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A APPENDIX

A.1 SOFT STOCHASTIC POLICY GRADIENT THEOREM

To fit the new reward function definition, the following is the process of deriving the soft version of
policy gradient. Let’s first start with the derivative of the soft state value function. Note that
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recursively replace V£ () by the right side expression
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where P(s — x,t,my) is the probability of going from state s to state x in ¢ steps under policy 7,
and
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is the stationary distribution of Markov chain for 7y. Now let’s consider the object function given by
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where D is the initial state distribution and is independent of 6. The gradient of the object function is
given by
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The gradient is proportional to the derivative of state value V¢ (so) with respect to 6, where

VoVan(s),Vs € S, has already been obtained. Hence, the soft policy gradient is
VgJ(G) x VgV™(sp)

= ZZ%PT (sg = x,t Fg)(zaﬂ—e(gz a)Qsoft(x a) —l—aZwa (z,a) Zp "o, a)VeH (|2 ))
z t=0

=de(s)(z%;’a)62mn (s,a —|—aZ7T9 s, a Zp "Is,a)VeH(|s ))

S oSS )

= B s anmy | 0 10g o (als) QL (5, 0) +aZp (s']s, ) VoH(1s")]

= E(s,a,5)~870 {Ve log mg(als) Q5 (s, a) + aveH(:|s' ))]

A.2 HYPERPARAMETERS FOR EXPERIMENTS

Table 2 lists the SSPG parameters used in the comparative evaluation in Figure 1. All the environments
are in MuJoCo version 2.0.

Table 2: SSPG Hyperparameters.

Environment || HalfCheetah | Ant | Hopper | Reacher | Walker2d | Swimmer | Humanoid
Q function
network Two hidden layers, hidden-dim = 256, ReLU
Policy
network Two hidden layers, hidden-dim = 256, ReLU
replay buffer
size M le6
action sample
N 1
batch size 254
discount factor
vy 0.99
learning rate 3e-4
target smoothing
coefficient A 0.005
target update
interval 1
temperature o 0.1 [0T] 02 [ oI [ o0I [ 02 ] 0.1

A.3 MuJoCo ENVIRONMENT SPECIFIC PARAMETERS

Table 3: Environment Specific Parameters

Environment Space Dimensions ~ Action Dimensions
Swimmer-v2 8 2
Reacher-v2 11 2
Hopper-v2 11 3
Walker2d-v2 17 6
HalfCheetah-v2 17 6
Ant-v2 111 8
Humanoid-v2 376 17
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