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B NeurIPS paper checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] The experiments in the paper do
not require a substantial amount of computer power.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

C Geodesics are uniquely defined by an initial velocity and a point on the
manifold.

Although this is a standard result in geometry, we state the proof here for completeness. LetM be a
manifold and γ : I →M be a geodesic satisfying γ(t0) = p, γ̇(t0) = V , where p ∈M, V ∈ TpM
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and I ⊂ R. TpM is the tangent bundle ofM. Let us choose coordinates (xi) on a neighborhood U
of p, s.t. γ(t) = (x1(t), x2(t), . . . , xn(t)). For γ to be a geodesic it should satisfy the condition,

ẍk + ẋi(t)ẋj(t)Γkij(x(t)) = 0, (17)

where Eq. 17 is written using Einstein summation. Here, Γ are Christoffel symbols that are functions
of the Riemannian metric. Eq. 17 can be interpreted as a second-order system of ordinary differential
equations for the functions xi(t). Using auxiliary variables vi = ẋi, it can be converted to an
equivalent first-order system as,

ẋk(t) = vk(t), (18)

v̇k(t) = −vi(t)vj(t)Γkij(x(t)). (19)

On the other hand, existence and uniqueness theorems for first-order ODEs ensure that for any
(p, V ) ∈ U × Rn, there exists a unique solution η : (t0 − ε, t0 + ε) → U × Rn, where ε > 0,
satisfying the initial condition η(t0) = (p, V ).

Now, let us define two geodesics, γ, β : I → M in an open interval with γ(t0) = β(t0) and
γ̇(t0) = β̇(t0). By the above mentioned uniqueness theorem, they agree on some neighborhood of t0.
Let α be the supremum of numbers b s.t. they agree on [t0, b]. If α ∈ I , then using continuity it can be
seen that, γ(α) = β(α) and γ̇(α) = β̇(α). Then, by applying local uniqueness in a neighborhood of
α, the curves agree on a slightly larger interval, which is contradiction. Hence, arguing the similarity
to the left of t0, it can be seen that the curves agree on all I .

D Proof for Eq. 7

The loss Lgh in Sec. 3.1 forces G(z) to be smooth and det(∂(G)
dz ) > 0, hence, det(G) > 0. Let

T (·) denote the unit tangent bundle of a given manifold. Then, the map df : TMz → TMy is also
smooth. Therefore, the function h(p) =

∣∣df(p)
∣∣, p ∈ TMz is continuous too. Let 1/C and K denote

its minimum and maximum, respectively. Therefore, for every unit speed piecewise-smooth path
γ : [a, b]→Mz , the length of its image inMy is,

L(G ◦ γ) =

∫ b

a

∥∥∥∥∂(G ◦ γ)

dt

∥∥∥∥ dt. (20)

Further,

1

C

∫ b

a

∥∥∥∥∂γdt
∥∥∥∥ dt < L(G ◦ γ) < K

∫ b

a

∥∥∥∥∂γdt
∥∥∥∥ dt. (21)

If C < K,

1

K

∫ b

a

∥∥∥∥∂γdt
∥∥∥∥ dt < L(G ◦ γ) < K

∫ b

a

∥∥∥∥∂γdt
∥∥∥∥ dt. (22)

On the contrary, if C ≥ K,

1

C

∫ b

a

∥∥∥∥∂γdt
∥∥∥∥ ≤ LMy

(G ◦ γ) ≤ C
∫ b

a

∥∥∥∥∂γdt
∥∥∥∥ . =⇒ 1

C
LMz

(γ) ≤ LMy
(γ) ≤ CLMz

(γ). (23)

Since the geodesic distances are length minimizing curves onMy andMz , it follows that,

1

C
dMz

(zp, zq) ≤ dMy
(φ−1(zp), φ−1(zq)) ≤ CdMz

(zp, zq), (24)

where, d(·, ·) are the geodesic distances and C is a constant.
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E Proof for Eq. 11

Consider a geodesic γV : I → M, defined in an open interval I ⊂ R, with an initial velocity
V ∈ TM. Let us also define a curve γ̃(t) = γV (ct). Then, γ̃(0) = γV (0) = p ∈ M. Writing
γV (t) = (γ1(t), γ2(t), . . . , γn(t)) in local coordinates,

˙̃γ(t) =
d

dt
γiV (ct) = cγ̇iV (ct). (25)

Further, it follows that ˙̃γ = cγ̇(0) = cV .

