not have
ressources to fully fine-tune LLama3, we report LoRA as the memory baseline. In addition to
Table 10 we report up to 212% increase over LoRA-64 training time for the best performing
RandLoRA-15 configuration for LLama3-8b. This number should be put in perspective with DoRA
leading to a 220% increase in all configurations for LLama3-8b.

D MATHEMATICAL DERIVATIONS AND PROOFS

D.1 THEOREM 4.1

In this section we would like to give the details of the proof of theorem 4.1 from the main paper. In
order to do so we will start by proving a few lemmas.

Our method consider decompositions similar to those given in equation 1 and equation 2 that are
built from random matrices instead of the left and right singular vectors. A key observation is that
such decompositions and their sums will yield high rank matrix approximations. The following two
lemmas explains why this is the case.
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Model Architecture LoRA-32 DoRA-32 RandLoRA FT

CLIP-ViT-B/32
Training Time 90 – 113 100%

Memory 81 – 78 100%

CLIP-ViT-L/14
Training Time 95 – 128 100%

Memory 72 – 71 100%

CLIP-ViT-H/14
Training Time 96 – 122 100%

Memory 54 – 51 100%

LLama3-8B
Training Time 100 220 167 –

Memory 100 102 102 –

Table 10: Comparison of training times for LoRA, RandLoRA, and FT on vision-language or lan-
guage architectures.

Lemma D.1. Let B = [B1, . . . , Bn] denote a matrix where each Bj ∈ RD×r and let A =
[A1, . . . , An] denote a matrix where each Aj ∈ Rd×r. Assume nr ≤ min(D, d) and assume that
the columns of B are linearly independent and the columns of A are linearly independent. Define

C =

n∑
j=1

BjA
T
j (9)

Then we must have that rank(C) = nr.

Proof. We first observe that using the inequality rank(X + Y ) ≤ rank(X) + rank(Y ) we get
that rank(C) ≤ nr because each term BjA

T
j has rank r, since the columns of A and B are linearly

independent, and there are n of them.

Then observe that we can rewrite C as
C = BAT (10)

Using Sylvester’s rank inequality: If X ∈ RD×l and Y ∈ Rl×d then

rank(X) + rank(Y )− l ≤ rank(XY ) (11)

we have that

rank(C) = rank(BAT ) (12)

≥ rank(B) + rank(AT )− kj (13)
= 2nr − nr (14)
= nr (15)

and the proof is complete.

Lemma D.2. Let {X1, . . . , Xn} denote n vectors in RN where n ≤ N drawn i.i.d from a Gaussian
or uniform distribution. Then with probability 1 {X1, . . . , Xn} will be linearly independent.

Proof. We first note that any measure defined via a Gaussian or Uniform probability distribution is
absolutely continuous with respect to the Lebesgue measure. Meaning they have the same sets of
measure zero as the Lebesgue measure.

We then prove the case that {X1, . . . , Xn} are vectors of unit length. Since the vectors were drawn
independently, we can first assume we drew X1. The probability that this is the zero vector is 0
w.r.t the Lebesgue measure on the closed unit ball BN (0) about the origin in RN and hence any
other measure absolutely continuous to it. Then draw X2 and note that the probability that X2 lies
in span{X1} ∩ BN (0) is also 0 since span{X1} ∩ BN (0) forms a set of 0 Lebesgue measure
in BN (0). Continuing in this way we find that {X1, . . . , Xn} will be linearly independent with
probability 1.

For the general case where {X1, . . . , Xn} are not drawn to have unit length i.e. drawn on the sphere
in RN , we simply note that we can draw each one and then divide by its norm producing one of unit
length. Since normalizing by the norm doesn’t affect linear independence we get by the above case
that {X1, . . . , Xn} must be linearly independent with probability 1.
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Lemmas D.1 and D.2 show that if we were to i.i.d draw n random vectors A1, . . . , An in RD and n
vectors B1, . . . , Bn using a Gaussian or uniform distribution for n ≤ min(D, d). Then the matrix
Q = ABT would have rank n, where A = [A1, . . . , An] and B = [B1, . . . , Bn].

We note that lemma D.1 is still true if we were to consider products of the form BΛAΓ, where Λ
and Γ are diagonal matrices with non-zero diagonal entries.

Using the above two lemmas we can now give a proof of theorem 4.1 from the main paper.

Proof. The fact that each BiΛiAiΓi has rank r with probability 1 follows from lemmas D.1 and
D.2. In order to estimate the difference ∥W −

∑n
j=1 BjΛjAjΓj∥, we use equation 2 to write

W =

n∑
j=1

UjΣjV jT. (16)

We can then estimate

∥W −
n∑

j=1

BjΛjAjΓj∥F = ∥
n∑

j=1

UjΣjV
T
j −

n∑
j=1

BjΛjAjΓj∥F (17)

= ∥
n∑

j=1

UjΣjV
T
j −BjΛjAjΓj∥F (18)

≤
n∑

j=1

∥UjΣjV
T
j −BjΛjAjΓj∥F (19)

≤ n · ϵ (20)

where the last inequality follows from the assumption equation 6.

D.2 LORA’S LOW BOUND

We demonstrate here the short derivation leading to the results of equation equation 8.

