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Abstract—When interacting with objects, humans effectively
reason about which regions of objects are viable for an intended
action, i.e., the affordance regions of the object. They can also
account for subtle differences in object regions based on the
task to be performed and whether one or two hands need to
be used. However, current vision-based affordance prediction
methods often reduce the problem to naive object part seg-
mentation. In this work, we propose a framework for extract-
ing affordance data from human activity video datasets. Our
extracted 2HANDS dataset contains precise object affordance
region segmentations and affordance class-labels as narrations
of the activity performed. The data also accounts for bimanual
actions, i.e., two hands co-ordinating and interacting with one or
more objects. We present a VLM-based affordance prediction
model, 2HandedAfforder, trained on the dataset and demon-
strate superior performance over baselines in affordance region
segmentation for various activities. Finally, we show that our
predicted affordance regions are actionable, i.e., can be used by
an agent performing a task, through demonstration in robotic
manipulation scenarios.

I. INTRODUCTION

When humans perceive objects, they understand different
object regions and can predict which object region affords
which activities [8], i.e., which object regions can be used for
a task. We wish our machines to have this ability, referred to
in literature as “affordance grounding”. Affordance grounding
has several downstream applications, including building plan-
ning agents, VR, and robotics. Affordance grounding is espe-
cially important for robotics since robots must reason about
various actions that can be performed using different object
regions which is a crucial step towards performing useful
tasks in everyday, unstructured environments. For example,
to pour into a bowl, the robot should know that it should
hold the bottle in a region close to the center of mass of the
bottle (Figure 1), i.e., a region that affords pouring. Predicting
such affordance regions is challenging since it requires a fine-
grained understanding of object regions and their semantic
relationship to the task.

Recent advances in large-language and multimodal models
have shown impressive visual reasoning capabilities using self-
supervised objectives [38, 32, 7]. However, there is still a
big gap in their ability to detect accurate object affordance

Fig. 1: A motivating example: When required to label
affordances for a task ‘Pour into bowl’, the typically labeled
affordances provided by annotators are not precise and reduce
the problem to object part segmentation. Alternatively, our
affordance extraction method uses the hand-object interaction
sequence to obtain precise, actionable, bimanual object affor-
dance regions.

regions in images [23]. Moreover, most existing state-of-the-
art affordance detection methods [13, 35, 37, 45, 20] use
labeled data [31, 35, 28, 15, 21] that lacks precision and
is more akin to object part segmentation rather than action-
able affordance-region prediction. When humans interact with
objects, they are much more precise and use specific object
regions important in the context of the task. An example is
provided in Fig. 1. For the task of pouring into the bowl, part
segmentation labels the entire bottom of the bottle with the
affordance ‘pour’. But, to pour correctly, humans leverage the
appropriate region of the bottle. Moreover, the affordances are
inherently bimanual, i.e., the affordance regions of the bowl
and bottle are interconnected.

We argue that affordances should not be labeled but auto-
matically extracted from observations of humans performing
tasks, such as human activity video datasets. We propose a
method that uses hand-inpainting and mask completion to
extract affordance regions occluded by human hands. This



Dataset Image type & source # Images Affordance data
Annotation source Annotation type # Aff. classes # Obj. classes Class-labels Bimanual

IIT-AFF [31] Exocentric [41] 8.8K Manually-labeled Masks 9 10 Explicit No
AGD20K [28] Exo+Egocentric [25, 3] 23.8K Manually-labeled Heatmaps 36 50 Explicit No

3DOI [35] Exo+Egocentric [36, 5] 10K Manually-labeled Points 3 n.a. Explicit No
ACP [10] Egocentric [5] 15K Auto-labeled Heatmaps n.a. n.a. none No
VRB [1] Egocentric [5] 54K Auto-labeled Heatmaps n.a. n.a. none No
2HANDS Egocentric [5] 278K Auto-labeled Precise Masks 73 163 Narrations Yes

TABLE I: Comparison of our dataset 2HANDS against other affordance prediction datasets. For 2HANDS, we auto-label a
large number of affordance region masks from human egocentric videos and use narration-based affordance class-labels. Our
dataset also contains bimanual masks, with the goal of addressing the challenging problem of precise bimanual affordance
prediction in images.

has several advantages. First, by using this procedure, we are
able to obtain bimanual and precise affordances (Figure 1)
rather than simply predicting object parts. Second, it makes
affordance specification more natural since it is often easier for
humans to show the object region to interact with, rather than
label and segment it correctly in an image. Third, using human
activity videos gives us diverse task-specific affordances, with
the affordance class label naturally coming from the narration
of what task is being done by the human. This makes our
affordances task-oriented with natural language specification,
unlike previous methods focused on predicting task-agnostic
interaction hotspots [10, 1].

We extract a dataset, 2HANDS (2-Handed Affordance +
Narration DataSet), consisting of a large number of unimanual
and bimanual object affordance segmentation masks and task
narrations as affordance class-labels. We propose a VLM-
based affordance prediction model, 2HandedAfforder, that
is trained on the 2HANDS dataset and predicts affordance
masks in images based on an input text prompt. To evaluate
the performance on this challenging problem, we also
present a novel benchmark, ActAffordance, using annotations
on images from two egocentric human activity datasets [5, 11].