Next, let Dt and D̃t denote the covariant differentiation operators along γV and γ̃, respectively. Then,

D̃t
˙̃γ(t) = [

d

dt
˙̃γk(t) + Γkij(γ̃(t)) ˙̃γi(t)]∂k (26)

= (c2γ̈k(ct) + c2Γkij(γV (ct))γ̇iV (ct)γ̇j(ct))∂k (27)

c2Dtγ̇(ct) = 0. (28)
Hence, γ̃ is a geodesic, and therefore, γ̃ = γcV .

F Removing the loss mismatch using the proposed method.

The set of optimal generator G∗ for the adversarial loss can be formulated as,

G∗ = argmin
G

(
JSD

[
pg(ȳ)‖pd(y)

])
, (29)

where JSD is the Jensen–Shannon divergence, y is the ground-truth and ȳ = G(z) is the generated
output.

Now, let us consider the expected `1 loss, Ey,z
∣∣y − ȳ(z)

∣∣. Then,

Ey,z
∣∣y − ȳ(z)

∣∣ =

∫ ∞
−∞

∫ ∞
−∞

∣∣y − ȳ(z)
∣∣ p(y)p(z|y)dzdy. (30)

To find the minimum of the above, we find the value where the subderivative of the ȳ(z) equals to
zero as,

d

dȳ
[

∫ ∞
−∞

∫ ∞
−∞

∣∣y − ȳ(z)
∣∣ p(y)p(z|y)dydz] =

∫ ∞
−∞

∫ ∞
−∞
−sign(y − ȳ(z))p(y)p(z|y)dzdy = 0.

(31)

∫ ȳ

−∞

∫ ∞
−∞
−sign(y − ȳ(z))p(y)p(z|y)dzdy +

∫ ∞
ȳ

∫ ∞
−∞
−sign(y − ȳ(z))p(y)p(z|y)dzdy = 0.

(32)

∫ ȳ

−∞

∫ ∞
−∞

p(y)p(z|y)dzdy =

∫ ∞
ȳ

∫ ∞
−∞

p(y)p(z|y)dzdy. (33)

Since z is randomly sampled, with enough iterations p(z) = p(z|y). Then,

∫ ȳ

−∞
p(y)dy

∫ ∞
−∞

p(z)dz =

∫ ∞
ȳ

p(y)

∫ ∞
−∞

p(z)dz, (34)

∫ ȳ

−∞
p(y)dy =

∫ ∞
ȳ

p(y)dy, (35)
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which means that the probability mass to left of ȳ is equal to the probability mass to the right of ȳ.
Therefore, ȳ is the median of the distribution p(y). Hence, unless pd(y) is unimodal with a sharp
peak, the optimal generator for the `1 loss does not equal G∗.

Now, consider a function f such that f(z) = y and p(f(z)) = pd. Then, the corresponding
cumulative distribution is,

F (y) = p(f(z) ≤ y). (36)

Therefore, p(f(z)) can be obtained as,

p(f(z)) =
∂

∂y1
. . .

