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Abstract
We present TorchAO, a PyTorch-native model
optimization framework leveraging quantization
and sparsity to provide an end-to-end, training-
to-serving workflow for AI models. TorchAO
supports a variety of popular model optimiza-
tion techniques, including FP8 quantized training,
quantization-aware training (QAT), post-training
quantization (PTQ), and 2:4 sparsity, and lever-
ages a novel tensor subclass abstraction to repre-
sent a variety of widely-used, backend agnostic
low precision data types, including INT4, INT8,
FP8, MXFP4, MXFP6, and MXFP8.

TorchAO integrates closely with the broader
ecosystem at each step of the model optimization
pipeline, from pre-training (TorchTitan (Liang
et al., 2024)) to fine-tuning (TorchTune (torch-
tune, 2025), Axolotl (Axolotl, 2025)) to serving
(HuggingFace (Wolf et al., 2019), vLLM (Kwon
et al., 2023), SGLang (Zheng et al.), Execu-
Torch (executorch, 2025)), connecting an other-
wise fragmented space in a single, unified work-
flow. TorchAO has enabled recent launches
of the quantized Llama 3.2 1B/3B (MetaAI,
2025b) and LlamaGuard3-8B models (Inan et al.,
2023) and is open-source at https://github.
com/pytorch/ao/.

1. Introduction
Large Language Models (LLMs) have been at the fore-
front of content creation, text summarization, chatbots,
and code generation, among a wide variety of other use
cases. However, such capabilities often require substantial
infrastructure, as seen in top-performing models such as
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Figure 1. TorchAO optimization workflow. TorchAO is closely
integrated with popular pre-training, fine-tuning, serving, and
model-definition frameworks to provide a seamless, PyTorch-
native end-to-end workflow for users to optimize their models.
∗MX training is a prototype feature.

Qwen3 (235B parameters) (Qwen3, 2025), DeepSeek-v3
(671B) (Guo et al., 2025), Llama 3.1 (405B) (Grattafiori
et al., 2024), and Llama 4 Behemoth (2T) (MetaAI, 2025a).

The computational costs and memory footprint of these
models pose significant challenges in every step of the LLM
pipeline, from training to fine-tuning to serving. For in-
stance, training Llama 3.1 took 30.84M GPU hours on 16K
H100 GPUs (Grattafiori et al., 2024), and even serving the
model in its original BF16 precision requires at least 800GB
aggregate memory just to fit the model, exceeding the mem-
ory limitations of a single server with 8 H100 GPUs. Even
at the smaller 1-8B parameter scale, reducing the sizes of
these models is important for deploying them in resource-
constrained environments such as mobile and edge devices.

However, the existing LLM optimization pipeline is highly
fragmented. For instance, a researcher may pre-train their
model using mixed FP8/BF16 precision support in Trans-
former Engine (NVIDIA, 2025), load the pre-trained model
into Unsloth (Han & Han, 2025) or Axolotl (Axolotl, 2025)
for further fine-tuning, perform quantization using bitsand-
bytes (Dettmers et al., 2022) before finally serving the model
using llama.cpp (GGML, 2025). In each step, the user
may need to manually convert the model format (e.g. from
HuggingFace’s safetensors to GGUF in llama.cpp), and the
quantization schemes may diverge from the ones used in
previous steps with subtle discrepancies.
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Figure 2. TorchAO APIs. Users can optimize their models using
the above one-line transformations. ∗API subject to change.

We present TorchAO, a PyTorch-native model optimization
framework leveraging quantization and sparsity to provide
an end-to-end, training-to-serving workflow for AI models.
TorchAO integrates closely with the broader ecosystem at
each step of the model optimization pipeline (Figure 1):

• Pre-training. TorchAO’s FP8 training support (§2.1)
composes natively with PyTorch features such as
torch.compile, autograd, FSDP2, and tensor par-
allelism support, reaping throughput gains (∼1.5x at
405B scale) (Wright et al., 2024) with virtually no
change in model quality when integrated into TorchTi-
tan’s pre-training (Liang et al., 2024).