Proof. By definition, the forbenius norm of a matrix X ∈ Rn×n, ||X||F is invariant under left
and right multiplications by any orthogonal matrices P ∈ Rn×n and Q ∈ Rn×n, i.e. ||X||F =
||PXQ||F . Then, given the k-truncated SVD of M = UΣkV

T with U, V ∈ Rn×n and Σk ∈ Rn×n

diagonal with elements above the k-th being 0, U and V are orthogonal matrices by definition. We
then have the following,

||X −M ||F = ||U(X −M)V T ||F (21)
= ||Σ− Σk||F (22)

=

r∑
j=k+1

σ2
j (23)

where Σ ∈ Rn×n is diagonal and contains the n singular values of X by decreasing order and σj

denotes the j-th element of Σ.

Since by the SVD definition, the best rank-k approximation of W is M , given LoRA’s rank-k
approximation of W by the matrix multiplication BA where B ∈ Rn×k and A ∈ Rk×n we have

||X −M ||F ≤ ||X −BA||F (24)
r∑

j=k+1

σ2
j ≤ ||X −BA||F . (25)
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Table 11: Detailed accuracy results per dataset, fine-tuning the vision and language backbones of CLIP-ViT-
B/32. Highest performance and those within a range of 0.1 in each section are highlighted in bold.
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1 shot

NoLA 51.6 44.5 72.8 54.3 76.3 64.1 53.8 31.1 81.3 62.7 49.7 90.4 61.9 76.6 19.0 62.5 69.7 41.8 69.1 5.3 84.9 61.4 58.4
VeRA256 60.9 47.7 76.8 47.4 71.7 67.4 64.9 47.5 90.4 71.7 63.7 97.4 83.5 83.3 22.1 68.5 88.3 54.4 77.6 17.6 87.5 64.9 66.1
LoRA32 51.9 46.3 73.2 61.4 73.7 67.9 53.9 30.6 79.8 63.9 51.7 89.5 63.5 78.1 19.1 65.3 69.9 43.0 67.1 5.6 85.2 63.5 59.3
RandLoRA6 53.6 50.3 73.1 61.4 78.5 72.6 59.3 29.4 80.8 67.1 57.4 92.6 69.8 81.5 21.7 71.3 75.0 48.5 67.6 8.5 88.3 67.0 62.5
FT 51.4 46.8 67.3 62.8 77.4 69.9 57.2 20.0 68.3 61.1 52.2 83.0 66.7 79.5 19.0 68.7 70.0 46.5 59.0 7.4 86.1 66.6 58.5

2 shots

NoLA 57.1 54.3 82.8 63.6 83.2 69.7 57.9 32.2 80.3 68.5 51.0 92.2 67.2 80.4 24.3 72.7 80.8 47.3 57.9 7.4 85.2 65.4 62.8
VeRA256 62.1 49.5 71.0 50.5 72.2 68.1 64.8 50.7 91.7 73.1 63.7 97.5 84.2 84.0 22.1 69.9 89.2 54.8 73.8 17.7 89.2 65.0 66.6
LoRA32 53.7 56.9 82.0 62.6 82.8 71.9 60.1 36.8 84.2 71.5 52.9 94.1 73.6 82.8 22.4 73.8 84.2 48.0 61.7 9.0 87.8 67.4 64.6
RandLoRA6 59.5 60.4 83.4 73.7 85.2 74.9 62.0 30.0 82.6 72.0 57.7 94.5 72.0 83.8 28.6 80.8 83.7 54.3 62.3 9.8 89.0 71.7 66.9
FT 58.5 57.7 82.9 76.7 84.8 74.4 60.3 23.0 69.4 68.3 53.9 87.3 69.1 83.0 26.2 81.0 79.1 55.2 53.2 9.3 89.2 71.6 64.3

4 shots

NoLA 60.1 58.1 86.9 67.7 87.5 75.0 61.0 45.3 87.2 69.3 51.4 91.3 72.3 81.2 26.0 80.7 84.1 51.6 69.0 9.3 87.3 68.0 66.8
VeRA256 61.8 49.6 79.7 52.5 73.2 69.6 64.9 52.2 92.3 73.9 64.2 97.5 84.9 83.8 21.9 70.4 89.5 54.9 75.8 17.8 89.4 65.6 67.5
LoRA32 57.0 60.4 86.7 59.0 86.5 73.5 62.3 46.4 87.1 71.1 52.5 93.6 76.3 83.2 24.2 77.2 84.7 50.9 69.5 11.2 88.4 67.1 66.8
RandLoRA6 63.1 63.2 87.9 77.4 88.2 80.3 65.0 47.8 87.6 72.9 55.8 93.2 74.8 84.1 31.1 87.8 85.0 58.8 70.3 10.7 89.8 75.3 70.4
FT 65.2 60.3 85.4 82.5 87.0 80.1 64.1 41.1 78.9 70.8 54.0 84.3 72.0 83.2 34.1 89.5 80.1 60.1 62.5 10.0 89.6 73.8 68.6

16 shots

NoLA 66.2 66.5 92.3 73.6 91.2 81.2 64.4 74.9 92.1 74.3 54.0 95.0 77.3 84.0 30.4 86.0 89.6 61.1 73.5 12.0 88.2 73.7 72.8
VeRA256 62.9 51.4 82.4 53.2 75.8 70.5 66.3 57.0 93.3 73.9 64.6 97.9 85.2 85.6 22.3 71.6 90.9 55.8 76.4 18.1 89.2 65.7 68.6
LoRA32 69.6 64.8 87.5 61.2 91.2 79.8 65.0 71.6 93.0 75.7 54.9 95.8 77.3 85.8 33.7 83.3 89.6 64.4 75.2 12.1 88.5 76.3 72.6
RandLoRA6 71.9 70.2 94.2 81.5 94.1 84.9 67.6 73.7 92.0 77.0 56.8 95.0 80.1 86.9 35.1 91.3 89.3 68.6 75.5 12.2 90.9 79.3 75.8
FT 74.0 69.8 93.2 87.5 94.3 86.7 67.2 74.1 89.8 76.3 56.2 92.7 78.6 86.9 39.1 93.2 89.0 70.1 74.9 12.1 90.9 78.9 76.2