Our contributions are:
• a method to extract precise affordance regions from

human-object interaction videos.
• a dataset, 2HANDS, consisting of 278K images with

extracted affordance masks, narration-based class labels,
and unimanual/bimanual taxonomy labels.

• an affordance network, 2HandedAfforder, for predicting
task-aware unimanual and bimanual affordance regions.

• a novel benchmark, ActAffordance, to evaluate affor-
dance detection aligned with the ”ground truth” consid-
ered by humans.

• the first comprehensive dataset and evaluation of task-
specific bimanual object affordance regions in images.

II. RELATED WORK

Fully supervised affordance detection. In fully supervised
affordance detection datasets and methods such as by Qian and
Fouhey [35], AffordanceLLM [37], the dataset is fixed and
hand-annotated such as from IIT-AFF [31] and 3DOI [35]. The
affordance classes in these datasets are explicit and annotators
guess which affordance class may apply to object regions.

Other methods, such as VLPart [45], use a general open
vocabulary segmentation pipeline. LISA [20] performs open-
vocabulary, prompt-based “reasoning segmentation”. However,
these methods do not consider actions and typically segment
either the whole object [20] or object parts[45], and not precise
affordance regions.

Weakly supervised affordance detection. Weakly super-
vised methods such as Cross-viewAG [28] and Locate [22]
learn to predict affordances by observing exocentric images
of humans interacting with objects based on the AGD20K
dataset [28]. The model maps object parts across images,
transferring the learned affordances to non-exocentric images
where no hand-object interaction occurs. This is similar to
saliency matching methods that use one-shot affordance trans-
fer [46, 14]. However, these methods still require an ini-
tial smaller manually-labeled dataset with explicit affordance
classes.

Auto-labeled affordance detection. Egocentric videos of
humans performing tasks [5, 6, 11, 47, 12] are an attractive
option for extracting affordance data since they include ob-
ject interactions up close and in the camera field of view.
Recently, Goyal et al. [10] and Bahl et al. [1] have shown
that videos from datasets such as EPIC kitchens [5] and
Ego4D [11] can be used to segment regions of interest
in objects using weak supervision from hand and object
bounding-boxes. However, these works focus on segmenting
task-agnostic ‘hotspot’ interaction regions of objects. The
region of interactions do not consider the task and whether
one or two hands would be needed.

Our approach and goals. In this work, we propose a
method to extract affordance masks leveraging recent video-
based hand inpainting techniques [2]. Since our dataset con-
tains precise segmentation masks, we can predict pixel-wise
affordance segments in the image, as opposed to methods only
trained with point-labels of affordance [35] or that only predict
heatmaps [28, 1]. Moreover, we consider the especially chal-
lenging problem of bimanual affordance detection, for which
the spatial context of the objects and their interconnection
is also important. Although bimanual affordances have been
considered in previous work [19, 9, 42, 33], to the best of
our knowledge, ours is the first method to extract bimanual
affordances from videos which we then use to train our model
to predict task-specific affordance masks based on a text
prompt.



Fig. 2: Affordance extraction pipeline. Given a human activity video sequence and a single-frame object and hand masks, we
first obtain dense, full-sequence object and hand masks using a video mask-propagation network [4]. We then inpaint out the
hands in the RGB images using a video-based hand inpainting model [2]. This gives us an image with the objects reconstructed
and un-occluded by the hands. With the inpainted image and the original object masks, we use [39] to “complete” the object
masks by again propagating the object masks to the inpainted image. Finally, we can extract the affordance region masks for
the given task as the intersection between the completed masks and the hand masks. We also label the affordance class using
the narration of the task.

III. EXTRACTION AND LEARNING OF BIMANUAL
AFFORDANCES FROM HUMAN VIDEOS

In this section, we detail our affordance extraction approach
used to generate our 2HANDS dataset from videos of humans
performing everyday tasks (Sec. III-A). Then, we present our
approach, “2HandedAfforder”, for predicting meaningful task-
oriented bimanual affordance regions in images in Sec. III-B.

A. Affordance Extraction from Human Videos

We use videos of humans performing tasks to extract precise
affordance masks. This involves closely examining the contact
regions between the hands and objects in the videos. Several
recent methods [44, 34] have shown impressive performance
in hand-object segmentation and reconstruction. However, the
challenge in affordance region extraction is that the hand
typically occludes the object region with which it interacts.
Bahl et al. [1] circumvent this issue by only considering videos
where objects are initially un-occluded before the interaction
and only use the hand bounding-box to denote the interaction
region. However, not only is this a limiting assumption, but
also the bounding-boxes can only be used to detect interaction
hotspots and not precise object affordance masks. Precise
masks are more explicit and useful for downstream appli-
cation, for example, for providing graspable regions of an
object for robotic manipulation tasks. We propose a pipeline
to extract affordances that leverages recent advances in hand
inpainting [2] and object mask completion [43, 39], providing
the first bimanual affordance region segmentation dataset.
Moreover, we use the narration of the task being performed
as the affordance text label, which helps obtain a diverse set
of affordance classes for various objects. The full extraction
pipeline is visualized in Figure 2.