• Fine-tuning. Quantization-Aware Training (QAT) is a
popular technique for mitigating quantization degrada-
tion by simulating quantization numerics during train-
ing. TorchAO’s QAT support can recover up to 96%
of the degradation in quantized accuracy (Or et al.,
2024) and can be composed with LoRA (Hu et al.,
2022) to improve the training throughput by 1.89x
compared to vanilla QAT (Or, 2024; MetaAI, 2025b).
Additionally, TorchAO also provides the NF4 data type
for QLoRA (Dettmers et al., 2023) to further reduce
resource requirements during training.

TorchTune (torchtune, 2025) natively integrates Tor-
chAO’s QAT, NF4, and FP8 training support into its
fine-tuning recipes. Axolotl (Axolotl, 2025) also pro-
vides fine-tuning workflows that leverage TorchAO
QAT, including one that composes QAT with Direct
Preference Optimization (DPO) (Rafailov et al., 2023).

• Serving. TorchAO provides flexible support for a wide
variety of backend agnostic Post-Training Quantiza-
tion (PTQ) schemes for model optimization before
serving. For server backends, TorchAO’s PTQ support
is integrated as an optional quantization transformation
before serving in SGLang (PyTorch et al., 2024) or
vLLM (vLLM, 2025). For edge and mobile backends,
users can lower their TorchAO quantized models in Ex-
ecuTorch (ExecuTorch, 2025; MetaAI, 2025b), which
provides lightweight runtimes with static memory plan-
ning to reduce performance and power overheads, and
serve their models on-device using our custom quan-
tized ARM CPU and metal kernels (torchao, 2025a).

from torchao.quantization import (
Int4WeightOnlyConfig,

)
from transformers import (

AutoModelForCausalLM,
TorchAoConfig,

)
config = Int4WeightOnlyConfig()
config = TorchAoConfig(quant_type=config)
mod = AutoModelForCausalLM.from_pretrained(

"meta-llama/Llama-3.2-3B",
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=config,

)
mod.push_to_hub(

f"{user_id}/Llama-3.2-3B-int4",
safe_serialization=False,

)

Listing 1. TorchAO as a quantization backend in HuggingFace.
TorchAO quantization can be applied to any model on
HuggingFace Hub through the TorchAoConfig. Users
can then serialize and deserialize their quantized models and
upload them to HuggingFace Hub at ease with native
HuggingFace APIs: save pretrained,
load pretrained, and push to hub.

TorchAO is also closely integrated with HuggingFace Trans-
formers (Wolf et al., 2019) and Diffusers (von Platen et al.),
two popular model-definition frameworks for state-of-the-
art machine learning models (Listing 1). More specifi-
cally, TorchAO is natively integrated as one of the quan-
tization backends in HuggingFace, enabling users to op-
tionally apply post-training quantization when loading their
models from the HuggingFace Hub. Our integration also
supports serialization through native HuggingFace APIs
such as save pretrained, load pretrained, and
push to hub, further enabling users to seamlessly save
and load their quantized models for future inference or gen-
eration on their desired serving frameworks.

Alternatively, users can simply call TorchAO’s one-line
APIs directly to optimize their models (Figure 2). For in-
stance, users may wish to use a custom training loop or a
training framework not yet integrated with TorchAO for FP8
pre-training or QAT fine-tuning. For more detailed usage,
please refer to Appendix B.

In the ensuing sections, we will walk through two end-to-
end example workflows that leverage different model opti-
mization techniques in TorchAO targeting different back-
ends. In the first workflow, we will use FP8 training and
inference as our unifying theme and target server GPUs
as the serving backend (§2). In the second workflow, we
will leverage QAT to mitigate quantization degradation and
lower our model to the XNNPACK (Google, 2025) backend,
which provides optimized ARM kernels used by the most
popular Android and iOS phones (§3).
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# Pre-training in FP8 with TorchTitan
torchtitan/run_train.sh
--training.compile
--model.converters="float8"