50%

NoLA 69.7 68.9 98.6 93.9 98.7 91.6 64.9 93.0 97.1 79.0 56.9 97.8 81.0 86.3 44.2 81.9 89.6 62.3 85.6 14.4 88.9 78.0 78.3
VeRA256 63.7 62.4 95.5 79.2 92.8 81.1 66.3 75.6 95.2 76.3 64.6 97.9 85.6 87.9 25.6 72.1 88.8 56.6 85.4 18.1 93.3 70.7 74.3
LoRA32 71.9 71.3 98.4 94.7 98.8 93.0 65.6 93.7 97.4 81.5 59.5 97.7 85.4 88.1 45.3 85.8 89.2 65.2 86.5 14.1 88.5 80.2 79.6
RandLoRA6 78.0 73.6 98.5 95.5 99.0 94.0 67.4 94.6 97.7 84.4 62.4 97.9 87.6 89.5 56.3 88.5 90.0 70.3 86.5 14.6 95.3 82.5 82.0
FT 78.0 72.4 98.7 96.2 99.1 94.5 67.0 95.0 97.6 84.8 62.1 98.0 86.6 89.2 57.4 89.1 91.1 69.0 87.2 14.6 94.9 81.8 82.0

100%

NoLA 73.6 73.5 98.8 95.2 99.0 93.3 66.4 94.2 97.6 80.3 57.5 98.1 82.0 87.5 51.1 89.1 90.8 67.1 86.5 15.9 90.1 78.4 80.3
VeRA256 63.7 62.5 95.2 79.5 92.2 80.6 66.3 75.4 95.2 76.2 64.6 98.1 85.6 87.8 25.4 77.3 90.6 56.8 85.9 18.1 93.8 70.3 74.6
LoRA32 77.3 76.7 98.6 95.3 99.1 94.4 67.1 95.2 97.9 83.8 60.5 98.4 87.8 89.2 59.5 91.4 91.1 70.7 87.7 15.9 89.6 82.0 82.2
RandLoRA6 83.1 78.9 99.0 96.1 99.3 95.4 69.5 95.5 98.1 87.0 63.8 98.4 89.4 90.9 67.1 93.7 91.0 75.2 88.0 16.8 95.6 85.1 84.4
FT 84.4 77.7 98.9 96.8 99.2 96.0 69.0 96.0 97.9 86.9 63.7 98.5 88.8 90.8 68.1 94.8 91.2 74.8 88.0 16.3 95.8 84.6 84.5

E DETAILED RESULTS

E.1 VISION LANGUAGE: CLIP

We report per dataset accuracies for NoLA, VeRA, LoRA, standard fine-tuning (FT) and RandLoRA
in for the CLIP ViT-B/32 ViT-L/14 and ViT-H/14 architectures on 22 datasets in Tables 11, 12and 13
respectively.

E.2 VISION ONLY: DINOV2

Table 14 reports detailed results when fine-tuning DinoV2 on 21 datasets. We use the pre-trained
ViT-B/14 architecture and train a linear classifier together with the feature extractor. Compared to
the CLIP results ImageNet was removed to promote brevity of the experiments.

E.3 COMMONSENSE REASONING

Table 15 reports detailed accuracy results for the Qwen2, Phi3 and LLama3 language models trained
on the commonsense tasks. See C.4 for details on the datasets and the hyper-parameters used.
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Table 12: Detailed accuracy results per dataset, fine-tuning the vision and language backbones of CLIP-ViT-
L/14. Highest performance and those within a range of 0.1 in each section are highlighted in bold.
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NoLA 72.7 61.1 81.5 76.4 89.3 78.6 67.3 76.1 94.0 77.9 70.3 98.8 87.5 88.3 41.1 85.0 90.4 63.4 71.7 18.0 90.4 76.6 75.3
VeRA256 78.5 55.6 75.3 55.0 88.8 73.2 68.8 67.8 96.6 80.5 75.5 99.4 93.2 88.9 34.3 80.6 93.8 64.2 78.8 32.0 86.8 73.6 74.6
LoRA32 74.9 62.3 81.0 76.5 91.7 79.5 68.3 74.7 92.8 78.9 71.4 98.6 87.9 89.4 44.0 89.5 88.7 66.3 68.5 19.3 90.3 77.7 76.0
RandLoRA10 76.8 63.1 83.5 72.5 92.7 81.6 74.7 74.2 95.0 83.0 76.2 99.3 91.6 92.1 43.2 89.1 91.0 68.8 74.9 27.2 90.3 82.7 78.3
FT 73.6 62.4 81.2 78.4 92.8 83.8 71.5 68.3 91.0 81.3 73.2 98.6 88.4 91.6 41.8 90.5 88.7 68.9 66.1 23.0 90.7 82.5 76.7

