
A POLTER and the State-Visitation Entropy497

To gain further insights into POLTER, we conduct an experiment following Hazan et al. [2019]. We498

discretize the state space of the Walker environment and compute the state-visitation entropy during499

reward-free pretraining. In Table 1, we see that the entropy of the distribution of POLTER regularized500

algorithms is lower than that of their counterpart. This effect is most pronounced in data-based501

algorithms, such as ProtoRL and APT, where the performance is also improved the most (see Table 3).502

Table 1: State-visitation entropy of the evaluated URL algorithm categories in the Walker domain
during pretraining. Averaged over 10 seeds with 50 k states each at pretraining steps 100 k, 500 k,
1M and 2M.

POLTER Data Knowledge Competence

✘ 0.2772± 0.0188 0.2863± 0.0036 0.2540± 0.0429
✔ 0.2545± 0.0493 0.2848± 0.0054 0.2511± 0.0422

Knowledge-based algorithms also benefit from the regularization but have a slightly reduced entropy.503

Because competence-based algorithms already average over a set of skills found during pretraining,504

the effect of POLTER is the smallest.505

These results imply that POLTER does not lead to a better exploration of the state space. Instead,506

its performance gains are the result of an improved prior as indicated by the reduced KL-divergence507

between the policy and the optimal pretraining policy on PointMass (Section 3.2). This experiment508

showed that a good exploration of the state-space is required but not sufficient to achieve good509

performance with URL algorithms.510

B Deep Deterministic Policy Gradient511

DDPG Lillicrap et al. [2016] is an off-policy actor-critic algorithm that optimizes a state-action value512

function Qϕ and uses it to train a policy network µθ. The state-action value function is trained by513

minimizing the loss514

Lcritic(Qϕ) = E
(st,at,rt,st+1,dt)∼D

[(
Qϕ(st, at)−

(
rt + γ(1− dt)Qϕtarg(st+1, µθtarg(st+1)

))2]
(4)

using samples from a replay buffer D and the policy is trained by maximizing515

Lactor(µθ) = E
st∼D

[Qϕ(st, µθ(st))] . (5)

In Equation (3), the URL algorithms loss LURL corresponds to the actor loss Lactor of the DDPG agent.516

C Environments in the Unsupervised Reinforcement Learning Benchmark517

The Unsupervised Reinforcement Learning Benchmark Laskin et al. [2021] contains three domains518

with the topics of locomotion and manipulation. Walker, Quadruped and Jaco, are used to explore519

the effects of different URL algorithms. It has a specific training and evaluation protocol which520

we also follow in this work. The Walker domain contains a planar walker constrained to a 2D521

vertical plane, with an 18-dimensional observation space and a 6-dimensional action space with three522

actuators for each leg. The associated tasks are stand, walk, run and flip. The walker domain provides523

a challenging start for the agent since it needs to learn balancing and locomotion skills to be able to524

adapt to the given tasks. The next domain is Quadruped, which expands to the 3D space. It has a525

much larger state space of 56 dimensions and a 12-dimensional action space with three actuators for526

each leg. The tasks in this environment are stand, walk, jump and run. The last environment used is527

the Jaco Arm, which is a robotic arm with 6-DOF and a three-finger gripper. This domain is very528

different from the other two, as its setting is manipulation and not locomotion. The tasks are Reach529

top left, Reach top right, Reach bottom left and Reach bottom right.530

14



D Hyperparameters and Resources531

POLTER Hyperparameters During pretraining we construct the mixture ensemble policy π̃ with532

k = 7 members at specific time steps TE . For adding each member we choose the ensemble snapshot533

time steps TE = {25 k, 50 k, 100 k, 200 k, 400 k, 800 k, 1.6M}. The steps were chosen according534

to initial experiments of applying RND in the Quadruped domain, where there are large changes of535

the intrinsic reward at the beginning, which become progressively smaller over time. We set the536

regularization strength α = 1 and use the same hyperparameters for each of the three domains unless537

specified otherwise.538

Baseline Hyperparameters The hyperparameters for our baseline algorithms follow Laskin et al.539

[2021] and Laskin et al. [2022]. The hyperparameters for the DDPG baseline agent are described in540

Table 2.541

Table 2: Hyperparameters for the DDPG algorithm.

Hyperparameter Value

Replay buffer capacity 1× 106

Action repeat 1
Seed frames 4000
n-step returns 3
Batch size 1024
Discount factor γ 0.99
Optimizer Adam
Learning rate 1× 10−4

Agent update frequency 2
Critic target EMA rate 0.01
Feature size 1024
Hidden size 1024
Exploration noise std clip 0.3
Exploration noise std value 0.2
Pretraining frames 2× 106

Finetuning frames 1× 105

Compute Resources All experiments were run on our internal compute cluster on NVIDIA RTX542

1080 Ti and NVIDIA RTX 2080 Ti GPUs and had 64GB of RAM and 10 CPU cores. In total, we543

trained over 12 000 models and performed ≈3 500 200 000 environment steps.544

E Detailed Results on Unsupervised Reinforcement Learning Benchmark545

In this section we provide additional results for our experiments on Unsupervised Reinforcement546

Learning Benchmark. In the supplementary we provide the raw scores. The statistics comparing547

URL algorithms with and without POLTER aggregated for finetuning on 12 tasks across 10 seeds548

can be found in Table 3. In addition we show aggregate statistics of the absolute improvement in549

expert performance in Figure 8 and the performance profiles [Agarwal et al., 2021] per URL algorithm550

category in Figure 9. As before, we see a large improvement for data- and knowledge-based algorithms551

and small or negative for competence-based algorithms. The improvement sometimes varies strongly552

across seeds and tasks. Also, we show the normalized return after finetuning from different pretraining553

snapshots for each domain and URL category in Figure 10. Across the Jaco domain, URL algorithms554

with and without POLTER mostly deteriorate with an increasing number of pretraining steps. Each555

category shows a different trend on each domain. Interestingly, the competence-based algorithms556

SMM and DIAYN fail during pretraining in the Jaco domain. In Figure 11 we see the normalized return557

over finetuning steps. POLTER is mostly on par or speeds up in comparison to the URL algorithm558

without POLTER. In total, most algorithms do not converge yet after 100 k steps.559

15



Figure 8: Aggregate statistics of the absolute improvement with POLTER per URL category.

