
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DREAMGUIDER: IMPROVED TRAINING FREE
DIFFUSION-BASED CONDITIONAL GENERATION

Anonymous authors
Paper under double-blind review

(2) Real world Superresolution(1) Real world  Colorization

(4) Anime to Face (5) ID Guidance (5) Semantic Guidance(3) Style Guidance (4) Inpainting

(1) Real world Colorization

Figure 1: An illustration of the different applications of our method. We utilize a pretrained
diffusion model to generate images satisfying a predefined condition without backpropagation
through the diffusion UNet or any hand-crafted parameter tuning. We present results on (1) Real-
world colorization, (2) Real-world super-resolution, (3) Style-guided Text-to-Image Generation, (4)
Inpainting, (5) Sketch-to-Face, (6) Face ID Guidance, and (7) Face Semantics-to-Face synthesis.

ABSTRACT

Diffusion models have emerged as a formidable tool for training-free conditional
generation. However, a key hurdle in inference-time guidance techniques is the
need for compute-heavy backpropagation through the diffusion network for estimat-
ing the guidance direction. Moreover, these techniques often require handcrafted
parameter tuning on a case-by-case basis. Although some recent works have intro-
duced minimal compute methods for linear inverse problems, a generic lightweight
guidance solution to both linear and non-linear guidance problems is still missing.
To this end, we propose Dreamguider, a method that enables inference-time guid-
ance without compute-heavy backpropagation through the diffusion network. The
key idea is to regulate the gradient flow through a time-varying factor. Moreover,
we propose an empirical guidance scale that works for a wide variety of tasks,
hence removing the need for handcrafted parameter tuning. We further introduce
an effective lightweight augmentation strategy that significantly boosts the perfor-
mance during inference-time guidance. We present experiments using Dreamguider
on multiple tasks across multiple datasets and models to show the effectiveness of
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the proposed modules. To facilitate further research, we will make the code public
after the review process.

1 INTRODUCTION

Generative modeling utilizing Denoising Diffusion Probabilistic Models (DDPMs) Sohl-Dickstein
et al. (2015); Ho et al. (2020); Dhariwal & Nichol (2021); Song et al. (2021b) has massively improved
over the past few years. Multiple works have extended the use of diffusion models for text-to-image
synthesis Balaji et al. (2022); Rombach et al. (2021); Saharia et al. (2022b), 3D synthesis Poole
et al. (2022); Jun & Nichol (2023), video generation Ho et al. (2022); Blattmann et al. (2023); Wu
et al. (2023a), as well as for conditioning to solve inverse problems. Moreover, like conditional
generative adversarial networks (GANs)Goodfellow et al. (2020); Arjovsky et al. (2017), DDPMs
can be adapted to tasks based on a labels Rombach et al. (2021); Dhariwal & Nichol (2021) or visual
prior-based conditioning Saharia et al. (2022a). However, like conditional GANs Wang et al. (2018);
Radford et al. (2015), DDPMs also need to be trained with annotated pairs of labels and instructions
to obtain satisfactory results. This poses a limitation in many cases where there is a lack of paired
data to train large diffusion models. Due to this reason, there has been recent interest in models that
can perform conditional generation without the need for explicit training Yu et al. (2023); Chan et al.
(2016); Nguyen et al. (2017); Graikos et al. (2022).

Progressing towards this direction is prior research in plug-and-play models. First introduced in
Nguyen et al. (2017), the initial research on plug-and-play models Nguyen et al. (2017); Graikos
et al. (2022) enabled conditional sampling from GANs trained with unlabeled data. For this, a
pre-trained classifier Simonyan & Zisserman (2014); Hossain et al. (2019) or a captioning model was
used to estimate the deviation between the GAN-generated image and a given label, and based on
this deviation, the GAN input noise was modulated until the generated sample satisfied the given
text or class label. A similar approach that has been attempted for diffusion models to facilitate
conditional sampling from unconditional diffusion models is classifier guidance Dhariwal & Nichol
(2021); Graikos et al. (2022), where a noise-robust classifier is trained along with the diffusion
model to guide the sampling towards a particular direction. However, classifier guidance brings
in the computational costs of training a classifier, which is often undesirable. Some recent works
have performed conditional generation without explicit training for the condition by utilizing the
implicit guidance capabilities of the diffusion model Chung et al. (2023b); Yu et al. (2023); Nair
et al. (2023); Bansal et al. (2023); Chung et al. (2023a). Diffusion posterior sampling (DPS) Chung
et al. (2023b) proposed a technique of using an L2 norm-based loss function to solve linear inverse
problems using unconditional diffusion models. However, DPS often requires a large number of
sampling steps for photorealistic results. Freedom Yu et al. (2023), yet another work, proposed the
use of general loss functions during sampling to achieve training-free conditional sampling. Some
variants of DPS have also been proposed in the literature Song et al. (2023). All the aforementioned
loss-guided posterior sampling techniques involve a guidance function at each timestep that requires
backpropagation through the diffusion UNet. Recently, He et al. (2023) proposed Manifold Preserving
Guided Diffusion Models (MGD) that remove the need for backpropagating through the diffusion
U-Net by performing a gradient descent with respect to the Minimum Mean Square Error (MMSE).
Although MGD He et al. (2023) works remarkably well for linear tasks that require more guidance
towards the start of the guidance process, it may fail in some tasks where guidance happens earlier,
for example, face semantics-to-image and sketch-to-image, where stronger guidance is required
from a much earlier stage. Moreover, like Yu et al. (2023); Nair et al. (2023), MGD also requires a
case-by-case handcrafted parameter. Hence, a generic lightweight method that works well for both
linear and non-linear guidance functions is still missing. Moreover, the need to find a handcrafted
guidance parameter on a case-by-case basis still remains an open challenge.