2 shots

NoLA 74.0 66.7 81.1 81.2 93.2 82.4 68.0 78.3 93.3 80.8 66.3 98.2 88.0 89.4 39.6 92.5 93.9 64.8 75.2 20.5 91.2 76.6 77.1
VeRA256 78.1 55.8 75.3 55.7 90.0 73.5 68.6 67.0 96.6 81.3 75.6 99.4 93.2 89.0 34.8 81.5 94.4 64.0 79.2 32.2 86.8 74.1 74.8
LoRA32 77.3 68.1 84.7 82.7 95.2 84.2 69.9 78.5 92.4 81.6 68.7 97.8 88.7 90.0 46.4 94.5 91.8 69.3 72.6 21.0 91.7 79.5 78.5
RandLoRA10 78.5 70.4 85.1 80.4 94.7 85.8 74.9 78.2 95.9 84.1 74.4 99.5 91.9 92.5 46.1 94.5 93.9 71.5 75.8 28.1 91.7 83.6 80.5
FT 79.6 70.5 83.8 84.0 94.0 86.5 73.2 78.1 92.5 82.7 72.1 99.2 89.2 91.6 47.2 96.5 93.1 73.5 72.7 24.1 91.9 84.1 80.0

4 shots

NoLA 75.2 70.0 87.4 85.5 95.5 84.4 69.2 82.5 94.8 82.2 66.2 97.9 89.3 89.7 44.5 93.1 94.2 67.3 77.0 23.0 91.3 77.2 79.0
VeRA256 77.9 56.7 77.8 56.0 91.3 74.1 69.8 68.0 96.9 81.4 75.9 99.5 93.2 89.1 35.1 81.1 94.6 64.2 79.3 32.1 86.9 74.2 75.2
LoRA32 77.2 71.8 88.4 86.2 95.9 86.3 70.5 84.3 95.1 82.4 68.7 97.5 90.2 90.8 47.4 95.5 93.7 70.6 75.8 23.2 91.8 81.4 80.2
RandLoRA10 79.3 73.6 89.2 85.2 96.4 87.8 74.6 80.9 97.3 85.1 72.6 99.3 92.4 92.4 47.1 93.7 94.8 71.0 79.1 29.2 91.7 84.6 81.7
FT 79.7 74.6 90.0 90.1 96.0 88.8 73.5 82.5 94.2 84.2 71.6 98.1 89.8 92.7 43.3 97.3 93.7 76.0 78.2 25.3 92.3 84.8 81.7

16 shots

NoLA 82.8 72.0 93.7 86.4 96.7 87.3 72.2 87.8 97.0 84.2 69.1 98.7 90.5 93.0 53.5 96.2 94.6 78.8 83.7 23.6 90.3 82.7 82.5
VeRA256 80.5 56.1 82.6 56.2 93.9 74.4 71.9 69.8 97.2 83.0 76.3 99.5 93.5 90.3 38.3 82.3 94.8 68.3 80.2 32.8 89.1 77.2 76.7
LoRA32 85.7 74.8 94.2 88.1 97.1 88.9 73.3 88.7 96.9 85.8 70.9 99.0 91.2 93.2 56.7 97.5 94.2 82.6 82.1 23.6 90.8 85.5 83.7
RandLoRA10 86.6 76.0 94.9 87.4 97.2 89.4 76.5 86.4 97.0 86.5 74.5 99.2 92.3 94.4 57.4 97.8 95.3 83.9 82.4 25.3 91.7 88.5 84.6
FT 87.5 78.4 95.7 91.7 97.7 91.2 75.6 87.4 94.6 87.3 73.5 98.3 91.4 94.1 61.1 98.4 94.2 85.0 82.3 25.8 92.9 88.2 85.1

50%

NoLA 84.4 78.0 98.6 96.4 99.3 95.2 72.7 96.3 99.1 89.2 73.0 99.5 93.0 94.4 57.9 96.3 95.6 79.3 91.5 26.7 91.3 87.0 86.1
VeRA256 81.7 68.8 95.8 88.5 97.0 86.8 71.8 90.5 98.1 85.0 76.2 99.5 93.9 93.8 44.5 87.7 94.4 70.2 88.6 32.9 94.3 80.9 82.8
LoRA32 88.2 81.2 98.8 96.9 99.1 96.0 74.1 96.5 99.2 90.3 75.4 99.5 94.4 95.6 68.4 97.2 94.9 83.2 91.0 25.5 94.1 88.4 87.6
RandLoRA10 89.9 82.3 98.8 96.8 99.4 96.0 76.7 96.8 99.2 91.6 78.3 99.5 94.7 95.6 69.0 96.9 95.7 83.9 92.1 27.5 96.9 90.5 88.5
FT 89.7 79.0 99.1 96.3 99.3 96.8 76.0 97.0 99.2 91.2 77.3 99.4 94.3 95.8 69.6 97.1 95.0 84.6 91.9 26.8 96.9 90.8 88.3

