
Published as a conference paper at ICLR 2023

A ENVIRONMENTS

This section introduces Melting Pot in-depth, including substrates and evaluation scenarios.

A.1 GENERAL SETTINGS

obs

Agents
CNN

CNN

GRU

MLP

𝜋!"

+ features

MLP

H×W×C
H:	Height
W: Width
C: Channel

MLP

Figure 11: The green box to the lower left shows the agent’s observation.

Melting Pot (Leibo et al., 2021) is a suite of testbeds for MARL evaluation. It proposes a novel
evaluation pipeline for evaluating the MARL method in various domains. That is, all MARL agents
are trained in the substrate; during evaluation, some agents are selected as the focal agents (the agents
to be evaluated), and the rest agents become the background agents (pretrained policies of MARL
models will be plugged in); the evaluation scenarios share the same physical properties with the
substrates. Melting Pot environments possess many properties, such as temporal coordination and
free riding. MARL agent performing well in these environments means its behaviors demonstrate
these properties. In each substrate, episodes last 1000 or 2000 steps. The agents have a partial
observability window of 11 × 11 sprites. The agent can observe 9 rows in front of itself, 1 row
behind, and 5 columns to either side. Sprites are 8× 8 pixels. Thus, in RGB pixels, the size of each
observation is 88× 88× 3. All agents use RGB pixel representations as their inputs. In Figure 11,
the agent’s observation is shown in the green box to the lower left of the state (i.e., the whole image).
The agent is in the lower middle of the observation. The neural network architecture of the agent’s
policy is shown on the left. We introduce the neural network architecture design in Appx C, MARL
training and hyperparameters in Appx D.

Figure 12: Melting Pot environments.

A.2 SUBSTRATES AND EVALUATION SCENARIOS

We introduce substrates and evaluation scenarios used in the experiments. In all substrates and sce-
narios, agents’ movement actions are: forward, backward, strafe left, strafe right,
turn left, turn right. Unless otherwise stated, each episode lasts 1000 steps. We show the
environments in Fig. 12, for readers’ convenience.

Chicken Game. In this environment, there are 8 agents in the substrate. Agents move around the
environments2 and collect resources of 2 different colors. Each agent carries an inventory ρ = (ρ1, ρ2)
with the count of resources picked up since the last respawn. Due to partial observability, agents

2There are two categories of environments: substrates and evaluation scenarios.

16

Published as a conference paper at ICLR 2023

can only observe their inventory3. The more resources of a given type an agent picks up, the more
committed the agent becomes to the pure strategy corresponding to that resource4. The agent can zap
the other agent via its zapping beam for interaction. When an interaction occurs, a traditional matrix
game is started. Here, in this environment, it is a Chicken Game (Sugden, 2005) where both agents
trying to exploit the other leads to the worst payoff, i.e.rewards, for both. Gathering red resources
makes the agent’s strategy towards committing ‘hawk’ while collecting green resources pushes it
toward playing ‘dove’. The payoff matrix for row and column players is:

Φrow = ΦT
col =

[
3 2
5 0

]
.

Chicken Game (CG) 1. The task and the payoff matrix in this scenario are the same as in Chicken
Game. In this scenario, one focal agent is joining seven background agents. Unlike the focal agent
that can play any strategy, the background agents were pretrained with pseudo rewards to play ‘dove’.
The best strategy for the focal agent is to play ‘hawk’.

Chicken Game (CG) 2. The task and the payoff matrix in this scenario are the same as in Chicken
Game. In this scenario, one focal agent joins seven background agents. The background agents
were trained with alongside pure hawk and dove agents but were not given any non-standard pseudo
rewards. They learned to play hawk to defect other agents who are collecting dove resources during
the interaction.

Chicken Game (CG) 3. The task and the payoff matrix in this scenario are the same as in Chicken
Game. In this scenario, two focal agents join five background agents. The background agents play
dove unless and until they are defected on by a partner (i.e., their partner chooses hawk). Subsequently,
they will play hawk in each encounter for the remainder of the episode.