# Fine-tuning in FP8 with TorchTune
tune run --nnodes 1 --nproc_per_node 8
full_finetune_distributed
--config llama3.1/8B_full

enable_fp8_training="true"

# Upload FP8 model to HuggingFace hub
# (Optional, not shown)

# Serve FP8 model through vLLM
vllm serve
<HF_USER_ID>/Llama-3.1-8B-Instruct-fp8
--tokenizer meta-llama/Llama-3.1-8B

Listing 2. Example end-to-end FP8 flow. The user leverages
TorchAO’s FP8 training support to pre-train and fine-tune
their model using TorchTitan and TorchTune respectively,
then (optionally) uploads their trained model to
HuggingFace hub and serves it using vLLM. Detailed
FP8 training options are omitted for brevity.

2. Workflow: FP8 Targeting Server GPUs
The first end-to-end workflow leverages TorchAO’s FP8
training support to pre-train and fine-tune the model using
TorchTitan and TorchTune respectively, and then serves the
trained model in vLLM using the same FP8 configurations.

Typically, pre-training is a time consuming step that trains
on large, general datasets like C4 (allenai, 2025), while fine-
tuning is a separate step that adapts the pre-trained model to
more domain specific tasks. In this example workflow, both
training steps leverage TorchAO’s dynamic FP8 training
with tensorwise scaling to speed up the training process.
In each step of the workflow, users may optionally upload
their pre-trained or fine-tuned checkpoints to HuggingFace
hub for others in the community to continue fine-tuning the
models or directly use them for inference (Listing 2).

2.1. FP8 Training

TorchAO’s FP8 training dynamically casts activations,
weights, and gradients to FP8 and leverages specialized
GEMM kernels to take advantage of the FP8 tensor
cores (NVIDIA, 2023) in the underlying GPUs. This tech-
nique is most useful for training models in which the ma-
jority of GEMM operations are large enough such that the
speedup achieved by using FP8 tensor cores is greater than
the overhead of dynamic quantization (Appendix C).

We support three FP8 training scaling recipes, each with
different throughput/accuracy trade-offs: tensorwise, row-
wise, and rowwise with high precision grad weight
(see Appendix A for full recipe details). Combined with

Quantization Output token
throughput (tok/s)

Time per output
token (ms)

Inter-token
latency (ms)

None (BF16) 103.6 (+0%) 9.50 (+0%) 9.47 (+0%)
FP8 tensorwise 132.8 (+28.2%) 7.48 (-21.2%) 7.47 (-21.1%)

Table 1. Serving FP8 pre-trained and fine-tuned Llama3.1-8B
on vLLM. Serving this model in FP8 vs in the original precision
(BF16) saw a 28% increase in throughput and a 21% reduction in
latency. Clients in both experiments used the ShareGPT dataset
and number of prompts = 1.

torch.compile, tensorwise scaling achieved training
throughput speedups of up to 1.5x at 405B parameter scale
on 512 H100 GPUs (Wright et al., 2024), and rowwise scal-
ing achieved speedups of up to 1.43x at 70B parameter scale
on 1920 H200 GPUs (Wright et al., 2025), compared to
training with BF16.

TorchAO’s FP8 training leverages the tensor subclass ab-
straction (PyTorch, 2025) to compose with PyTorch auto-
grad and PyTorch distributed. Our FP8 training support is
integrated into both TorchTitan and TorchTune, so all of
the above scaling recipes can be used for pre-training and
fine-tuning with minimal setup (Listing 2).

For further throughput gains, users can leverage asyn-
chronous tensor parallelism (Wang et al., 2024b), a compiler
driven approach to overlapping the compute and commu-
nications in tensor parallel, via using SymmetricMemory
APIs (Wang et al., 2024a) for copy-engine based commu-
nications instead of SM-based ones, and micro-pipelining
the computations. TorchAO’s FP8 tensorwise and rowwise
recipes are composable with asynchronous tensor paral-
lelism, yielding up to 17% additional training throughput
improvement, depending on factors like model size and
activation checkpointing strategy (torchtitan, 2025).