100%

NoLA 87.5 82.5 99.0 96.8 99.3 96.3 75.0 96.6 99.3 90.4 73.6 99.7 93.8 95.2 74.0 98.5 95.1 83.2 91.5 28.5 93.9 88.0 88.1
VeRA256 81.6 67.9 96.1 88.6 97.2 85.8 71.7 90.2 98.2 85.1 77.0 99.5 93.8 93.9 44.5 93.0 94.9 70.3 89.2 32.8 96.4 81.5 83.1
LoRA32 89.2 83.9 99.2 97.4 99.3 96.8 75.9 95.8 99.3 91.4 76.1 99.7 95.2 95.8 78.6 98.4 95.2 85.3 91.7 27.9 96.1 90.2 89.0
RandLoRA10 90.8 84.6 99.0 96.6 99.5 96.9 77.8 97.0 99.4 92.8 79.0 99.7 95.4 96.5 79.6 98.9 95.4 87.1 92.5 30.4 96.8 93.1 90.0
FT 90.4 84.4 99.1 97.1 99.3 97.2 77.2 97.3 99.2 92.4 78.1 99.6 94.9 96.2 81.5 99.1 94.8 86.9 92.6 29.3 97.0 92.6 89.8
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Table 13: Detailed accuracy results per dataset, fine-tuning the vision and language backbones of CLIP-ViT-
H/14. Highest performance and those within a range of 0.1 in each section are highlighted in bold.
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NoLA 92.0 71.8 80.9 78.7 90.1 82.2 70.6 60.2 95.1 82.7 73.1 98.0 88.0 90.3 46.4 91.5 91.2 76.2 69.7 17.5 91.5 78.1 78.0
VeRA1024 93.8 69.4 73.8 65.1 90.0 73.2 74.9 54.2 98.2 85.5 77.6 99.1 92.8 91.5 46.4 81.6 92.0 82.2 80.0 29.9 89.7 79.2 78.2
LoRA32 92.7 70.4 84.6 79.8 88.2 84.7 71.2 59.9 95.6 83.3 71.9 96.7 87.5 90.6 49.0 95.2 90.4 76.6 70.2 18.4 91.8 79.8 78.6
RandLoRA10 93.0 71.0 79.8 79.6 90.2 84.3 78.3 55.8 97.2 85.9 78.0 98.1 90.9 92.5 49.9 94.3 92.2 78.3 66.1 26.4 92.3 82.1 79.8
FT 92.2 69.9 81.7 79.8 88.2 85.3 76.2 56.2 95.8 83.3 73.3 97.6 89.1 91.7 49.8 95.6 90.6 76.9 66.1 24.6 91.9 82.4 79.0

2 shots

NoLA 92.8 71.7 89.3 87.8 91.2 83.2 71.8 75.1 96.0 84.3 68.9 95.5 88.6 91.0 50.7 94.6 92.3 79.4 71.7 20.8 91.6 78.8 80.3
VeRA1024 93.8 71.1 89.7 67.0 90.3 74.3 78.2 74.3 98.1 85.8 77.3 99.0 92.9 91.7 47.0 82.1 92.3 81.7 80.8 30.1 89.5 79.4 80.3
LoRA32 93.1 71.9 93.2 84.9 92.2 86.0 72.3 77.4 96.9 83.5 70.4 94.6 87.7 91.9 51.9 97.2 91.8 77.5 75.5 20.8 92.9 83.6 81.2
RandLoRA10 93.9 75.8 90.7 89.3 93.5 86.9 78.2 79.0 97.5 86.5 74.8 98.1 91.3 92.5 53.6 97.4 93.2 81.0 72.6 27.2 93.7 84.1 83.2
FT 93.1 74.0 90.8 89.9 93.7 86.1 74.3 74.0 95.4 85.2 71.2 97.2 90.1 92.0 46.9 97.4 92.6 78.2 71.5 25.1 93.3 84.5 81.7

4 shots

NoLA 93.1 73.7 92.9 86.3 94.4 85.1 72.6 80.3 96.8 84.2 69.2 97.2 89.4 91.0 55.2 95.8 92.7 80.7 78.7 23.5 91.6 82.4 82.1
VeRA1024 93.9 71.4 92.4 67.3 92.5 74.2 76.6 78.0 98.3 86.1 72.9 99.1 92.8 92.8 47.6 82.0 94.0 82.7 82.2 30.8 89.9 79.6 80.8
LoRA32 93.9 73.7 94.2 89.5 95.6 87.8 72.5 80.9 97.1 85.3 70.8 97.3 89.1 92.3 56.9 97.8 92.4 82.4 78.5 23.3 91.9 84.8 83.1
RandLoRA10 94.1 78.6 95.5 89.5 95.7 89.8 76.5 80.5 98.1 87.4 73.5 99.0 91.6 92.7 57.5 98.1 93.7 83.1 78.1 28.6 93.3 86.9 84.6
FT 93.8 78.1 94.0 88.5 95.8 89.4 75.5 77.1 96.2 86.5 72.8 97.7 90.5 93.5 51.8 98.4 92.8 81.5 77.2 25.2 93.0 86.3 83.4

16 shots

NoLA 93.3 76.0 95.7 90.3 96.7 88.6 75.3 87.1 98.0 87.3 71.6 98.7 90.0 92.8 61.5 98.1 93.7 86.0 81.5 23.8 92.2 85.9 84.7
VeRA1024 94.2 77.4 94.3 81.7 94.4 85.1 77.1 82.0 98.4 87.8 73.8 99.3 91.7 94.0 61.1 94.6 94.5 86.4 81.2 25.7 93.2 88.1 84.4
LoRA32 93.5 77.7 95.3 92.5 96.6 90.2 75.7 86.8 98.2 88.3 73.2 98.5 90.4 93.9 65.5 98.8 92.9 86.8 80.9 23.2 92.2 87.7 85.4
RandLoRA10 94.4 79.8 95.9 92.3 96.9 91.7 78.1 87.4 98.1 88.6 75.6 99.0 91.2 94.6 64.5 99.0 94.0 87.8 80.7 25.2 92.2 89.1 86.2
FT 94.3 80.0 95.8 94.1 96.5 91.7 77.5 85.6 97.8 87.6 75.0 98.6 90.8 94.5 64.7 98.7 93.7 87.1 81.9 25.2 93.3 89.6 86.1