We extract affordances from EPIC-KITCHENS [5], which
contains ∼100 hours of egocentric videos of human activities
in kitchens. We use the VISOR [6] annotations of the dataset,
which contain some sparse hand-object mask segmentations
and binary labels denoting whether the hand is in contact with
the object. Note that we can also use other video datasets
like Ego4D [11] along with hand segmentation methods [44]
to extract hand-object masks. To obtain dense hand-object
masks for entire video sequences, we use a video-based mask
propagation network [4].

With the hand and object masks available over the entire
video sequence, we obtain an un-occluded view of the objects
by inpainting out the hands. We use a video-based hand
inpainting model, VIDM [2], that uses 4 frames from the
sequence as input to inpaint the missing regions. This makes
reconstructing the target objects more likely if the objects have
already been in another frame of the action sequence without
occlusion. Inpainting provides us with an un-occluded view
of the objects. We then precisely segment these un-occluded
objects in the inpainted image using mask completion. For
this, we use the segmentation masks from the original image
and prompt SAM2 [39] to propagate these masks to the
new inpainted image. We observe that this process gives us
more precise object masks compared to directly using mask
completion methods [43], detailed in the appendix (Sec. F).

To obtain the final affordance region where the hand inter-
acted with the object, we can simply compute the intersection
of the un-occluded object masks and the hand masks. The
full pipeline is shown in Fig. 2. For bimanual affordances,
it is also useful to classify the affordances into a bimanual
taxonomy [19]. Thus, we distinguish between unimanual left,
unimanual right, and bimanual actions. Additional details
about the extraction procedure have been provided in the



Fig. 3: Affordance prediction network. Given an input image and task, we use a question asking where the objects should be
interacted for the desired task as a text prompt to a Vision-Language model (VLM). The VLM produces language tokens and
a [SEG] token which is passed to the affordance decoders. We also use a SAM [18] vision-backbone to encode the image and
pass it to the affordance decoders. The decoders predict the left hand and right hand affordance region masks as well as a
taxonomy classification indicating whether the interaction is supposed to be performed with the left hand, right hand, or both
hands. The vision encoder is frozen, while the VLM predictions are fine-tuned using LORA [16].

appendix.
With the above procedure, we obtain a dataset of 278K im-

ages with extracted affordance segmentation masks, narration-
based class-labels, and bimanual taxonomy annotations. We
call this dataset 2HANDS, i.e., the 2-Handed Affordance +
Narration DataSet.

B. Task-oriented Bimanual Affordance Prediction

Reasoning segmentation, i.e., text-prompt-based segmen-
tation of full objects, is a difficult task. Segmentation of
precise object affordance regions is even more challenging.
The complexity is further increased when considering bi-
manual affordances with multiple objects. To address this
challenge, we develop a model for general-purpose bimanual
affordance prediction that can process both an input image and
any task prompt (e.g., ”pour tea from kettle”). We call this
model “2HandedAfforder.” We leverage recent developments
in reasoning-based segmentation methods [24, 20] and train a
VLM-based segmentation model to reason about the required
task and predict the relevant affordance region in the input
image. Since our 2HANDS dataset provides precise segmen-
tation masks, we can predict pixel-wise affordance segments
in the image, as opposed to other methods that are only
trained with point labels of affordance [35] or that only predict
heatmaps [28, 1].

Inspired by reasoning segmentation methods such as by Lai
et al. [20], we use a Vision-Language Model (VLM) [27] to
jointly process the input text prompt and image and produce
language tokens and a segmentation [SEG] token as output.
While VLMs excel at tasks such as visual question answering
and image captioning, they are not explicitly optimized for
vision tasks like segmentation, where accurately predicting
pixel-level information is key. Therefore, to have a stronger
vision-backbone for our segmentation-related task, we use a

modified version of SAM [18]. Given the combined embed-
ding provided by the VLM [SEG] token and SAM image
encoder, we use affordance decoders modeled after SAM-style
mask decoders to predict the affordances. We use two mask
decoders, generating two separate affordance masks for the left
and right hands, respectively. Furthermore, we add a prediction
head to one of the decoders that takes the output token as
input and predicts the bimanual taxonomy: ‘unimanual left
hand’, ‘unimanual right hand’, and ‘bimanual’ using a separate
fully-connected classifier decoder. An overview of the whole
affordance prediction network architecture is visualized in
Figure 3.

The VLM is trained to generate a specific output to-
ken: a segmentation [SEG] token. Specifically, inspired by
LISA [20], we use question-answer templates to encapsulate
the narration of the individual tasks in natural language, e.g.
“USER: [IMAGE] Where would you interact with the objects
to perform the action {action narration} in this image? AN-
SWER: Use region: [SEG].” This [SEG] token encapsulates
the general-purpose reasoning information from the VLM
for the task which is then used by the affordance decoders.
For the left and right hand mask decoders, we initialize the
decoders with pre-trained SAM weights and train them to
predict segmentation masks using the encoded image and
[SEG] token as input. For the taxonomy classifier decoder, as
in [35], we pass the left mask decoder output token through
an MLP to predict whether the action should be performed
with the left hand, right hand, or both hands.