2.2. Post-Training Optimization

Similar to FP8 training, both post-training quantization
(PTQ) and sparsity support in TorchAO leverage PyTorch’s
tensor subclass abstraction to provide native composability
with other PyTorch features and seamless serialization sup-
port. TorchAO’s PTQ supports a wide range of popular data
types, including INT4, INT8, FP8, MXFP4, MXFP6, and
MXFP8, and can be lowered to efficient kernels across dif-
ferent backends such as CUDA and ARM CPU. TorchAO’s
PTQ is also integrated with GemLite (gemlite, 2025) to
leverage specialized Triton kernels (triton, 2025) to further
speed up inference by 1.1-2x across different batch sizes
and tensor parallel sizes (PyTorch et al., 2024).

TorchAO’s sparsity support accelerates inference by lever-
aging hardware support for sparse matrix multiplications
offered by modern NVIDIA GPUs (Mishra et al., 2021).
Our benchmarks have shown up to 1.3x speedup with rela-
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tive model accuracy of 91-100% on ViT models compared
to the non-sparse baseline. TorchAO provides APIs and ker-
nels for different sparsity techniques including sparse marlin
2:4 (Frantar et al., 2025), 2:4 sparsity, block sparsity, INT8
dynamic quantization + 2:4 sparsity, and rowwise FP8 + 2:4
sparsity for weights and activations (Haziza et al., 2025).

For detailed quantization and sparsity benchmarks, refer to
the respective READMEs (torchao, 2025c;d).

2.3. Serving

TorchAO’s PTQ support is closely integrated with popular
model serving frameworks such as vLLM (Kwon et al.,
2023) and SGLang (Zheng et al.) as one of the quantization
backends. In particular, our FP8 inference support uses the
same configurations as FP8 training to provide consistent
end-to-end numerics across different steps in the workflow.
Initial benchmarks on serving Llama3.1-8B in FP8 vs in the
original precision (BF16) demonstrates a 28% increase in
throughput and 21% reduction in latency (Table 1).

3. Workflow: QAT Targeting Mobile Devices
The second end-to-end workflow leverages TorchAO’s
Quantization-Aware Training (QAT) support to fine-tune
the model using TorchTune, and then lowers the model to
the XNNPACK backend using ExecuTorch, enabling the
model to be accessed on mobile phones and wearable de-
vices such as smart glasses.

3.1. Quantization-Aware Training

QAT refers to inserting ”fake” quantization operations into
the model, which simulate the quantization process during
training. This allows the model to learn to be robust to quan-
tization errors, improving the accuracy of the model when
it is ultimately quantized post-training. TorchAO offers
simple and flexible QAT APIs that allows users to specify
different quantization schemes (e.g., INT8 dynamic activa-
tions with INT4 weights), and provides corresponding PTQ
configurations to ensure end-to-end numerical consistency
(see Listing 7 in Appendix B for a detailed example).

TorchAO’s QAT support is integrated into TorchTune’s and
Axolotl’s fine-tuning workflows, enabling effortless fine-
tuning of a model that is intended to be quantized (Listing 3).
During fine-tuning, all ”fake” quantization operations are
still performed in high precision (e.g. BF16) even though
they simulate low precision numerics (e.g. INT4). The
resulting QAT checkpoint retains the exact same model
structure as the original checkpoint, and so can be used
as a drop-in replacement that offers superior post-training
quantized accuracy with identical inference speeds. Torch-
Tune additionally provides a recipe that composes QAT with
LoRA (Hu et al., 2022) to reduce the overheads of the extra

# Fine-tuning using torchtune’s QAT recipe
tune run --nnodes 1 --nproc_per_node 4

qat_distributed
--config llama3/8B_qat_full

# Lower model to executorch
python -m

examples.models.llama.export_llama
--checkpoint <checkpoint.pth>
--params <params.json>
--use_sdpa_with_kv_cache
--xnnpack
--use_kv_cache
--embedding-quantize 4,32
--quantization-mode 8da4w

# Serve on mobile device
# Build llama runner and run on Android
adb shell "cd /data/local/tmp/llama &&

./llama_main --model_path <model.pte>
--tokenizer_path <tokenizer.model>
--prompt ’What is the capital of
France?’ --seq_len 120" --warmup=1

Listing 3. Example end-to-end QAT Targeting Mobile Devices.
The user leverages TorchTune’s QAT and PTQ support to
fine-tune and quantize Llama3.1-8B, then exports the model
using ExecuTorch and serves it as an INT4 model on CPU.
Detailed export flags are omitted for brevity.