50%

NoLA 93.0 80.8 99.1 96.7 99.2 95.2 75.2 96.2 99.2 90.7 74.7 99.3 93.0 95.3 70.5 97.5 94.5 85.2 90.9 25.9 91.7 87.4 87.8
VeRA1024 93.8 82.0 99.2 96.2 99.3 96.1 76.9 96.2 99.2 91.9 76.3 99.5 93.6 96.2 72.7 98.3 95.2 86.7 90.5 25.7 95.8 89.4 88.7
LoRA32 92.7 82.1 98.8 96.5 99.3 96.2 75.7 96.5 99.3 91.9 77.0 99.4 94.2 96.0 74.0 97.2 94.5 86.4 89.5 25.9 96.2 90.5 88.6
RandLoRA10 94.8 82.8 98.8 96.6 99.3 96.4 77.7 96.8 99.3 93.0 79.1 99.5 94.6 96.5 77.2 98.7 94.7 87.3 91.3 28.1 96.0 90.4 89.5
FT 94.5 82.0 98.8 96.8 99.3 96.6 76.7 96.8 99.0 91.8 77.0 99.4 94.2 96.4 77.9 98.1 94.6 86.7 90.8 27.6 95.5 91.4 89.2

100%

NoLA 93.3 84.2 99.3 96.7 99.4 96.2 76.6 96.8 99.2 91.5 74.8 99.5 93.7 95.5 77.2 98.7 94.4 86.9 91.4 28.2 95.0 89.8 89.0
VeRA1024 94.3 85.0 99.0 97.2 99.4 97.0 78.0 96.8 99.3 92.6 76.7 99.6 94.3 95.9 79.7 99.3 95.0 87.7 91.3 27.3 96.4 91.3 89.7
LoRA32 93.1 85.8 99.1 97.3 99.5 97.2 77.6 97.2 99.3 93.0 77.9 99.5 94.9 96.6 83.7 99.0 94.4 87.5 91.8 28.3 95.9 91.5 90.0
RandLoRA10 94.7 86.0 99.0 97.0 99.4 97.1 79.4 97.3 99.3 93.5 80.1 99.5 95.2 97.1 84.1 99.3 95.1 88.6 91.7 31.2 96.5 92.7 90.6
FT 94.9 84.2 98.8 97.5 99.5 97.6 78.7 97.3 99.2 92.8 77.9 99.5 94.8 96.8 84.4 99.3 95.3 88.3 91.8 30.1 96.6 93.0 90.4
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Table 14: Detailed accuracy results per dataset, the DinoV2 ViT-B/14 vision backbone. Highest performance
and those within a range of 0.1 in each section are highlighted in bold.
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NoLA 21.2 45.4 60.7 28.8 55.0 49.8 46.3 14.4 73.8 57.3 71.7 50.5 78.7 19.7 98.6 74.6 62.5 43.6 3.1 85.5 63.8 52.6
VeRA256 22.5 45.6 57.9 20.1 50.7 44.6 46.7 12.9 76.5 55.8 64.4 51.9 78.6 19.1 98.7 75.5 62.9 36.2 3.4 84.7 63.1 51.0
LoRA32 22.6 47.2 59.3 24.8 51.7 48.7 45.9 14.6 77.2 57.4 64.6 52.4 77.5 19.7 98.9 76.5 63.1 37.2 3.4 85.1 62.3 51.9
RandLoRA6 21.5 47.8 57.9 34.5 61.6 44.9 44.1 16.2 56.8 54.0 66.0 47.2 76.4 19.6 97.8 71.8 59.9 43.4 3.0 86.1 62.8 51.1
FT 20.8 45.5 67.8 25.7 52.3 45.2 45.3 15.5 70.2 54.7 75.8 50.1 75.2 19.4 98.3 70.8 60.0 36.9 3.1 84.7 60.3 51.3

2 shots

NoLA 41.4 57.8 64.1 43.1 73.5 65.4 58.1 16.2 90.0 74.5 93.9 64.5 84.9 28.0 99.6 83.0 73.3 51.4 4.1 90.0 72.7 63.3
VeRA256 38.2 57.4 64.0 28.9 65.0 60.8 57.3 14.4 86.0 71.6 78.9 66.2 84.8 26.2 99.4 83.4 74.8 44.4 4.1 88.0 73.7 60.4
LoRA32 41.1 58.4 68.3 37.7 71.4 64.7 58.2 14.7 89.6 74.8 87.0 66.1 85.3 27.0 99.5 86.7 73.0 52.1 5.0 89.2 72.1 63.0
RandLoRA6 41.9 59.6 69.0 48.6 70.2 62.2 57.1 19.4 72.1 70.6 84.8 63.3 83.8 29.5 98.4 80.0 71.3 49.7 3.8 89.9 72.1 61.8
FT 43.1 56.0 65.7 42.6 72.1 63.1 57.5 16.1 79.0 71.0 91.3 64.6 85.1 27.7 99.3 81.1 71.8 50.6 3.9 89.2 70.5 62.0