We freeze the weights of the image encoder and the VLM,
and we apply Low-Rank Adaptation (LoRA) [16] to fine-tune
the VLM. By introducing trainable low-rank updates, LoRA
enables efficient fine-tuning of the VLM without requiring
modifications to its original parameters. This ensures that the
pre-trained knowledge of the VLM, a LLaVa-13b, is preserved



while still allowing the model to specialize in segmentation.
We do not fine-tune the SAM image encoder as this was shown
to reduce performance in reasoning segmentation tasks. For
training the mask prediction, we use a combination of dice
loss [30] and focal cross-entropy loss [40]. For the taxonomy
prediction, we use a cross-entropy loss with the ground truth
label. If the task does not require one of the hands, the weight
for the corresponding mask loss is set to 0. Similarly, when
predicting affordance regions using the network at test time,
we use the taxonomy prediction to infer whether left, right, or
both mask predictions should be considered.

As an alternative to the VLM-based 2HandedAfforder pre-
diction network, we also train a smaller CLIP-based [26]
version of the network that uses CLIP text features instead
of the VLM [SEG] token as input to the affordance decoders.
We call this network ‘2HandedAfforder-CLIP’.

IV. EXPERIMENTAL SETUP

With our experiments, we aim to answer the following
questions:

1) Does our affordance extraction procedure for the
2HANDS dataset provide accurate affordance region
segmentation data?

2) Is our 2HandedAfforder model able to predict precise
unimanual and bimanual affordances? And how does it
compare against baselines?

3) How well does our affordance prediction model gener-
alize to images in-the-wild?

4) Are our affordances actionable, i.e., can they be utilized
in real-world scenarios such as for robotic manipulation?

A. ActAffordance Benchmark

To answer the first question of the accuracy of our extracted
affordances in the 2HANDS dataset, we evaluate the alignment
of our extracted affordance masks with human-annotated af-
fordance regions. As mentioned in Sec. III-A, when humans
label affordances, they often simply label object parts and do
not necessarily focus on the precise regions of interaction of
the objects [28, 35]. Moreover, the second question regarding
the accuracy of 2HandedAfforder is non-trivial. Using only
the masks in our 2HANDS dataset as “ground truth” leads
to a bias towards our extracted affordances. This may not be
in alignment with what humans consider accurate affordance
regions. Therefore, we propose a novel benchmark called
“ActAffordance” to evaluate both the dataset quality and the
predicted affordances.

For the “ActAffordance” benchmark, we asked 10 human
annotators to label affordance regions with a novel approach:
instead of direct segment labeling, we showed them pairs
of inpainted and original hand-object interaction images. By
showing annotators example interactions, we asked them
to predict similar affordance regions. Fig. 4 illustrates this
annotation pipeline. Annotators predicted ALL possible in-
teraction regions since affordance prediction is inherently
multi-modal—for instance, when closing a fridge, a human
might choose any point along the door length. The benchmark

Fig. 4: Example annotations for the ActAffordance bench-
mark. Left: The image to be annotated with the highlighted
annotation mask(s). Right: the example interaction provided
to the human annotator, along with the task description. The
human is asked to annotate ALL the possible regions for the
interaction to capture all the different modes.

contains unimanual and bimanual segmentation masks for 400
activities from EPIC-KITCHENS [5] and Ego4D [11], with no
overlap between EPIC-KITCHENS data used in 2HANDS.
Details about the benchmark and annotation process are in
Appendix Sec. C.

Another point of consideration when evaluating the af-
fordance prediction is that the problem can be divided into
two parts: correct identification of the objects based on the
text prompt and accurate affordance region segmentation.
Since these are two complementary but different capabilities,
we further create another version of the benchmark called
“ActAffordance-Cropped”. Here, we crop the benchmark im-
ages to a bounding box containing the target objects. This
helps differentiate between the capabilities of segmenting
the correct object and segmenting the correct object region.
Moreover, it helps evaluate our network predictions against
baselines that cannot identify correct objects in images but
use bounding-boxes [1] or query points on the object [35] as
input.

We note that ActAffordance is a particularly challeng-
ing benchmark. To date, reasoning segmentation, i.e., text-
prompt-based segmentation of full objects, is an unsolved
problem. Prompt-based segmentation of precise object af-
fordance regions is yet more challenging, especially when
benchmarked against humans. The addition of bimanual af-
fordances with multiple objects is another step beyond that.
However, we feel this challenging benchmark will push the
community forward towards building more effective methods
for affordance prediction and thus we evaluate all methods and
baselines on this benchmark instead of a simpler test set from
our dataset.

B. Metrics for Evaluation

We use several metrics to evaluate the performance of the
proposed models and baselines. Since we treat the affordance
detection problem as a segmentation task, we use metrics
widely spread across segmentation problems: precision, in-
tersection over union (IoU), and the directed and general
Hausdorff Distance (HD). We train our 2HandedAfforder and
2HandedAfforder-CLIP models on the 2HANDS dataset and
evaluate on the ”ActAffordance” benchmark. We evaluate
performance on both the EPIC-KITCHENS and Ego4D splits
of the benchmark. Note that there is no overlap between the



data from the EPIC-KITCHENS data used in 2HANDS. The
evaluation on the Ego4D split of the benchmark also helps us
answer the generalization question since there is no Ego4D
data in 2HANDS.