Stag Hunt. Similar to Chicken Game, there are 8 agents in this environment. Each agent collects
resources that represent ‘hare’ (red) or ‘stag’ (green) and compares inventories in an interaction, i.e.,
encounter. The results of solving the encounter are the same as the classic Stag Hunt matrix game.
In this environment, agents are facing tension between the reward for the team and the risk for the
individual. The matrix for the interaction is:

Φrow = ΦT
col =

[
4 0
2 2

]
.

Stag Hunt (SH) 1. In this environment, one agent interacts with seven pretrained agents. All
background agents were trained to play the ‘stag’ strategy during the interaction. The optimal policy
for the focal agent is also to play ‘stag’.

Stag Hunt (SH) 2. In this environment, one agent interacts with seven pretrained agents. All
background agents were trained to play the ‘hare’ strategy during the interaction. The optimal policy
for the focal agent is also to play ‘hare’.

Stag Hunt (SH) 3. In this environment, two agent interacts with six pretrained agents. All background
agents were trained to be reciprocators. They play stag. They are triggered to paly hare when their
interaction partners play hare for the remainder of the episode.

Clean Up. There are seven agents in the environment. Agents are rewarded (+1) for collecting apples.
In the environment, there are an orchard and a river. Agents should clean the river frequently to
reduce pollution for the irrigation of the orchard. Apples in the orchard grow at a rate inversely related
to the river’s cleanliness. When the cleanliness rate reaches a certain threshold, apples stop growing.
Agents can take clean action to clean a small amount of pollution from the river. However, such
action only works in a small region around the agent in the river. So, agents should move to clean the
river without any rewards. Consequently, agents should maintain the public good of orchard regrowth
by cleaning the river. This creates a tension between the short-term individual incentive to maximize
agents’ reward by staying in the orchard and the long-term group interest in a clean river.

Clean Up (CU) 1. In this evaluation scenario, three focal agents join four background agents. All
background agents have been trained to behave altruistically, i.e., always cleaning the river without

3It also applies to other environments where agents have inventories
4It also applies for other environments where matrix games should be resolved when two-agent interactions

occur.

17

Published as a conference paper at ICLR 2023

consuming apples. Thus, the optimal policy for the focal agent is to collect as many apples as possible
without moving out of the orchard to clean the river.

Clean Up (CU) 2. In this evaluation scenario, three focal agents join four background agents. All
background agents start out cleaning in the first 250 steps. They alternate cleaning with eating every
250 steps. Focal agents should learn to take turns with the background agents.

Pure Coordination. In this environment, eight agents cannot be identified as individuals because all
agents look the same. Agents gather resources of three different colors. So, the size of the agent’s
inventory is 3. To maximize the reward, all agents should collect the same colored resource when the
encounter occurs. The matrix for the interaction is:

Φrow = ΦT
col =

[
1 0 0
0 1 0
0 0 1

]
.

Pure Coordination (PC) 1. In this evaluation scenario, there are seven focal agents and one
background agent. The background agent has been trained to target one particular resource out of
three colors of resources. Focal agents should observe other agents to see the resources other agents
are collecting and then decide the right color to pick. This scenario aims to evaluate that agents’
coordination is not disrupted by the presence of unfamiliar other agents who has a special preference
for one particular colored resource.

Pure Coordination (PC) 2. In this evaluation scenario, there is one focal agents and seven back-
ground agent. The background agents targets resource B.

Pure Coordination (PC) 3. In this evaluation scenario, there is one focal agents and seven back-
ground agent. The background agents targets resource C.

Prisoners’ Dilemma. Eight agents collect colored resources that represent ‘defect’ (red) or ‘cooperate’
(green). Agents compare their inventories in an encounter where a classic Prisoner’s Dilemma matrix
game is resolved. Agents face tension between the reward for the group and the reward for the
individual. The matrix for the interaction is:

Φrow = ΦT
col =

[
3 0
4 1

]
.

Prisoners Dilemma (PD) 1. In this evaluation scenario, one focal agent joins seven background
agents. All background agents will play cooperative strategies, i.e., collecting ‘cooperate’ resources
and rarely collecting ‘defect’). The optimal policy for the focal agent is to identify such a pattern and
then collect ‘defect’ resources.