4 shots

NoLA 62.9 68.5 76.4 62.4 82.4 75.9 65.8 22.8 94.5 82.6 97.6 73.7 89.8 40.6 99.7 89.3 82.6 65.4 6.0 90.6 79.5 71.9
VeRA256 56.1 64.2 71.5 43.2 76.1 71.6 64.8 17.6 91.4 80.9 88.7 74.7 89.3 36.0 99.7 91.0 82.1 53.5 6.2 89.8 77.7 67.9
LoRA32 63.4 66.5 79.2 61.0 79.2 77.6 66.3 20.9 94.5 82.1 94.5 75.0 89.4 41.9 99.7 91.9 83.5 66.2 6.8 89.7 80.6 71.9
RandLoRA6 64.6 65.3 72.2 66.6 86.4 77.0 65.0 24.8 84.0 79.4 93.1 73.0 89.8 43.9 99.6 86.6 82.4 63.8 5.9 91.7 78.6 71.1
FT 65.5 67.3 73.0 62.7 85.6 73.8 66.0 20.9 88.0 81.3 94.0 73.6 90.2 41.4 99.6 88.9 82.6 61.3 6.0 91.7 79.3 71.1

16 shots

NoLA 86.4 79.5 91.0 88.2 94.0 87.8 75.1 56.9 97.2 89.4 99.0 85.1 93.1 64.0 99.7 93.9 88.8 82.2 12.2 95.3 87.0 83.1
VeRA256 81.7 78.2 88.2 60.1 88.9 83.2 73.5 30.2 97.4 87.6 97.4 84.4 92.6 51.3 99.7 94.6 88.5 72.9 11.8 91.9 85.7 78.1
LoRA32 87.1 80.5 93.9 86.4 93.0 87.2 75.1 44.8 97.4 88.8 99.4 85.6 93.5 65.2 99.7 94.2 88.5 80.5 12.4 94.6 87.6 82.6
RandLoRA6 88.4 79.0 92.3 90.3 95.4 87.3 74.7 57.4 97.0 88.5 98.2 85.5 93.1 71.5 99.7 93.3 88.6 79.7 11.8 94.5 87.8 83.5
FT 87.3 78.8 92.4 88.9 95.0 88.9 74.7 50.4 96.8 88.6 98.8 85.3 93.4 67.1 99.7 93.2 88.9 77.8 11.8 94.9 87.4 82.9

0.5 shots

NoLA 89.0 82.5 98.9 96.4 99.2 94.8 76.0 96.5 99.2 93.2 99.6 92.5 95.8 73.7 99.5 94.9 87.4 92.8 18.7 97.8 88.6 88.9
VeRA256 84.0 80.1 97.3 89.7 97.7 92.0 74.8 88.2 99.0 92.2 99.4 91.7 94.7 68.4 99.5 95.1 86.9 89.9 17.6 96.0 87.5 86.7
LoRA32 89.7 82.8 99.0 96.2 99.1 94.8 75.9 96.6 99.3 93.7 99.5 93.2 95.5 72.6 98.3 95.0 88.6 93.0 19.0 97.5 90.3 89.0
RandLoRA6 89.7 83.2 98.7 97.1 99.3 95.5 75.8 97.2 99.2 93.4 99.6 93.3 95.5 75.2 99.7 94.9 87.5 92.8 19.6 97.6 89.3 89.2
FT 90.3 81.5 98.8 96.6 99.3 95.8 76.2 96.6 99.2 93.4 99.3 93.0 95.7 75.3 98.9 95.0 87.4 92.4 19.9 97.3 90.6 89.2

1.0 shots

NoLA 92.5 85.4 98.8 96.9 99.3 96.1 77.8 96.8 99.4 94.1 99.7 93.4 96.2 81.8 99.7 95.9 90.2 93.6 22.3 98.2 90.2 90.4
VeRA256 89.8 81.6 97.4 89.5 98.1 93.1 76.5 88.4 99.1 92.6 99.6 92.5 95.3 75.4 99.7 95.8 89.7 90.6 20.5 97.1 88.2 88.1
LoRA32 92.7 84.6 99.1 96.3 99.3 96.0 78.2 97.2 99.3 94.2 99.7 93.7 96.3 83.3 99.7 95.7 90.4 92.7 20.6 97.8 91.5 90.4
RandLoRA6 93.3 85.5 99.0 97.1 99.4 96.8 77.9 97.5 99.5 94.4 99.7 94.2 96.2 84.0 99.6 95.8 90.1 93.1 22.7 98.0 92.0 90.8
FT 93.4 85.5 99.4 96.8 99.3 97.0 78.4 97.4 99.2 94.0 99.6 94.1 96.3 83.9 99.7 95.8 90.1 93.1 23.8 98.0 91.8 90.8
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Method % Params BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average + ∆

Qwen2 - Zero-shot

Zero-shot 0 3.12 4.68 7.22 2.50 14.52 4.80 1.79 2.60 5.15

Qwen2 - 15k

NoLA 0.05 54.16 56.91 47.65 17.36 45.46 46.55 32.51 39.80 42.55
VeRA1024 0.06 58.78 56.64 50.10 24.95 49.80 56.52 37.80 50.40 48.12
LoRA-16 1.18 62.14 62.13 58.24 27.86 49.96 62.46 44.97 58.20 53.25
RandLoRA-10 1.18 62.14 63.49 55.32 31.16 49.96 64.27 44.97 56.60 53.49 +0.24
LoRA-32 2.33 59.94 62.13 56.55 30.27 41.99 64.39 46.42 57.00 52.34
RandLoRA-5 2.33 62.81 63.82 54.86 30.00 48.07 64.81 43.34 55.40 52.89 +0.55