”fake” quantization operations, yielding an 1.89x improve-
ment in training throughput compared to vanilla QAT (Or,
2024; MetaAI, 2025b).

Recent launches of the quantized Llama 3.2 1B/3B (MetaAI,
2025b) and LlamaGuard3-8B models (Inan et al., 2023)
leveraged TorchAO’s QAT support to mitigate quantization
degradation in their INT4 checkpoints targeting the ARM
CPU backend. This resulted in a 2-4x inference speedup,
56% reduction in model size, and 41% reduction in memory
usage compared to the original BF16 checkpoints, while
maintaining competitive performance across a wide variety
of inference tasks.

3.2. Lowering to Edge

Models quantized using TorchAO’s QAT or PTQ APIs
can be easily lowered to edge backends using ExecuTorch,
which provides conversions that are adapted to natively
match TorchAO’s quantization patterns (Listing 3). This
enables efficient deployment of these models on various
edge backends, including Android, iOS, and CoreML. Tor-
chAO also provides sub-8-bit ARM CPU and Metal kernels
for quantized linear and embedding operations that can be
used in eager model execution, with torch.compile,
with PyTorch AOTInductor, or in the exported model. For
detailed instructions on how to export TorchAO’s quantized
models to run on mobile backends, refer to the ExecuTorch
README (executorch, 2024).
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Model Quantized hellaswag
accuracy

Quantized wikitext
word perplexity

Training
throughput (tok/s)

Training peak
memory (GB)

Llama3-8B 47.0% (57.1% BF16) 26.270 (9.422 BF16) 480.3 (+0%) 17.6 (+0%)
Llama3-8B (QAT) 52.8% (recovered 57.8%) 12.312 (recovered 82.8%) 323.0 (-32.7%) 32.9 (+86.8%)
Llama3.1-8B 51.8% (57.9% BF16) 18.628 (9.164 BF16) 492.4 (+0%) 17.7 (+0%)
Llama3.1-8B (QAT) 55.5% (recovered 60.0%) 10.901 (recovered 81.6%) 323.0 (-34.4%) 33.0 (+86.5%)
Llama3.2-3B 46.8% (51.7% BF16) 17.461 (12.051 BF16) 1408.8 (+0%) 13.8 (+0%)
Llama3.2-3B (QAT) 50.2% (recovered 69.8%) 13.220 (recovered 78.4%) 737.7 (-47.6%) 14.5 (+5.24%)

Table 2. Quantization-Aware Training (QAT) on Llama3 models, fine-tuned on OpenAssistant Conversations Dataset
(OASST1) (OpenAssistant, 2025). For this workload, QAT can recover up to 69.8% of the degradation in quantized hellaswag
accuracy and 82.8% of the degradataion in quantized wikitext word perplexity.

Scaling Peak Mem
(GB)

Median
tok/s Speedup

None (BF16) 47.65 6150 1.0
tensorwise + FP8 all-gather 47.77 7689.5 1.25
rowwise + BF16 all-gather 47.79 6768 1.10

Table 3. FP8 pre-training on Llama3-8B using TorchTitan. Ten-
sorwise scaling with FP8 all-gather achieves 1.25x faster training
throughput on this model with on par memory usage.

Quantization
Technique Acc Word

perplexity
Tput

(tok/s)
Model size

(GB)

None 60.01 7.33 132.41 15.01
int4wo-64 58.10 8.25 268.88 4.76
int8wo 59.92 7.34 216.38 8.04
float8wo 59.83 7.37 213.88 8.03
float8dq (PerRow) 59.86 7.41 167.13 8.04
float8dq (PerTensor) 59.95 7.42 176.44 8.03

Table 4. Post-training quantization (PTQ) on Llama3.1-8B.
Quantization reduced model size by 2-4x and increased inference
throughput by up to 2x with minimal quantization degradation. All
experiments use a batch size of 1 with torch.compile.