Note that for the evaluation of our models, the false negative
predictions play a reduced role since our models are not trained
to predict all of the multimodal solutions in the benchmark but
to predict precise affordance regions which might only cover a
subset of all of the possible solutions. Thus, the key metric for
comparison is precision over IoU. Another common metric
for segmentation is the Hausdorff distance (HD). For each
point in each set, the distance to the closest point from the
other set is calculated and the Hausdorff distance is defined
as the maximum of all of these distances. Similar to the IoU,
including the distance from the ground truth to the prediction
might distort the results since we aim to predict precise
affordances that may only cover a smaller subset of the ground
truth. Thus, we additionally provide the directed Hausdorff
distance that only calculates the maximum distance from the
prediction set points to the ground truth set.

To further show the applicability of our approach to real
world robotics scenarios, we evaluate our model in-the-wild in
a kitchen environment on various household objects. To show
that our model can provide useful actionable affordances, we
test the predictions on a real-robot system in this kitchen en-
vironment. Specifically, we use an RGBD camera mounted on
a mobile manipulator robot and use the affordances predicted
by our model to segment RGB images and obtain segmented
point clouds. These segmented pointclouds denote where the
robot should grasp objects to perform a manipulation task. For
manipulation, we use pre-designed manipulation primitives for
the robot and perform grasping using a 6DoF grasp prediction
network.

V. RESULTS

A. Affordance Extraction Quality

We assess the quality of the affordances obtained from our
extraction pipeline (Sec. III-A) by evaluating their alignment
with the human annotations in the ActAffordance benchmark.
The comparison results are shown in Table II, “AffExtract”,
and Figure 5. As noted previously, the benchmark annotations
contain all the possible modes of object interaction, while
the extraction process and our models only cover a single
interaction mode. Thus, precision is the most important metric
to evaluate over IoU. The same principle is true for the
Hausdorff distance (HD), which is why we also report Direc-
tional Hausdorff distance (Dir. HD), which only calculates the
maximum distance from the prediction set points to the ground
truth set. We note the precision of AffExtract is better for the
Ego4D split (0.541) than the EPIC-KITCHENS split (0.334)
with a combined score of 0.42. This shows a reasonably good
alignment with the human-annotated segmentations from the
benchmark and meaningful affordance region extraction. The
IoU scores are relatively lower, with an average of 0.185,
showing the challenge of the task when compared against
human-level object understanding.

put lid on container put some water in the
frying pan put down knife

LISA

AffLLM

LOCATE

VRB

3DOI

2HAff

Affordance
Extraction

Benchmark
(Ground

Truth)

Fig. 5: Qualitative affordance prediction results on the
ActAffordance benchmark. We compare our 2HandedAf-
forder model against LISA [20], AffordanceLLM [37] and
3DOI [35]. We also include an example result if we were to run
our affordance extraction method on the activity sequence to
show the quality of the extraction. Red and green masks denote
the left hand and right hand affordance mask predictions,
respectively.

B. Comparison against baselines on ActAffordance bench-
mark

Since ours is the first method to perform bimanual af-
fordance mask detection using text prompts, there exist no
directly comparable baselines. Thus, we adapt affordance
detection baselines which includes a SOTA text-based reason-
ing segmentation baseline. Since several weakly-supervised
affordance detection methods [10, 1, 37] represent affor-
dances as only points or points+probabalistic heatmaps around
them, we adapt their predictions into segmentation masks by
choosing different probability thresholds at which pixels are
considered to be part of the affordance region. We use the
following baselines for comparison: (i) LISA [20], an object
segmentation VLM with text-based reasoning capabilities.
(ii) LOCATE [22] and (iii) AffordanceLLM [37], which



ActAffordance Benchmark
Model EPIC-KITCHENS EGO4D Combined

IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑
LISA [20] 0.048 0.056 298 260 0.053 0.038 0.098 336 257 0.084 0.044 0.050 303 255 0.047

LOCATE [22] 0.010 0.014 274 261 0.007 - - - - - - - - - -
AffLLM [37] 0.010 0.010 267 205 0.010 0.015 0.016 229 226 0.014 0.012 0.013 287 225 0.012
2HAffCLIP 0.032 0.077 359 317 0.068 0.023 0.050 306 250 0.047 0.026 0.064 341 292 0.059

2HAff 0.064 0.125 241 185 0.104 0.051 0.137 292 227 0.105 0.058 0.130 262 202 0.104
AffExtract 0.136 0.334 199 169 - 0.253 0.541 163 121 - 0.185 0.420 184 145 -

ActAffordance – Cropped Benchmark
Model EPIC-KITCHENS EGO4D Combined

IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑ IoU ↑ Precision ↑ HD ↓ Dir. HD ↓ mAP ↑
LISA [20] 0.082 0.115 177 111 0.110 0.097 0.132 205 134 0.125 0.082 0.122 196 130 0.116