∂

∂yM

∫
{z∗∈Rk|f(z∗)≤f(z)}

p(z)dkz. (37)

According to Eq. 37, f should be differentiable almost everywhere with a positive definite JTf Jf ,
where Jf is the Jacobian of f . Recall the Rademacher theorem,

Theorem 1: Let Z be an open subset of Rk and g : Z → RM a lipschitz function. Then, g
differentiable almost everywhere (with respect to the Lebesgue measure λ). That is, there is a set
E ⊂ Z with λ(Z/E) = 0 and such that for every z ∈ E there is a linear function Lz : Rk → RM
with

lim
z∗→z

g(z)− g(z∗)− Lz(z∗ − z)
|z∗ − z| = 0. (38)

Recall that our loss function enforce a bilipschitz mapping between the manifolds with a positive
definite metric tensor, hence, G−1 and G is differentiable almost everywhere. That is, given enough
flexibility, G converges to f almost surely, i.e., JSD[pg(ȳ)||pd(y)] ≈ 0. Hence, our adversarial loss
and the other loss components are not contradictory.

G Univariate distributions

Minimizing the information loss between two distributions can be interpreted as minimizing the
Kullback–Leibler (KL) distance between the two distributions. KL-distance between two distribution
is defined as,

KL(P ||Q) =

∫
p(x)log

[
p(x)

q(x)

]
dx. (39)

If we approximate an arbitrary density Q in Rn with a Gaussian distribution, it can be shown that the
parameters which minimize the KL-distance between Q and a given density P are exactly the same
as minimizing the distance between P and Q up to the second moment. Therefore, we approximate
P and Q with Gaussian distributions and minimize the KL distance between them.

Now, consider two Gaussian distributions, P and Q.

KL(P ||Q) =

∫ [
log(P (x))− log(Q(x))

]
P (x)dx

=

∫ [
− 1

2
log(2π)− log(σP )− 1

2
(
x− µP
σP

)2

+
1

2
log(2π) + log(σQ) +

1

2
(
x− µQ
σQ

)2

]
1√

2πσP
exp

[
− 1

2
(
x− µP
σP

)2

]
dx

=

∫ [
log(

σQ
σP

) +
1

2
((
x− µQ
σQ

)2 − (
x− µP
σP

)2)

]
1√

2πσP
exp

[
− 1

2
(
x− µP
σP

)2

]
dx

= E
P

[
log(

σQ
σP

) +
1

2
((
x− µQ
σQ

)2 − (
x− µP
σP

)2)

]
= log(

σQ
σP

) +
1

2σ2
Q

E
P

[(x− µQ)2]− 1

2

= log(
σQ
σP

) +
σ2
P + (µP − µQ)2

2σ2
Q

− 1

2
.

(40)
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H Multivariate distribution

Consider two Gaussian distributions, P and Q in Rn,

P (x) =
1

(2π)n/2det(ΣP )1/2
exp

[
− 1

2
(x− µP )TΣ−1

P (x− µP )

]
, (41)

Q(x) =
1

(2π)n/2det(ΣQ)1/2
exp

[
− 1

2
(x− µQ)TΣ−1

Q (x− µQ)

]
. (42)

KL distance between the two distributions,

KL(P ||Q) = E
P

[
logP − logQ

]
=

1

2
E
P

[
− logdetΣP − (x− µP )TΣ−1

P (x− µP ) + logdetΣQ + (x− µQ)TΣ−1
Q (x− µQ)

]
=

1

2

[
log

detΣQ
detΣP

]
+

1

2
E
P

[
− (x− µP )TΣ−1

P (x− µP ) + (x− µQ)TΣ−1
Q (x− µQ)

]
=

1

2

[
log

detΣQ
detΣP

]
+

1

2
E
P

[
− tr(Σ−1

P (x− µP )(x− µP )T ) + tr(Σ−1
Q (x− µQ)(x− µQ)T )

]
=

1

2

[
log

detΣQ
detΣP

]
+

1

2
E
P

[
− tr(Σ−1

P ΣP ) + tr(Σ−1
Q (xxT − 2xµTQ + µQµ

T
Q))

]
=

1

2

[
log

detΣQ
detΣP

]
− 1

2
M +

1

2
tr(Σ−1

Q (ΣP + µPµ
T
P − 2µQµ

T
P + µQµ

T
Q))

=
1

2
(

[
log

detΣQ
detΣP

]
−M + tr(Σ−1

Q ΣP ) + tr(µTPΣ−1
Q µP − 2µTPΣ−1

Q µQ + µQΣ−1
Q µQ))

=
1

2
(

[
log

detΣQ
detΣP

]
−M + tr(Σ−1

Q ΣP ) + (µQ − µP )TΣ−1
Q (µQ − µP )).