In this paper, we introduce a new framework that can adaptively perform zero-shot generation using
diffusion models without the need for any manual intervention by the user. We found a rather
simple fix to the problem during the initial timesteps of diffusion, i.e., by utilizing the gradient
with respect to the diffusion output noise in initial steps of inference. Combined with the guidance
with respect to the MMSE estimate, we found that the combination generalizes well to tasks that
require guidance at very early stages of guidance. Figure 2 presents the visualization of our approach
over existing works present in the literature. Utilizing the correction term along with the correction
with respect to the MMSE estimate significantly boosts the performance in non-linear tasks. We
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Figure 2: An illustration of the difference between the existing method and our method. Existing
works backpropagate through the diffusion network to perform guidance at each timestep, whereas we
find the gradients with respect to the MMSE estimate and the predicted noise based on the timesteps,
thereby bypassing the expensive backpropagation operation.
Table 1: Table illustrating the difference over existing methods performing inference-time guidance.

Method Zeroth order Linear Tasks Non-Linear Tasks Automatic scaling

DPS Chung et al. (2023a) ✗ ✓ ✗ ✗
πGDM Song et al. (2022) ✗ ✓ ✗ ✗
Freedom Yu et al. (2023) ✗ ✗ ✓ ✗
MGD He et al. (2023) ✓ ✓ ✗ ✗
OURS ✓ ✓ ✓ ✓

present the corresponding results in Section 5. Moreover, we treat the energy-based inference-time
guidance Chung et al. (2023b); Yu et al. (2023) as a stochastic gradient optimization of the MMSE
estimate and the noise present in the image. This formulation enabled us to leverage recent research
in parameter-free learning Defazio & Mishchenko (2023); Ivgi et al. (2023) to develop a dynamic
step size schedule. This step size adjusts itself adaptively based on the initial noise seed input
of the diffusion model and guidance functions, hence removing the need for manual parameter
tuning for inference-time guidance. Moreover, motivated by the effectiveness of differentiable
augmentations while training GANs Zhao et al. (2020), we found that utilizing multiple levels of
matching differentiable augmentations to the MMSE estimate and guidance reference significantly
improves the sampling quality, enabling very high-quality sampling with a low number of guidance
steps. We present an overview of the different applications of our method in Figure 1 and an
illustration of the difference of dreamguider with existing methods in Table 1. Namely, we present
results using Stable Diffusion Rombach et al. (2021), unconditional diffusion models released by
Nichol & Dhariwal (2021) for 256 × 256 guidance, and class-conditional diffusion models for
high-resolution 512× 512 conditional synthesis. The different functionalities of Dreamguider are
tabulated in Figure 2.

We present experiments on publicly released models on generic images, face images, and stable
diffusion to show the relevance of our method. We focus on the tasks of (1) Inpainting, (2) Super-
resolution, (3) Colorization, (4) Gaussian Deblurring, (5) Semantic label-to-image generation, (6)
Face sketch-to-image, (7) ID guidance and identity generation, and beat existing benchmarks that
utilize diffusion models for these tasks, obtaining a significant boost in performance over existing
methods leveraging loss-guided models. To summarize, our contributions are:

• We propose a zeroth-order loss-guided diffusion guidance that is applicable to both linear
inverse problems and non-linear inverse problems.

• We remove the need for a manually tuned guidance scale for classifier guidance by proposing
a scaling function that works for a wide variety of tasks.

• We propose a time-varying guidance scale for improving sampling quality.
• We propose a differentiable augmentation strategy to improve sampling quality.