Prisoners Dilemma (PD) 2. In this evaluation scenario, one focal agent joins seven background
agents. The background agents are conditional cooperators. They collects ‘cooperate’ resources and
cooperate with interaction partners. They stop cooperative strategies when they have been defected
by their partners twice. After that, they collect ‘defect’ resources and strike back for the remainder of
the episode.

Prisoners Dilemma (PD) 3. In this evaluation scenario, one focal agent joins seven background
agents. The background agents are conditional cooperators. They collects ‘cooperate’ resources and
cooperate with interaction partners. They stop cooperative strategies when they have been defected
by their partners twice. After that, they collect ‘defect’ resources and strike back for the remainder of
the episode. The optimal strategy for the focal agents is to cooperate when the episode nearly ends
and then defect only once as there is no time for the background agents to revenge.

Rational Coordination. The environment setting is the same as Pure Coordination, except that
different colored resources are of different values. Agents should find the optimal color to maximize
the group reward. The matrix for the interaction is:

Φrow = ΦT
col =

[
1 0 0
0 2 0
0 2 3

]
.

Rational Coordination (RC) 1. In this evaluation scenario, there are seven focal agents and one
background agent. The background agent has been trained to target one particular resource out of

18

Published as a conference paper at ICLR 2023

three colors of resources. This scenario is similar to Pure Coordination 1 since it aims to evaluate
that agents’ coordination is not disrupted by the presence of unfamiliar other agents who has a special
preference for one particular colored resource. However, this scenario is more challenging than Pure
Coordination 1. While focal agents’ choices are better than miscoordination, some choices are better
than coordinating for the focal agents.

Rational Coordination (RC) 2. In this evaluation scenario, there are seven focal agents and one
background agent. The background agent has been trained to target the resource A. Because both
resource B and C are better than resource A for every agent, it is not rational for all agents to
coordinate on resource A.

Rational Coordination (RC) 3. In this evaluation scenario, there are four focal agents and four
background agents. The background agent has been trained to target different resources, making
them uncoordinated. In this case, it is rational that the focal agents should learn to observe partners’
preferences and interact with familiar individuals who collect resources C.

19

Published as a conference paper at ICLR 2023

B BASELINES

We introduce baselines trained and evaluated in the experiment in detail. Baselines are MAPPO (Yu
et al., 2021), MAA2C (Papoudakis et al., 2021), OPRE (Vezhnevets et al., 2020), RandNet (Lee et al.,
2019) and HFSP (Heinrich et al., 2015; Baker et al., 2019).

B.1 MAPPO

MAAPO is an extension of PPO (Schulman et al., 2017) for multi-agent RL. Following the
CTDE (Oliehoek et al., 2008) training and execution paradigm, agents take actions independently
during execution and agents’ policies are trained via sharing information (e.g.,) with other agents.
In MAPPO, there are N policies {πi}Ni=1 for each agent i. A central critic is maintained by feed-
ing all agents’ observations and actions {oti, uti}Ni=1. Although the global state contains all agents’
observations, it contains redundant information that deteriorates the central critic learning with TD-
learning (Sutton, 1984). Note that all baselines that have a central critic takes all agents’ observations
and actions {oti, uti}Ni=1 as the input.

B.2 MAA2C

MAA2C is a multi-agent RL variant of A2C (Mnih et al., 2016). MAA2C adopts the same training
and execution paradigm used in MAPPO. Similar to A2C, TD error is used as the advantage in
MAA2C for training agents’ policies via maximizing policy gradient loss.

B.3 OPRE

We build OPRE (Vezhnevets et al., 2020) on top of MAPPO. The key idea behind OPRE is to re-use
the same latent space to factorise the policy via creating a hierarchical policy structure:

πi(ui|o≤ti , o′) =
∑
z

q(z|o′)η(ui|o≤ti , z)

where o′ is {oti, uti}Ni=1 and η(ui|o≤ti , z) is a mixture component of the policy, i.e., an option. o≤ti
can be represented via recurrent neural networks (Hochreiter & Schmidhuber, 1997; Cho et al., 2014).
Note that the ‘option’ here differs from the option in hierarchical RL (Sutton et al., 1999; Bacon
et al., 2017). In OPRE, the option has no explicit probability distribution of entering an option and no
explicit probability distribution of exiting the current option. The behavior policy is defined as:

µi(o
≤t
i) =

∑
z

p(z|o′)η(ui|o≤ti , z)

Then p(z|o′) can be trained via KL(q||p) together with the policy and the central critic in an end-to-
end manner. We use the default hyperparameters used in OPRE in our experiments. The number of
options is 16.