4. Evaluation
In this section, we evaluate TorchAO’s FP8 training, post-
training quantization (PTQ), and quantization-aware train-
ing (QAT) support. All experiments are performed on 1-8
H100 GPUs, each with 96GB of HBM3 memory.

FP8 training. We benchmark training Llama3-8B on the
C4 dataset (allenai, 2025) on 8x H100 GPUs for 100 steps
using TorchTitan. All experiments use a batch size of 1, a
sequence length of 8192, torch.compile, and per op
selective activation checkpointing (SAC). For this workload,
tensorwise scaling combined with FP8 all-gather operations
achieved a speedup of 1.25x over the BF16 baseline with
on par peak memory usage (Table 3) and virtually identical
loss curves (Appendix D).

Post-training quantization (PTQ). We quantize Llama3.1-
8B across a variety of PTQ settings and evaluated the quan-
tized models on the hellaswag and wikitext tasks on a single

H100 GPU using a batch size of 1 with torch.compile.
PTQ reduced the model size by 2-4x and increased the in-
ference throughput by up to 2x, while mostly maintaining
parity on hellaswag accuracy and wikitext word perplexity
across all quantization settings compared to the baseline
BF16 model (Table 4).

Quantization-aware training (QAT). At lower precisions
such as 4-bits, quantization degradation from PTQ alone
is more pronounced and QAT becomes more effective.
We evaluate QAT by fine-tuning Llama3-8B, Llama3.1-
8B, and Llama3.2-3B on the OpenAssistant Conversations
Dataset (OpenAssistant, 2025) on 4 H100 GPUs for 1000
steps using TorchTune. All experiments use a batch size
of 8, a learning rate of 2e-5, a weight quantization group
size of 32, and activation checkpointing. For this workload,
QAT was able to recover up to 69.8% of the degradation in
quantized hellaswag accuracy and 82.8% of the degradation
in quantized wikitext word perplexity (Table 2).

5. Conclusion
In this paper, we introduced TorchAO, a PyTorch-native
model optimization framework that is closely integrated
into each step of the pre-training, fine-tuning, and serving
lifecycle of LLMs. TorchAO supports popular model op-
timization techniques, including FP8 training, QAT, PTQ,
and 2:4 sparsity, and targets a variety of backends including
server CPU/GPU and mobile/edge. We welcome your con-
tributions at https://github.com/pytorch/ao/.
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A. Appendix: TorchAO FP8 Scaling Recipes
TorchAO supports the following FP8 training recipes, which have different performance/accuracy trade-offs:

• tensorwise: This is the default recipe, with reasonable performance/accuracy trade-offs. It computes a single scaling
factor for each tensor. This technique has the lowest overhead and highest performance, but is more sensitive to
outliers since a single outlier anywhere in the tensor will affect the scaling of the entire tensor. This can cause higher
quantization error as more values may underflow to 0. When training with FSDP, tensorwise scaling also supports an
additional optimization enable fp8 all gather which will perform the all-gathers in FSDP using FP8 to reduce
communication overhead.

• rowwise: This recipe trades off a bit of performance for better accuracy. It computes scaling factors along logical rows
of the left GEMM operand, and along logical columns of the right GEMM operand. Computing scaling factors for
more granular slices of the tensors reduces sensitivity to outliers, improving accuracy but with a performance cost
compared to tensorwise.

• rowwise gw hp: This recipe is like rowwise but it keeps the ∂L
∂W computation in bfloat16, as experiments have

shown this to be more sensitive to lower precision, and keeping it in higher precision is better for accuracy. This recipe
can also achieve higher speedups than rowwise in models where the majority of GEMMs are small than M == N ==
K = 13k.