(43)

I Hyper-parameters and datasets

We use 100 iterations with α = 0.1 to calculate the inverse of matrices using Eq. 15 and 20
iterations to calculate the log determinant using Eq. 14. Further, 10 time steps are used for Lgh,
and zt0 is sampled from a B64

0.01. For training, we use the Adam optimizer with hyper-parameters
β1 = 0.9, β2 = 0.999, ε = 1 × 10−8. All the weights are initialized using a random normal
distribution with 0 mean and 0.5 standard deviation. The weights of the final loss function are,

Ltotal = 100.0Lgh + 0.01Llh + 100.0LR + Ladv, (44)

All these values are chosen empirically. For facades → photo, map → photo, edges → shoes,
edges → bags, and night → day, we use the same stadard datasets used in Pix2Pix [2]. For the
landmarks → faces, hog → faces, BW → color, and sketch → anime experiments, we use
the UTKFace dataset [33], CelebHQ dataset [34], STL dataset [35], and Anime Sketch Colorization
Pair dataset [36] provided in Kaggle, respectively.

I.1 Incompatibility of CGML with experiments that evaluate the latent structure

The inference procedure of the CGML is fundamentally different from a CGAN. The latent variables
are randomly initialized at inference and then guided towards optimal latent codes through a separate
path-finding expert module. As a result, unlike CGANs, the entire latent space is not considered
as a low-dimensional manifold approximation of the output space. In other words, interpolation
through sub-optimal areas of the latent space does not correspond to meaningful changes in the output.
Therefore, we did not use CGML for experiments that evaluate the structure of the latent space.
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I.2 Experiments on the generalizability of the proposed algorithm

We utilized three networks for this experiment: Pathak et al. [3], Johnson et al. [37], and Ronneberger
et al. [31].

Pathak et al. This model is proposed for image inpainting tasks. The model is trained by regressing
to the ground truth content of the missing area. To this end, they utilize a reconstruction loss (Lrec)
and an adversarial loss (LAdv). Consider a binary mask M where missing pixels are indicated by 1

and 0 otherwise. Then, Lrec(x) =
∥∥M � (x−G((1−M)� x))

∥∥2

2
, where x is the input and � is

the element-wise production. Ladv is the usual adversarial loss on the entire output. In order to apply
our training algorithm, we replace LR with Lrec.

Johnson et al. The primary purpose of this network is neural style transferring, i.e., given a artistic
style image and an RGB image, output should construct an image where the content of the RGB
image is represented using the corresponding artistic style. The model utilizes an encoder decoder
mechanism and consists of four loss components: 1) feature reconstruction loss Lfr, 2) style
reconstruction loss Lstyle 3) reconstruction loss and 4) variation regularization loss Ltv . The feature
reconstruction loss is obtained by passing the generated and ground truth images through a pre-trained
VGG-16 and calculating the `2 loss between the corresponding feature maps. Let the output of the
relu2_2 layer of VGG-16 be denoted as φ(·). Then,

Lfr(y, ȳ) =
1

K

∥∥φ(y)− φ(ȳ)
∥∥2

2
, (45)

where K is the number of neurons in relu2_2.

The style reconstruction loss is similar, except that the inputs to the VGG-16 are the generated image
and the style image. Let the output of the jth layer of VGG-16 be φ(·)j . Further, assume that φ(·)j
gives Cj dimensional features on a Hj ×Wj grid, which can be reshaped in to a Cj ×HjWj matrix
ψj . Then, Gj(·) = ψψT /(CjHjWj) and,

Lstyle =
∥∥Gj(y)−Gj(ȳ)

∥∥2

F
, (46)

where‖·‖F is the Frobeneus norm. While training, Lstyle is calculated for relu1_2, relu2_2, relu3_3,
and relu4_3 of the VGG-16.

