
A Further details for the two-step task analyses

A.1 Parameter recovery

To assess the estimability/identifiability of the model parameters, we performed a parameter recovery
analysis (Supplemental Figure 1). New data were generated from the model based on participants’
parameters (referred to as ‘generative’) and the model was re-estimated on these data. The rank
correlation between the generative and re-estimated (or ‘recovered’) parameters was greater than
0.74 (for all parameters except for the dispersion parameter, η2), indicating moderately good estima-
bility/identifiability. The rank correlation for η2 was lower (0.53), but this is expected, because its
identifiability depends on the level of α; at α = 1.0, for instance, choices do not reflect any outcome
uncertainty, making η2 unidentifiable. However, the estimability/identifiability of η2 was similar
to the other parameters (i.e. a rank correlation of 0.7) in participants with α < 0.5 (shown in red).
Correlations were all highly significant (p < 1e−10), as shown by the 95%-confidence intervals
around the regression lines.

Supplemental Figure 1: Parameter recovery analysis. (See supplemental text for details)

1



A.2 Comparison of mean-model to previous model used in two-step task

The mean-model that we used was modified from that in [1] to allow for a more direct comparison
to the risk-sensitive model. There are two small differences between our model and theirs. One
difference is that the model in [1] uses both rewards and the intermediate values from stage 2 to
estimate the values in stage 1 (equation 5). We found this to be unnecessary, as it increased (worsened)
the BIC in almost all (>95%) participants. The second difference is one of re-parameterization. The
rule that we use to update the mean values (equation 3) keeps the values between [0, 1], while the
update rule used in [1] allows them to go above 1. We made this adjustment so that the value estimate
had the semantics of a probability estimate. We found that this re-parameterization made very little
difference in model fit (average BIC of 371.5 for ours and 373.9 for theirs).

A.3 Details for the simulation shown in Figure 4

As described in the main text, choices were simulated from the CVaR-model at increasing levels of
risk sensitivity (α ∈ [1.0, 0.6, 0.3, 0.1]), in response to a predetermined set of outcomes. The model
was forced to choose option A for the first six trials and the outcomes received were [1, 1, 0, 1, 1, 1];
from trial seven onward, A always resulted in outcome 0 and B in outcome 1. The other parameters
were held constant, with learning rate λ = 0.1, η2 = 0.003, and β2nd = 30. The initial mean for the
value estimates was set to 50% and its initial variance to 0.03. Since the model was only simulated in
response to two options at a single (second-stage) state, parameters that were only relevant to the
first-stage decisions were not used (i.e. βsticky = 0, βMB = 0, βMF = 0).

2



B Three Approaches to CVaR: Dynamic Programming Equations

Gridworld MDP: The gridworld depicted in Figure 6 is treated as a finite horizon undiscounted
Markov decision process (MDP). States st correspond to locations in the gridworld and actions at to
a choice of ‘going left’ or ‘going right’. Transitions are stochastic, such that each action results in
the desired transition only some percentage of the time; otherwise, the agent transitions downward.
The probabilities of an (unlucky) downward transition for the rightward and leftward action were
0.08 and 0.04, respectively. The probability of transitioning from state st to st+1 after taking action
at is denoted by p(st+1|st, at). Three states are associated with a non-zero reward or cost: ‘Goal’,
‘Quit’ and ‘Lavapit’ with rewards/costs of [+3,−2,−15], respectively. The reward/cost function
is denoted as r(st). Visitation to any of these three states ends the episode; i.e., from them, the
agent transitions deterministically to a terminal state, which has a reward of 0, and where it remains
indefinitely. Otherwise, the episode terminates at horizon T .

Precommitted CVaR (pCVaR) The optimal policy for the precommitted approach to CVaR (or
pCVaR) was calculated using a modified version of the dynamic programming algorithm in [2]; we
adapt their algorithm to the finite horizon setting for an easier comparison with the fixed approach
(fCVaR).

Starting at time point t = T −1 and working backwards, the agent calculates a set of Q-values
Qt(st, at, αt) for all states st, actions at and risk preferences αt:

Qt(st, at, αt) = r(st) + min
ξ(st+1)∈U(αt)

∑
st+1

p(st+1|st, at)ξ(st+1)Vt+1(st+1, αtξ(st+1)) (1)

The state values Vt(st, αt) are updated by taking a maximum over Q-values,

Vt(st, αt) = max
at

Qt(st, at, αt), (2)

or are set equal to 0 at the horizon (t=T ).