Qwen2 - 170k

NoLA 0.05 55.99 52.50 55.07 23.74 50.51 55.64 38.91 46.80 47.40
VeRA1024 0.06 55.50 59.30 52.81 34.52 52.72 58.55 42.94 57.80 51.78
LoRA-16 1.18 53.39 68.12 66.33 46.46 58.72 59.97 43.77 62.20 57.37
RandLoRA-10 1.18 61.47 67.63 65.61 40.26 57.22 62.12 47.95 59.60 57.73 +0.36
LoRA-32 2.33 55.78 68.28 67.20 42.37 60.22 61.03 45.05 58.80 57.34
RandLoRA-5 2.33 63.46 65.72 66.43 42.90 56.20 61.49 47.53 59.20 57.86 +0.52

Phi3 - Zero-shot

Zero-shot 0 62.26 79.82 65.81 56.29 19.89 89.86 77.65 71.40 65.37

Phi3 - 15k

NoLA 0.005 66.24 85.15 73.49 78.29 73.95 95.33 85.15 85.20 80.35
VeRA1024 0.015 68.53 84.49 73.08 74.54 72.85 93.01 80.97 81.60 78.63
LoRA-16 0.57 69.51 85.36 75.44 80.15 75.85 95.37 86.09 86.60 81.80
RandLoRA-40 0.58 69.54 85.31 73.80 84.05 75.14 94.65 84.90 85.80 81.65 -0.15
LoRA-32 1.14 68.44 85.31 74.67 72.14 74.98 95.20 85.41 86.60 80.34
RandLoRA-20 1.16 69.20 85.42 75.33 83.98 75.77 95.50 85.92 87.60 82.33 +1.99
LoRA-64 2.28 69.88 85.75 74.97 74.45 75.30 95.54 87.12 88.00 81.37
RandLoRA-10 2.29 69.63 85.31 75.03 86.94 75.30 95.24 85.58 86.40 82.43 +1.06

Phi3 - 170k

NoLA 0.005 68.87 85.15 77.18 85.13 77.90 95.20 85.58 83.60 82.33
VeRA1024 0.015 69.53 84.53 74.52 84.08 76.82 94.51 83.68 83.54 81.40
LoRA-16 0.57 70.83 84.39 78.45 89.94 82.87 95.45 86.09 89.00 84.63
RandLoRA-40 0.58 70.86 86.67 78.81 90.07 82.00 95.12 86.26 87.60 84.67 +0.04
LoRA-32 1.14 71.23 85.96 78.92 91.77 82.95 94.61 84.81 89.40 84.96
RandLoRA-20 1.16 71.62 87.43 79.48 91.48 82.79 95.16 86.01 87.80 85.22 +0.26
LoRA-64 2.28 71.93 86.13 79.58 90.14 83.74 92.68 81.74 87.80 84.22
RandLoRA-10 2.29 71.87 86.56 79.43 90.99 82.72 95.66 85.49 87.40 85.01 +0.79

LLama3 - Zero-shot

Zero-shot 0 60.73 41.40 28.40 25.00 10.97 16.41 15.96 16.80 26.96

LLama3 - 15k

NoLA 0.004 67.58 84.49 72.31 69.60 70.56 90.49 78.75 81.20 76.87
VeRA1024 0.014 63.36 84.39 74.10 77.70 71.35 89.48 76.54 80.20 77.14
LoRA-16 0.35 73.03 86.94 75.90 90.53 77.74 90.74 80.29 86.20 82.67
RandLoRA-60 0.36 71.19 84.22 75.59 83.82 74.98 91.12 81.31 86.00 81.03 -1.64
LoRA-32 0.7 74.22 86.40 75.79 91.90 77.35 90.61 80.80 87.60 83.09
RandLoRA-30 0.7 71.65 83.79 74.56 86.85 75.61 90.78 80.03 87.20 81.31 -1.78
LoRA-64 1.4 71.77 84.17 76.25 85.14 73.80 91.46 80.80 86.20 81.20
RandLoRA-15 1.4 70.98 86.02 75.44 89.74 76.80 91.29 81.66 83.80 81.96 +0.76

LLama3 - 170k

NoLA 0.004 71.83 84.66 77.79 85.05 82.72 88.59 76.45 82.20 81.16
VeRA1024 0.014 70.55 85.69 79.27 92.14 82.64 87.33 73.38 82.20 81.65
LoRA-16 0.35 75.14 89.12 80.66 89.01 86.58 90.07 78.75 86.20 84.44
RandLoRA-60 0.35 75.26 87.98 79.63 94.66 85.64 90.03 79.44 84.40 84.62 +0.18
LoRA-32 0.7 75.08 88.85 80.25 95.42 86.19 90.28 80.29 85.60 85.24
RandLoRA-30 0.7 76.33 88.08 80.25 95.67 86.11 90.36 80.89 87.00 85.59 +0.45
LoRA-64 1.4 74.65 89.66 80.86 95.17 86.74 90.95 79.18 85.40 85.33
RandLoRA-15 1.4 72.63 87.98 81.37 95.68 87.77 91.33 80.89 89.00 85.83 +0.50

Table 15: Comparison of accuracy on commonsense reasoning datasets. We report accuracy delta
of RandLoRA with LoRA for comparable amounts of trainable parameters.
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