LOCATE [22] 0.026 0.097 169 132 0.054 - - - - - - - - - -
AffLLM [37] 0.066 0.092 155 82 0.088 0.091 0.139 155 66 0.124 0.076 0.112 155 76 0.103

VRB [1] 0.020 0.091 161 152 - 0.018 0.083 175 160 - 0.019 0.088 167 155 -
3DOI [35] 0.038 0.227 337 289 0.188 0.071 0.221 182 110 0.168 0.082 0.224 168 109 0.180
2HAffCLIP 0.038 0.144 170 108 0.131 0.040 0.202 176 98 0.186 0.039 0.168 172 104 0.154

2HAff 0.074 0.223 188 114 0.204 0.101 0.331 169 80 0.291 0.086 0.269 180 100 0.240

TABLE II: Comparison of our models and baseline methods on the ActAffordance Benchmark (top) and the modified version
ActAffordance-Cropped (bottom) where images are cropped to a bounding-box around the target objects. Performance is
evaluated separately on the EPIC-KITCHENS and EGO4D splits, as well as on the combined benchmark. The reported metrics
include IoU (Intersection over Union), Precision, HD (Hausdorff Distance), Dir. HD (Directional Hausdorff Distance), and
mAP (Mean Average Precision). For mAP, we average over five different thresholds, and the values for the other metrics
correspond to the highest scores obtained across these thresholds. We also run our affordance extraction method, AffExtract,
on the activity sequences in the benchmark as a measure of data quality and alignment with the benchmark annotations.

are trained on explicit affordance labels from the AGD20K
dataset [28]. (iv) 3DOI [35], a fully-supervised method using
point-based affordance data from exo and egocentric images
and uses query points during inference. (v) VRB [1], which
uses bounding boxes to predict affordance hotspots.

All models were evaluated on the ActAffordance bench-
mark. Additionally, we assessed the methods on a modified
version of the benchmark, where all images were cropped to
encompass the target objects to enhance comparability with
baselines that utilize bounding boxes [1] or query points [35]
as prompts instead of language. Since LOCATE [22] uses
an explicit affordance class label as input for prediction, we
adapt the EPIC-VISOR verb categories used in 2HANDS to
fit the AGD20K classes used in LOCATE. Such an adaptation
is not possible for Ego4D so we exclude LOCATE from the
comparison on the Ego4D split.

Figure 5 shows some qualitative affordance prediction re-
sults and Table II shows the quantitative results. On the com-
bined ActAffordance benchmark, 2HandedAfforder achieves
the best results across all metrics. LISA is the next best
method since it accurately segments the correct object in the
scene, resulting in a natural overlap with the ground truth.
This demonstrates the power of reasoning segmentation for the
challenging task of prompt-based affordance prediction. This
reasoning ability is also validated by the 2HandedAfforder-
CLIP version being only third-best. Though our models were
not trained on Ego4D data, the performance on Ego4D is
reasonable and better than the EPIC-KITCHENS split. The
IoU scores are low across the board for all methods, indicating
further room for improvement on this challenging task.

The results on the cropped version of the benchmark,
Table II (lower), show similar results with performance im-
provements across the board since the uncropped benchmark
is more difficult. In this setting, the other baseline models

that use prompts or query points as input can be compared as
well. 2HandedAfforder again achieves the best performance
on the combined benchmark, with significantly better preci-
sion and mAP scores than the uncropped benchmark. 3DOI
also performs reasonably in terms of precision. Surprisingly,
AffordanceLLM achieves good scores in HD and Dir. HD,
even though the IoU scores are lower. This stems from the
fact that AffordanceLLM is relatively more optimistic and
always predicts some affordance regions. The other methods
can sometimes not detect any affordance regions and have
no mask predictions, which penalizes the HD and dir. HD
significantly. LISA is still the third or fourth best method
on most metrics, while VRB, being a task-agnostic method,
performs poorly.

C. In-the-wild Affordances and Robot Demonstration

We conduct robotic manipulation experiments with various
objects using a bimanual Tiago++ robot in a realistic kitchen
environment.We deployed our best-performing 2HandedAf-
forder model for affordance region segmentation inference
based on user-defined task prompts such as ‘pour into cup’.

To enhance the model’s performance for real-world appli-
cation, we obtain object bounding boxes and masks using a
prompt-based segmentation method, LangSAM [29]. We then
performed inference on the cropped object images. Moreover,
to enhance the stability of our predictions, we only considered
the intersection between our inferred affordance masks and the
object masks generated by LangSAM. This also allowed us
to adjust the prediction threshold to be more optimistic and
generate larger affordance masks.

We demonstrate how our affordance prediction method
improves the performance of a robot in executing manipulation
tasks compared to using standard object or part segmentation
approaches, such as the mask output of LangSAM. By inte-



stir vegetables pour into cup pick up pot open pot open bottle

Fig. 6: Examples of different manipulation tasks executed on a bimanual Tiago++ robot. Red and green masks denote left and
right hand affordance mask predictions, respectively. We segment the task-specific object affordance regions, propose grasps
for these regions, and use pre-designed motion primitives to execute manipulation tasks.

grating our affordance prediction into the grasping pipeline,
the robot is able to make more informed grasping decisions,
leading to greater task success. Examples of different manip-
ulation tasks are shown in Figure 6.