B. Appendix: TorchAO APIs

torch.compile(model)
convert_to_float8_training(model)

Listing 4. TorchAO FP8 Training Example.

# INT4 weight-only, targeting tinygemm cuda kernel
quantize_(model, Int4WeightOnlyConfig(group_size=32))

# OR INT8 dynamic activation + INT4 weight, targeting XNNPACK
quantize_(model, Int8DynamicActivationInt4Weight(group_size=32))

# OR FP8 dynamic activation + FP8 weight, targeting hopper GPUs and beyond
quantize_(model, Float8DynamicActivationFloat8WeightConfig())

# etc.

Listing 5. TorchAO PTQ Example.

model = model.cuda()

# Sparse Marlin 2:4
quantize_(model, Int4WeightOnlyConfig(layout=MarlinSparseLayout()))

# OR 2:4 Sparsity
sparsify_(model, SemiSparseWeightConfig())

# OR Block Sparsity
sparsify_(model, BlockSparseWeightConfig())

Listing 6. TorchAO Sparsity Example.
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# prepare: insert fake quantization ops
# swaps ‘torch.nn.Linear‘ with ‘FakeQuantizedLinear‘
activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = FakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(model, qat_config)

# train
train_loop(model)

# convert: transform fake quantization ops into actual quantized ops
# swap ‘FakeQuantizedLinear‘ back to ‘torch.nn.Linear‘ and inserts
# quantized activation and weight tensor subclasses
quantize_(model, FromIntXQuantizationAwareTrainingConfig())
quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32))

# inference or generate (not shown)

Listing 7. TorchAO QAT Example. TorchAO’s QAT flow is separated into two steps, prepare and convert. During the prepare step, insert
”fake” quantization operations into the linear and embedding modules in the model to simulate quantization numerics, but do not
actually cast the dtypes to lower precision. After training, in the convert step, we replace these ”fake” quantization operations and
with real quantization operations, using the same code path as TorchAO’s regular PTQ flow.

C. Appendix: Float8 Training Microbenchmarks

Figure 3. Observed float8 vs bfloat16 speedup of LayerNorm + Linear + Sigmoid forward and backward pass, by forward M, N, K
A common question about FP8 training is ”when is FP8 linear faster vs BF16?”. Given the M, K, N of the forward pass through your
linear, you can reference the table below for a microbenchmark based speedup estimate on NVIDIA H100
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D. Appendix: Float8 Training Loss Curves

Figure 4. Observed loss curves for float8 tensorwise and rowwise training with FSDP2 on 8xH100 GPUs, compared with the
bfloat16 baseline.

E. Appendix: TorchAO Prototype Features
TorchAO currently has many exciting prototype features that are not guaranteed to be suitable for production use yet, but
are available for users to experiment with. The list of prototype features is provided below. You can find more details in the
TorchAO prototypes folder (torchao, 2025b).

• AutoRound: optimize weight rounding via signed gradient descent (Safaryan & Richtárik, 2021)

• AWQ: activation-aware weight quantization (Lin et al., 2024)

• Blockwise FP8: FP8 blockwise quantization introduced by DeepSeek (Guo et al., 2025)

• float8nocompile: accelerating eager FP8 tensorwise training with triton kernels

• GaLore: memory-efficient training with gradient low-rank projection (Zhao et al., 2024)

• HQQ: half-quadratic quantization (Badri & Shaji, 2023)

• MoE quantzation: mixture of experts (MoE) quantization for inference

• MX formats: mxfp4, mxfp6, and mxfp8 for training (Rouhani et al., 2023)

• ParetoQ: scaling laws in extremely low-bit LLM quantization (Liu et al., 2025)

• ParQ: piecewise-affine regular quantization (QAT) (Jin et al., 2025)

• INT8 quantized training: quantized INT8 weights or dynamic INT8 quantization

• scaled grouped mm: differentiable scaled grouped GEMM for MoE FP8 training

• SmoothQuant: remove outliers for W8A8 quantization (Xiao et al., 2023)

• SpinQuant: quantization with learned rotations (Liu et al., 2024)
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