These update equations differ in two notable ways from traditional dynamic programming, which
uses a risk-neutral objective. First, the transition probabilities are weighted by ξ(st+1), which are
chosen to minimize the next state’s value as much as possible, under the constraints that the individual
weights are less than 1/αt and that the distorted probabilities still sum to 1. These two conditions are
denoted by:

U(αt) :=

{
ξ : ξ(st+1) ∈ [0, 1/αt] ,

∑
st+1

p(st+1|st, at)ξ(st+1) = 1

}
(3)

Second, the value at risk preference αt at time point t (on the left-hand side of equation 1), is a function
of the next states’ values at potentially different risk-preference levels, given by αt+1 ← ξ(st+1)αt.
The first modification comes from the dual representation of CVaR as a distorted (or ξ-weighted)
expectation [3]1, and the second modification from the conditional decomposition theorem of CVaR
in [4]. The consequence of these modifications is that Vt(st, αt) equals the CVaRαt of the future sum
of rewards (i.e. the return) starting in state st and following the optimal policy from thereon. Since is
αt+1 is continuous, Vt and Qt are linearly interpolated using 21 log spaced points for αt, following
[2], and thus the values are only approximately equal to the CVaRs. Chow, et al. (2015) interpolate
αV and show that this allows them to bound interpolation error in a value-iteration approach; for our
finite time horizon simulations, we simply interpolate Vt since we are not iterating the equations until
convergence.

The optimal policy πt(at|st, αt) is calculated by taking the action associated with the maximum Q-
value in each state (i.e. as the argmax in equation 2). For each episode, agent starts at a preferred level
of risk α0 (which is set to 0.18 for the simulations in Figure 6) and chooses an action according to
π0(a0|s0, α0). However, it then needs to adjust this risk preference depending on the state transitions
(or rewards/costs) that occur, for instance, αt+1 ← ξ(st+1)αt for a particular transition involving
st+1. These weights ξ(st+1) used for these adjustments are obtained from equation 1.

1The dual representation is CVaRα[Z] = minξ∈U(α) Eξ[Z]

3



Nested CVaR (nCVaR) The optimal policy for the nested approach was calculated based on [5].
For all states st and actions at (and for a fixed, preferred risk preference ᾱ), the Q-values are
calculated as:

Qᾱ,t(st, at) = r(st) + min
ξ(st+1)∈U(ᾱ)

∑
st+1

p(st+1|st, at)ξ(st+1)Vᾱ,t+1(st+1) (4)

For each state, the values are calculated as:

Vᾱ,t(st) = max
at

Qᾱ,t(st, at) (5)

The optimal policy πᾱ,t(at|st) is again calculated by taking the actions that are associated with the
maximum Q-value in each state (i.e the argmax in equation 5).

Note that unlike for pCVaR, the values and policy are only represented and updated at a single, fixed
risk preference (ᾱ). We denote this using a subscript to emphasize the difference. Also note that the
Qt and Vt no longer correspond to the CVaR of the return, like in the pCVaR case, but rather the
nested sum of immediate rewards and future CVaR evaluations, as given in equation 4 in the main
text.

Fixed CVaR (fCVaR) Calculating the optimal policy for the fixed CVaR approach involves a
combination of the precommitted and nested approaches.

At its heart, fCVaR involves a form of distributional RL in which the distribution over Q-values is
represented using a set of CVaRs across α levels (again, using 21 possible values) rather than using
quantiles [6]. Thus, for all states st, actions at and risk preferences αt, Q-values across α levels
are updated using the same equation 1 as the precommitted approach. In terms of distributional
reinforcement learning, this corresponds to a distributional back-up.