VI. CONCLUSION

In this work, we proposed a framework for extracting
precise, meaningful affordance regions from human activ-
ity videos, resulting in the 2HANDS dataset of action-
able bimanual affordances. We further introduced a novel
VLM-based task-aware bimanual affordance prediction model,
2HandedAfforder, that predicts actionable affordance regions
from task-related text prompts. To evaluate the alignment
of the extracted affordances with human-annotated ones, we
further proposed a novel ActAffordance benchmark, which is a
particularly challenging benchmark for prompt-based segmen-
tation of precise object affordance regions. Our experiments
demonstrate that 2HandedAfforder can predict meaningful
task-oriented bimanual affordances compared to other works,
thereby showcasing the effectiveness of our data extraction
pipeline and proposed model. Our real-world robotic ma-
nipulation experiments further showcased the efficacy of the
predicted affordances compared to other object or part segmen-
tation methods. In the future, we plan to extend our method
to other egocentric video datasets and to other tasks beyond
the kitchen context. We also plan to use activity recognition
methods to automatically extract narrations for the videos.
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APPENDIX A
ADDITIONAL FILTERING AND AUGMENTATION STEPS

Between each of the major steps of the affordance extraction
pipeline different filtering steps were applied to clean up
the data. After calculating the intersection of the completed
mask and the hand mask erosion and dilation steps were
applied to remove scattered mask pixels and fill gaps to leave
only one connected affordance mask. Furthermore, inconsis-
tencies and inaccuracies within the data were detected and
the data points were deleted, e.g. the calculated affordance
masks are empty, the action is classified as bimanual but
only one affordance mask is provided. Lastly, we remove
datapoints with narrations that are too vague or do not describe
an affordance by blacklisting some expressions, e.g. ‘throw
something into the bin’ or ‘look at pan’. We augment the data
by flipping all of the actions horizontally, essentially doubling
the size of the dataset. By doing that we even out the ratio
of left-handed and right-handed actions. Afterwards, we apply
common augmenting strategies also used by Goyal et al. [10],
i.e., color jittering (randomly changing the brightness, contrast,
saturation and hue of the inpainted frame) and cropping.

APPENDIX B
2HANDS DATASET

Each data point of 2HANDS consists of an inpainted frame,
two affordance masks where one of them is left empty if it is a
unimanual action and the narration. We also provide additional
information such as the object masks and object names if
needed. In the end, the proposed dataset 2HANDS consists of
over 278k datapoints from 25 different kitchen environments
from the EPIC-KITCHENS dataset. An overview of the dataset
can be found in Table 4.1. This dataset was used to train the
models.

Amount
Left Handed 76,278
Right Handed 76,278
Symmetric 51,684
Asymmetric 73,920
Total 278,160
No. Kitchen Environments 25
No. Videos 47
No. Object Classes 160
No. Verb Classes 73

TABLE III: Overview of the dataset

We collected affordance masks for 160 different object
categories and 73 verb class.

The object classes:
alarm, almond, aubergine, bag, banana, basil, bean:green,
beer, bin, board:chopping, book, bottle, bowl, box, bread,
broccoli, brush, butter, button, can, candle, cap, caper,
carrot, chair, cheese, cherry, chicken, chilli, choi:pak,
chopstick, cinnamon, cloth, clothes, coffee, colander,
container, cooker:slow, cork, corn, cover, cucumber, cumin,
cup, cupboard, cutlery, cutter:pizza, dishwasher, dough,

drawer, fan:extractor, filter, fish, flour, food, fork, fridge,
garlic, ginger, glass, glove, grater, hand, heat, heater, hob,
holder, ice, jar, jug, juicer, kettle, knife, knob, label, ladle,
leaf, leek, lemon, lettuce, lid, light, lighter, liquid:washing,
machine:sous:vide, machine:washing, maker:coffee, mat,
meat, microwave, milk, mixture, mushroom, napkin, noodle,
nut, oil, onion, opener:bottle, oven, package, pan, pan:dust,
paper, paste, peach, peeler:potato, pepper, phone, pin:rolling,
pith, pizza, plate, plug, pork, pot, potato, powder:washing,
processor:food, rack:drying, rest, rice, roll, rubbish, salt,
sauce, sausage, scissors, shell:egg, sink, skin, soda, spatula,
sponge, spoon, sprout, stalk, stock, syrup, tap, toaster,
tofu, tomato, tongs, top, towel, towel:kitchen, tray, utensil,
vegetable, vinegar, wall, water, whetstone, window, wine,
wire, wrap, wrap:plastic, yoghurt

The verb classes:
add, adjust, apply, attach, break, brush, carry, check, choose,
close, coat, cook, crush, cut, divide, drink, dry, empty, fill,
filter, flatten, flip, form, gather, hold, increase, insert, knead,
lift, lower, mix, move, open, pat, peel, pour, press, pull, put,
remove, rip, roll, rub, scoop, scrape, screw, scrub, season,
serve, set, shake, sharpen, slide, soak, sort, spray, sprinkle,
squeeze, stab, stretch, take, throw, turn, turn-down, turn-
off, turn-on, uncover, unroll, unscrew, unwrap, use, wash, wrap

take onion

pick up bowl

Fig. 7: Failure cases. In both cases the model is undecisive of
what to do. In the top example it predicts affordance regions
at different objects that are also not related to the task, i.e.,
the spatula and the knife. In the bottom example the model
predicts a bimanual action to pick up the bowl and predicts
affordance regions at multiple bowls even though only one
bowl is supposed to be picked up.