B.4 RANDNET

Lee et al. (2019) proposed RandNet for improving the generalization of RL in unseen environments,
especially environments with new textures and layouts. RandNet utilizes a single-layer convolutional
neural network (CNN) as a random network, where its output has the same dimension with the input.
To reinitialize the parameters of the random network, RandNet utilizes the following mixture of
distributions: P (ϕ) = αI(ϕ = I)+(1−α)N

(
0;

√
2

nin+nout

)
where I is an identity kernel, α ∈ [0, 1]

is a positive constant, N stands for the normal distribution. nin and nout are the number of input
and output channels, respectively. We use RandNet in the policy network and the critic network of
MAPPO. We use the default hyperparameters used in RandNet in our experiments.

B.5 HFSP

Self-play (Brown, 1951; Heinrich et al., 2015; Silver et al., 2018; Baker et al., 2019) has been studied
for obtaining equilibria via creating fictitious plays by sampling agents’ past policies. HFSP is a

20

Published as a conference paper at ICLR 2023

heuristic fictitious self-play method. HFSP uses the MARL framework of MAPPO. Like RPM, it
maintains a memory to save all the policies after each training step. HFSP agents have a probability
of 0.7 to sample the lasted policies and a probability of 0.3 to sample previous policies. RPM can be
considered as a ranked self-play by sampling policies with a hierarchy.

21

Published as a conference paper at ICLR 2023

C ARCHITECTURES

We first introduce the neural network architecture of the policy, the critic and the training pipeline for
all methods, and the hyperparameters used in the neural network architectures. RPM and all baselines
use the same network architecture.

CNN

CNN

GRU

MLP

𝜋!

features

MLP

CNN

CNN

MLP

𝑉

features

MLP

…
𝑜! 𝑜" 𝑜#

Flatten

𝑢$ $%!# ⨁Concat Concat

𝑜$
(a) Actor network (b) Critic network

MLP

Figure 13: The networks of the policy (left) and the critic (right).

Actor Network. The actor network consists of a convolutional neural network (CNN) with two
layers. The two CNN layers use the ReLU activation function. The first and the second layer have 16
and 32 output channels, 8 and 4 kernel shapes and 8 and 1 strides, respectively. An MLP follows the
two CNN layers with two layers with 64 neurons each. The MLP uses the ReLU action function. It is
then followed by a GRU (Cho et al., 2014) with 128 units. The input of the GRU is the concatenation
of the output of the MLP and the features (such as the agent’s position, orientation and inventory).
The output of the GRU is fed into the MLP, and it outputs the policy πi for agent i.

Critic Network. The critic network is shared by all agents. The critic network consists of a CNN
with two layers. The two CNN layers use the ReLU activation function. The first and the second
layer have 16 and 32 output channels, 8 and 4 kernel shapes and 8 and 1 strides, respectively. The
CNN is then followed by a concatenation of all agents’ actions and features (such as agent’s position,
orientation and inventory). The concatenation is then fed into an MLP with two layers with 64
neurons. The MLP uses the ReLU action function. The MLP outputs the value, a vector with the
dimension of N . We take all agents’ observations as a batch and feed them into the CNN. We then
flatten the CNN’s output and feed it with agents’ actions and features as inputs to the MLP network
to get the value vector for all agents.

Training. Our training framework is a distributed framework with 30 CPU cores to collect experiences
and 1 GPU for the learner to learn policies, similar to the framework used in IMPALA (Espeholt
et al., 2018). To improve the efficiency and save memory, we use parameter sharing (Rashid et al.,
2018; Wang et al., 2021a; Yu et al., 2021), i.e., all agents share a policy network. We adopt the CTDE
framework to train the policies and the critic.