Table 3: Raw aggregate statistics following Agarwal et al. [2021] of evaluated URL algorithms with
and without POLTER regularization. The results marked with POLTER* were obtained by tuning the
regularization strength to the task domain of locomotion (Walker and Quadruped) and manipulation
(Jaco).

IQM ↑ Mean ↑ Median ↑ Optimality
Gap ↓

POLTER IQM
Improvement

Algorithm

ProtoRL 0.56 0.55 0.52 0.45
ProtoRL+POLTER 0.77 0.71 0.65 0.29 +40%
ProtoRL+POLTER* 0.79 0.76 0.80 0.24 +41%
APT 0.59 0.61 0.56 0.39
APT+POLTER 0.69 0.68 0.66 0.32 +17%

RND 0.70 0.71 0.67 0.30
RND+POLTER 0.77 0.75 0.74 0.26 +10%
RND+POLTER* 0.77 0.76 0.71 0.24 +10%
ICM 0.54 0.52 0.59 0.48
ICM+POLTER 0.63 0.60 0.65 0.40 +17%
Disagreement 0.68 0.69 0.66 0.31
Disagreement+POLTER 0.69 0.70 0.69 0.31 +1%

CIC 0.78 0.76 0.74 0.24
CIC+POLTER 0.76 0.74 0.77 0.26 -2%
CIC+POLTER* 0.84 0.81 0.86 0.20 +7%
DIAYN 0.36 0.39 0.42 0.61
DIAYN+POLTER 0.39 0.42 0.42 0.58 +8%
SMM 0.36 0.42 0.30 0.58
SMM+POLTER 0.36 0.41 0.30 0.59 ± 0%
APS 0.56 0.58 0.55 0.42
APS+POLTER 0.52 0.53 0.54 0.47 -7%

DDPG 0.55 0.54 0.56 0.46

16



Figure 9: Performance profiles after finetuning of the different algorithms averaged over 10 seeds
where the shaded region indicates the standard error. Variants without POLTER are dashed.

Figure 10: Finetuning from different pretraining snapshots of data-, knowledge- and competence-
based algorithms. The error bars indicate the standard error of the mean.

17



Figure 11: Finetuning curves of data-, knowledge- and competence-based algorithms after pretraining
for 2M steps. The shaded area indicates the standard error.

18



F Additional Analysis of PointMass560

Figure 12a and Figure 12b complement the figures Figure 2a and Figure 2b in the main text. They561

provide further evidence that the POLTER regularized policy is closer to the optimal prior through-562

out the whole pretraining process and demonstrate the improvement in sample-efficiency during563

finetuning.564

In Figure 13a, we can see the state distribution changing during pretraining with and without POLTER.565

With POLTER, the state space coverage is less and the trajectories seem more ordered. RND without566

POLTER also seems to visit the edges often at the end. When using the POLTER regularization, we567

can see that each pretraining checkpoint is visiting different states, as indicated by the visibility of568

the previous checkpoint’s state visitations. When not using POLTER we can see that the visitations569

overlap each other. Figures 13b and 13c show the discretized position and speed the agent explores570

over the course of pretraining. Especially the discretized speed (Figure 13c) demonstrates the tradeoff571

between dampening the exploration with POLTER and finding better prior policies, because with572

POLTER less states are frequented and the states are less extreme.573

(a) Pretraining
(b) Finetuning

Figure 12: (a) Average KL-divergence of RND (dashed) and RND+POLTER (solid) between the pre-
training policy π(s0) and the optimal pretraining policy π∗

T (s0) in the PointMass domain during
reward-free pretraining for 2M steps. Each policy is evaluated every 100 k steps on 20 initial states
over 10 seeds. The black dots indicate the steps a snapshot is added to the ensemble. (b) Return
during finetuning after 200 k pretraining steps, where the target is placed at a fixed random position
for each of the 10 seeds. We also provide a DDPG baseline without pretraining and RND+POLTER*
using the optimal policy instead of the ensemble. The shaded area indicates the standard error.

19



(a) State distribution ρ(s) of several checkpoints.

(b) Discretized state histogram of the positions. If you look closely, you can see that the
edges of the 2D plane are very often visited. This is due to policies always applying the
same force and thus reaching the edge of the 2D plane.

(c) Discretized state histogram of the speeds. Note that the prominent horizontal and
vertical lines result from moving at the edges and being stuck at the corners of the 2D
plane.

Figure 13: State distribution and histogram of RND (always left column) and RND+POLTER (right
column) during pretraining on the PointMass enviroment.

20


	Introduction
	Preliminaries
	Notation
	Related Work

	Method
	POLTER: Policy Trajectory Ensemble Regularization
	Demonstration on PointMass

	Experiments
	Results
	Limitations and Future Work
	Conclusion
	POLTER and the State-Visitation Entropy
	Deep Deterministic Policy Gradient
	Environments in the Unsupervised Reinforcement Learning Benchmark
	Hyperparameters and Resources
	Detailed Results on Unsupervised Reinforcement Learning Benchmark
	Additional Analysis of PointMass