Diverging from the pCVaR approach, however, and more like nCVaR, the (distributional) value for
each state st (still represented across multiple αt values), is set according to the action that maximizes
the Q-value for that state at a fixed, preferred level of risk (ᾱ):

Vt(st, αt) = Qt(st, a
∗
ᾱ,t, αt), (6)

where a∗ᾱ,t is chosen to maximize:

a∗ᾱ,t = arg max
a

Qt(st, a, ᾱ) (7)

This alternates between faithfully backing up the distribution and choosing an action at each time step
that greedily maximizes the CVaR of the future return at a fixed, preferred alpha level. As we discuss
in the main text, this greedy action selection can lead to time inconsistency. Thus similarly to nCVaR,
the optimal policy πᾱ,t(at|st) is only a function of state st, with the preferred risk preference ᾱ kept
constant across time (yet potentially differing across agents or simulations).

Depicting the optimal policies: Given the finite-horizon nature of the problem, the optimal policy
for each state could potentially differ across time. Furthermore for pCVaR, the optimal policy can also
differ depending on the risk-preference αt, which is adjusted after the start of the episode depending
on the transitions that occur. Therefore, we used simulations to explore how the optimal policy
unfolded across time for each agent. The agents started in state s0 (upper left hand corner) and
chose actions until they reached either the ‘Quit’, ‘Goal’, or ‘Lavapit’ state (this always occurred
before t = 10). In all of the simulations (20,000 for each agent), the action taken in each state was
the same, regardless of the time point. This was true even for the pCVaR agent, which sometimes
visited different alpha levels within a state (depending on how it got there). The actions from these
simulations were plotted in Figure 6. The optimal policies for other levels of α are further explored
in Supplemental Figure 2.

4



Supplemental Figure 2: Optimal policies at other α levels. (a) Shows the gridworld MDP (also
shown in Figure 6 in the main text). (b-d) The optimal policy is plotted as a function of α for pCVaR,
fCVaR and nCVaR for three states: (1, 1), (2, 2), (3, 3), whose locations are labeled in panel a. The
optimal policy was examined by running simulations starting in state (1, 1). The probability of taking
a rightward action in simulation is plotted (this probability was either 0 or 1, as the agents always
took the same action in each state). If a state was not visited during any of the simulations, the policy
for the agent starting in that state is plotted (e.g. for states (2, 2) and (3, 3) at low alphas, where the
agent decides to quit from the start). All three methods choose to go right towards the ‘Goal’ state at
high levels of α and left towards the ‘Quit’ state at low levels of α. The three methods differ, however,
in when they choose to make this switch. pCVaR chooses to go right towards the goal at much lower
levels of α than the other two methods in all three states. nCVaR requires the highest levels of α
before it chooses right in states (1, 1) and (2, 2), reflecting its more conservative risk evaluation of
distal threats (i.e. the lavapit). However, for state (3, 3), which is adjacent to the lavapit, it chooses to
go right at a lower α level than fCVaR (but still a higher level than pCVaR). The 21 interpolation
points used for α are shown as dots plotted on the lines.

References
[1] Claire M Gillan, Michal Kosinski, Robert Whelan, Elizabeth A Phelps, and Nathaniel D Daw.

Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. Elife,
5:e11305, 2016.

[2] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015.

[3] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk.
Mathematical finance, 9(3):203–228, 1999.

[4] Georg Ch Pflug and Alois Pichler. Time-consistent decisions and temporal decomposition of
coherent risk functionals. Mathematics of Operations Research, 41(2):682–699, 2016.

[5] Andrzej Ruszczyński. Risk-averse dynamic programming for markov decision processes. Mathe-
matical programming, 125(2):235–261, 2010.

[6] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

5



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] As our

work investigates the psychology of decision making under risk, we do not anticipate it
to have negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] Data from
the two-step task was already made publicly available at (https://osf.io/usdgt/) by the
authors of the original study [1]. The code used for the analyses/simulations will be
made available upon request.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Critical details for the analyses and simulations were provided in
the text. Additional information will be provided in the supplemental materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] All analyses and simulations were
run on a single, personal machine with limited compute.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] The data was made publicly available

without license at https://osf.io/usdgt/
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Since we are reanalyzing data from [1] we did not discuss this.
Details about the consent process can be found in the original work.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Details about the data collection process can be found in the original
work [1].

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] See previous answer.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] See previous answer.

6


	Further details for the two-step task analyses
	Parameter recovery
	Comparison of mean-model to previous model used in two-step task
	Details for the simulation shown in Figure 4

	Three Approaches to CVaR: Dynamic Programming Equations