22

Published as a conference paper at ICLR 2023

D TRAINING SETTINGS

We implement our method with Python and PyTorch. The learner is implemented with EPyMARL (Pa-
poudakis et al., 2021) and the actors that collect experiments are implemented with Ray (Moritz
et al., 2018). We train agents in Melting Pot substrates for 200 million frames with 3 random seeds
for RPM and 4 seeds for baselines. We randomly sample policies from RPM. The discount factor
γ = 0.99 and we follow the default hyper-parameters used in the original papers of all methods in
our research. We carry out experiments on NVIDIA A100 Tensor Core GPU. We resort to mean-std
values as our performance evaluation measurement. We use Adam as our optimizer. We list some
important hyper-parameters in Table. 4.

Table 4: Hyper-parameters

hyper-parameter Value
Optimizer Adam

Learning rate 1e-4
Adam betas (0.9, 0.999)

Adam epsilon 1e-8
Adam weight decay 0
Gradient norm clip 10

Batch size 60
Replay buffer size 600

γ 0.99
Evaluation interval 1,000

Target update interval 200

p 0.5

Table 5: The value of ψ

Melting Pot Substrate The value of ψ
Stag Hunt 1

Pure Coordination 0.01
Clean Up 1

Prisoners’ Dilemma 0.02
Rational Coordination 0.2

Chicken Game 1

23

Published as a conference paper at ICLR 2023

E RESULTS

We depict the episode return within the substrate. During training, the MARL methods are evaluated
in the substrate. Fig. 14 demonstrates that despite the environments being distinct, RPM also
demonstrates leading performance. Once the agents in the substrate achieve a satisfactory episode
return, the trained policy will be saved at the appropriate rank. In turn, it improves the performance
of RPM in the evaluation scenario by collecting diverse data on multi-agent interactions.

0 50M 100M 150M 200M

0.0

2.5

5.0

7.5

Ev
al

 R
et

ur
n

M
ea

n

Chicken Game

0 50M 100M 150M 200M
0

2

4

6

8

Stag Hunt

0 50M 100M 150M 200M
0

20

40

60
Clean Up

0 50M 100M 150M 200M
Training Steps

0.0

0.2

0.4

0.6

Ev
al

 R
et

ur
n

M
ea

n

Pure Coordination

0 50M 100M 150M 200M
Training Steps

0

2

4

6

Prisoners Dilemma

0 50M 100M 150M 200M
Training Steps

0.0

0.5

1.0

1.5

2.0

2.5
Rational Coordianation

RPM (ours) MAPPO MAA2C RandNet OPRE HFSP

Figure 14: Episode return in substrates.

24

Published as a conference paper at ICLR 2023

F EXTENDED RELATED WORKS

Recent advances in MARL (Yang & Wang, 2020; Zhang et al., 2021) have demonstrated its success
in various complex multi-agent domains, including multi-agent coordination (Lowe et al., 2017;
Rashid et al., 2018; Wang et al., 2021b), real-time strategy (RTS) games (Jaderberg et al., 2019;
Berner et al., 2019; Vinyals et al., 2019), social dilemma (Leibo et al., 2017; Wang et al., 2018;
Jaques et al., 2019; Vezhnevets et al., 2020), multi-agent communication (Foerster et al., 2016; Yuan
et al., 2022), asynchronous multi-agent learning (Amato et al., 2019; Qiu et al., 2022), open-ended
environment (Stooke et al., 2021), autonomous systems (Hüttenrauch et al., 2017; Peng et al., 2021)
and game theory equilibrium solving (Lanctot et al., 2017; Perolat et al., 2022). Despite strides made
in MARL, training generalizable behaviors in MARL is yet to be investigated.

Generalization in RL (Packer et al., 2018; Song et al., 2019; Ghosh et al., 2021; Lyle et al., 2022)
has achieved much progress in domain adaptation (Higgins et al., 2017) and procedurally generated
environments (Lee et al., 2019; Igl et al., 2020; Zha et al., 2020) in recent years. However, there are few
works of generalization in MARL domains (Carion et al., 2019; Vezhnevets et al., 2020; Mahajan et al.,
2022; McKee et al., 2022).Recently, Vezhnevets et al. (2020) propose a hierarchical MARL method
for agents to play against opponents it hasn’t seen during training. However, the evaluation scenarios
are only limited to simple competitive scenarios. Mahajan et al. (2022) investigated the generalization
in MARL empirically and proposed theoretical findings based on successor features (Dayan, 1993;
Barreto et al., 2018). However, no technique to achieve generalization in MARL has been proposed
in (Mahajan et al., 2022).