Reconstruction loss is simply the pixel-wise `2 loss. They also adapt a total variation loss to encourage
spatial smoothness in the output image as,

Ltv(ȳ) =
∑
i,j

((ȳi,j+1,−ȳi,j)2 + (ȳi+1,j ,−ȳi,j)2). (47)

In order to apply our training algorithm, we replace LAdv with Lfr, Lstyle, and Ltv .

Ronneberger et al. This model was originally proposed for segmentation of RGB (medical) images
and is trained with a soft-max cross-entropy loss between the predicted and target classes. However,
we use a pixel-wise reconstruction loss as the objective function to allow multi-modal outputs. Further,
we define the task at hand as converting segmentation maps to faces. To impose our training algorithm,
we simply remove Ladv .

The above networks are designed to capture one-to-one mappings between the inputs and the outputs.
Therefore, the only stochasticity in these models is the dropout. Therefore, we concatenate a latent
map to the bottle-necks of the networks to improve the stochasticity. Note that simply concatenating
the latent maps without our algorithm does not yield diverse outputs as the naive reconstruction losses
(which exist in all of the above networks) only converge to a single output mode.

J Discussion on Related works

Conditional generative modeling. Generative modeling has shown remarkable progress since the
inception of Variational Autoencoders (VAE) [38] and GANs [1]. Consequently, the conditional
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counter-parts of these models have dominated the conditional generative tasks [2, 39, 40, 41, 42, 43].
However, conditional generation in multimodal spaces remain challenging, as the models need to
exhibit a form of stochasticity in order to generate diverse outputs. To this end, Zhu et al. [20]
proposed a model where they enforce a bijective mapping between the outputs and the latent spaces.
Yang et al. [18], Mao et al. [19], and Lee et al. [4] introduced novel objective functions to increase
the distance between the samples generated for different latent seeds. Chang et al. [44] used separate
variables that can be injected at the inference to change the effects of loss components that were used
during the training. In contrast, VAE based methods aim to explicitly model the latent probability
distribution and at inference, diverse samples are generated using different latent seeds. However,
typically, the latent posterior distribution of the VAE is approximated by a Gaussian, hence, the
ability to model more complex distributions is hindered. As a solution, Maaloe et al. [45] suggested
using auxiliary variables to hierarchically generate more complex distributions, using a Gaussian
distribution as the input. Normalizing Flows [46] are similar in concept, where the aim is to generate
more complex posterior distributions hierarchically. They apply a series of bijective mappings to
an initial simple distribution, under the condition that the Jacobian of these mappings are easily
invertible.

Geometrical analysis of generative models. Recent works have discovered intriguing geometrical
properties of generative models [17, 16, 23]. These works apply post-train analysis on the models and
confirm that Euclidean paths in the latent space do not map to geodesics on the generated manifold.
In contrast, we focus on preserving these properties while training the model. In another direction,
Wang et al. [24] introduced a loss function that forces the real and generated distributions to be
matched in the topological feature space. They showed that by using this loss, the generator is able
to produce images with the same structural topology as in real images. Similarly, Khrulkov et al.
[25] proposed a novel performance metric for GANs by comparing geometrical properties of the real
and generated data manifolds. Different to our work, these methods do not ensure homeomorphism
between the latent and generated manifolds.

K Qualitative results
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Figure 8: Qualitative results from landmarks→ faces task.
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Figure 9: Qualitative results from sketch→ shoes task.
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Figure 10: Qualitative results from hog→ faces task. The diversity of the outputs are less in this task,
as hog features maps are rich in information.
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Figure 11: Qualitative results from BW → color task.
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Figure 12: Qualitative results from sketch→ anime task.
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Figure 13: Qualitative results from sketch→ bags task.
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Figure 14: Qualitative results from labels→ facades task.
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Figure 15: Smooth interpolations of our model. Each column represents an interpolation between
two latent codes, conditioned on an input. The faces are rotated to fit the space.
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