APPENDIX C
ACTAFFORDANCE ANNOTATION PROCEDURE

For annotating the images for the ActAffordance Bench-
mark, we used TORAS [17]. We asked 10 human annotators to
highlight all possible interaction regions of the target objects in
the image where the hands were already removed with respect
to the underlying task, i.e. the narration. This annotation was
done for both the left and right hands. Additionally, annotators
also had access to the original image to see how the hands
interacted with the objects in the scene.

APPENDIX D
REAL ROBOT EXPERIMENTS

A successful example for an affordance prediction as well
as the corresponding masks from LangSAM are visualized in
Figure 8.

Fig. 8: The affordance detection of our method detects precise
affordance regions (left) for the pot and the spatula that can be
used to successfully perform the task of stirring within the pot.
The right image shows the mask outputs by LangSAM. The
text prompts used for this prediction were “wooden spatula”
and “cooking pot” for LangSAM and “stir vegetables” for
2HandedAfforder.

Figure 9 shows the robot performing the task of ’stirring
vegetables’. The first example illustrates an unsuccessful at-
tempt where the robot, relying on plain object segmentation,
attempts to stir within the pot while holding the spatula too
close to the middle. This suboptimal grip prevents the robot
from reaching into the pot, making it impossible for it to
complete the task of stirring the vegetables properly. The

second example demonstrates an improvement, as the robot
uses our affordance detection method to identify a better
grasping region. However, it employs only one arm instead
of two, leading to an unintended side effect since the pot is
not stabilized. The stirring motion causes it to move, making
the task more difficult.

In the final and most successful example, the robot fully
utilizes both affordance regions detected by 2HandedAfforder.
Here, the left end effector grasps the spatula closer to its
edge while the right end effector holds the pot securely in
place. This configuration enables a stable and effective stirring
motion, demonstrating the advantages of incorporating our
affordance predictions in bimanual robotic manipulation tasks.

Fig. 9: Demonstration how different affordance detections
determine the success in performing a specific task.

APPENDIX E
ADDITIONAL QUALITATIVE RESULTS

Additional qualitative results showing the performance of
our proposed model compared to different baselines and the
ground truth are provided in Figure 10.

APPENDIX F
QUALITATIVE ANALYSIS OF MASK COMPLETION

APPROACHES

We developed and evaluated two mask completion ap-
proaches, i.e., an image reconstruction (IR) based and video
segmentation (VS) based approach. The IR based approach
uses the image inpainting model MI-GAN [43] to inpaint
the missing regions of the mask using the hand mask as
inpainting region. The VS based approach creates an image
sequence out of the original image and the image with the
hands removed. The object mask for the original image is



wash the cooking pot take knife close lid put down plate put down bowl

LISA

AffLLM

3DOI

2HAff

Affordance
Extraction

Benchmark
(Ground Truth)

Fig. 10: Additional qualitative results showing the performance of our proposed model compared to different baselines and the
ground truth.

then propagated to the inpainted image using SAM2 [39]
to create the completed version of the mask. The evaluation
of these approaches was conducted qualitatively, and some
examples can be seen in Fig. 9. It is clearly visible that the
VS based approach performs better on average than the IR
based approach. Generally, the VS based approach provides
more accurate results, see row 1 and 2, and it does not detect
affordances at regions where the object was not reconstructed
properly (row 3 and 4). This can be explained intuitively for
two reasons: The IR based approach has no information about
the underlying RGB image and only processes the object mask
itself which is binary by nature. So the image reconstruction
model focuses on simple principles such as the continuation
of lines and shapes. This leads to the reconstruction of what
we call ’ghost handles’ where the image reconstruction model
still predicts the existence of a handle or object part in general
even though the object was not reconstructed successfully.
This also reduces the accuracy of the IR based method. The
VS based approach, however, has the information about the
inpainted image and thus will only complete object parts
that are properly inpainted. So, it naturally filters out data
points where the object was not inpainted properly since the
completed mask will not intersect the hand mask. Thus, it will
always be more accurate and never predict ’ghost handles’.
There are only a couple of examples where the IR based

approach performs better than the VS based approach (row
5). Hence, we decided to use the VS based approach for the
creation of 2HANDS.



Original IR Based VS Based

Fig. 11: Examples of the two affordance extraction methods. The left column shows the original image, the center column
shows the image reconstruction based approach and the right column shows the video segmentation based approach. The video
segmentation based approach outperforms the image reconstruction based approach qualitatively in almost every instance.
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