Several recent studies (Strouse et al., 2021; Lupu et al., 2021; Tang et al., 2021) have used population-
based training to enhance multi-agent interaction by improving multi-agent diversity. Fictitious
Co-Play (FCP) proposed in (Strouse et al., 2021) aims to learn policies for a two-agent cooperative
game. It is a two-stage method. In the first stage, n agents are trained independently with different
random seeds via self-play. It needs n seeds and much more extra computation. In the second stage, an
FCP agent is trained by interacting with the trained policies of n agents. Another extra run of training
is also needed. However, our method, RPM, is an end-to-end training method for social dilemmas,
competitive, cooperative and even mixed environments with more than two agents. It needs only one
run training (i.e., end-to-end one step) by utilizing fictitious self-play to sample n policies for each
agent without maintaining n populations of agents. Lupu et al. (2021) considered the problem of zero-
shot coordination and proposed a method to achieve diversity via population-based training (PBT)
method. In contrast, our work aims to achieve the generalization of coordination, competition and
social dilemmas in multi-agent systems via our novel ranked policy memory method. The proposed
method in (Lupu et al., 2021) cannot be applied to competition and social dilemma scenarios. Besides
that, PBT needs much more computation, which could be computationally expensive for large-scale
multi-agent scenarios. Lupu et al. (2021) is also pointed out that “self-play (SP) agents control their
own trajectory distribution during training, each policy typically only performs well on this exact
distribution." We believe that is the key issue of the self-play method. The issue can be alleviated by
introducing ranks, and each agent loads its previous policy for multi-agent self-play. The RPG (Tang
et al., 2021) method is a population-based training method without self-play. It is highly dependent
on the randomized reward function. For simple grid world scenarios in (Tang et al., 2021), conducting
randomized reward function perturbations is not challenging. However, it is non-trivial to find proper
reward function perturbations for complex scenarios.

Ad-hoc team building (Stone & Kraus, 2010; Gu et al., 2021) models the multi-agent problem as a
single-agent learning task. In ad-hoc team building, one ad-hoc agent is trained by interacting with
agents that have fixed pretrained policies and the non-stationarity issue is not severe. However, in
our formulation, non-stationarity is the main obstacle to MARL training. In addition, there is only
one ad-hoc agent evaluated by interacting agents that are unseen during training while there can be
more than one focal agent in our formulation as defined in Definition 2, thus making our formulation
general and challenging. There has been a growing interest in applying self-play to solve complex
games (Heinrich et al., 2015; Silver et al., 2018; Hernandez et al., 2019; Baker et al., 2019); however,
its value in enhancing the generalization of MARL agents has yet to be examined.

Meta-learning in MARL (Al-Shedivat et al., 2018; Kim et al., 2021) aims to address the non-
stationarity issue in MARL, a well-known issue that has been extensively studied. To address the
issue, the two works adopted the learning-to-learn framework. Typically, Al-Shedivat et al. (2018)

25

Published as a conference paper at ICLR 2023

considers the problem of continuous adaptation in non-stationary environments where agents have
few-shot interactions, i.e., the agent must learn from only a limited amount of experience that it can
collect before its environment changes. The MAML framework was used to address the issue. Kim
et al. (2021) proposed a novel meta-multiagent policy gradient theorem that directly accounts for
the non-stationary policy dynamics inherent to multiagent learning settings. The proposed meta-
multiagent policy gradient theorem explicitly models the learning procedure of the other agent (peer
learning) in two-agent settings via considering the sequential dependence of the future parameters
of other agents on the meta-agent i’s parameter. While the previous work (Al-Shedivat et al., 2018)
ignored it. However, it would be difficult to train 3+ meta-agents simultaneously in complex scenarios
due to the infinite recursion problem associated with the meta-learning framework in (Kim et al.,
2021). The two works consider two-agent settings. However, solving the non-stationarity issue in
scenarios where there are more than two agents is more challenging than in two-agent settings. The
performance of the two works in these scenarios is yet to be investigated. Furthermore, adapting the
framework of meta-learning in MARL to improve the generalization in MARL is non-trivial.

26