2 BACKGROUND

2.1 TRAINING-FREE CONDITIONAL SAMPLING USING DIFFUSION MODELS

Recently, there has been a rise in multiple works that propose utilizing unconditional diffusion
models for conditional sampling Nair et al. (2023); Bansal et al. (2023); Chung et al. (2023c);
Kawar et al. (2022). The earlier works proposed solving linear inverse problems using diffusion
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models with the help of priors dependent on the inverse transform of degradation. Recently, diffusion
posterior sampling Chung et al. (2023b) considered the degradation to be conditioned on a Gaussian
distribution given any intermediate timestep and derived an L2 norm-based regularization at each
intermediate timestep to solve for linear inverse problems. Recent works such as Freedom Yu et al.
(2023) explored an energy-based perspective and extended guidance to non-linear functions using
general loss functions. Universal diffusion guidance Aggarwal et al. (2018) extended this guidance
process to stable diffusion and improved the performance by using forward-backward guidance. More
recent works, such as manifold-guided diffusion He et al. (2023), further proposed to constrain the
manifold space by projecting for the latent space alone.

2.2 PERTURBED MARKOVIAN KERNEL FOR DIFFUSION TRANSITION

Let us assume that r(xt, y) gives a measure of the distance between an intermediate xt and the
condition y and is a positive bounded function. Hence, in the reverse process, the diffusion trajectory
should proceed through distributions with a higher probability of being closer to the desired cases.
We model these trajectory intermediate distributions with

p̂(xt) = p(xt)r(xt, y). (1)

Dickenson et al. Sohl-Dickstein et al. (2015) first proposed the use of Markovian kernels to estimate
the distribution of diffusion intermediates. Specifically, given the state xt at the equilibrium of the
training process for a diffusion model, the intermediate of a diffusion model at a time instant, the
distribution at a timestep t− 1 can be estimated as

p(xt−1) =

∫
p(xt)pθ(xt−1|xt)dxt. (2)

As we know, the kernel p(xt−1|xt) is a Gaussian distribution whose mean can be estimated using the
diffusion UNet and xt. To estimate a perturbed kernel p̂(xt−1|xt), the perturbed distribution is

p(xt−1)r(xt−1, y) =

∫
r(xt, y)p(xt)p̂θ(xt−1|xt)dxt. (3)

By merging the constant terms in the transition into the normalization factor, the transition step is

p̂θ(xt−1|xt) = pθ(xt−1|xt)r(xt−1, y). (4)

The proof is given in the supplementary material. Hence, we can see that rather than considering
a Gaussian posterior, as in DPS Chung et al. (2023b), any distance or loss function can be used.
Similarly, one other valid transition step of the perturbed process is

p̂θ(xt−1|xt) = pθ(xt−1|xt)
r(xt−1, y)

r(xt, y)
, (5)

which adopts the notion of reciprocal distance from the previous timestep.

2.3 INFERENCE-TIME GUIDANCE OF DIFFUSION MODELS

For conditional generation tasks using an unconditional diffusion model, ideally, the model would
predict intermediates closer to the condition. The formulation can be seen in terms of transition
probabilities. Consider a pretrained unconditional diffusion model on a specific domain. The problem
at hand needs to guide the diffusion model during inference time conditioned with a condition y.
Dhariwal et al. Dhariwal & Nichol (2021) proposed a general strategy to perform this by conditioning
on the condition y and finding the resultant marginal distribution

p(xt|xt+1, y) = p(xt|xt+1)p(y|xt). (6)

By assuming the distribution p(y|xt) has much lower curvature compared to p(xt|xt+1), considering
the marginal distribution close to xt,

log p(y|xt) = (xt − µ)∇xt
log p(y|xt), (7)

g = ∇xt
log p(y|xt).
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Plugging back to log(p(xt|xt+1, y)),

log(p(xt|xt+1, y)) = (x− µ− Σg)TΣ−1(x− µ− Σg) + C, (8)
p(xt|xt+1, y) ∼ N(µ+Σg,Σ).

Hence, the reverse sampling equation becomes,

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt)

)
+ σtϵ+Σ

dr(xt−1, y)

dxt−1
, ϵ ∼ N (0, I). (9)

2.4 SHORTCOMINGS OF THE EXISTING METHODS

Although the energy-based guidance theory supports guidance as a function of the current latent
estimate, almost all loss-based guidance techniques derive the distance function as a function of
xt rather than xt−1 and derive the gradient based on the previous sample. Although this approach
works for many tasks, it requires backpropagating through the neural network and modeling the score
function for the guidance correction term. This limits the use of classifier guidance since existing
diffusion architectures that produce photorealistic results are often very bulky. One can see why the
existing framework utilizes the derivative with respect to the previous sample works by taking a better
look at Equation (5). As we can see, a reciprocal distance over the previous timestep diffusion latent
xt is a perfectly valid distance guidance function. In the next section, we elaborate on Dreamguider.

3 PROPOSED METHOD

Suppose xt−1 denotes the current step and xt denotes the previous step in the inference process of
the diffusion module. As mentioned in the previous section, existing works utilize the derivative
with respect to the previous step for guidance; one reason for this is to use an off-the-shelf auxiliary
distance function on the MMSE estimate at each step x̂t, which enables the use of general functions
defined on image space for guidance. Here, the MMSE estimate is defined as

x̂t =
xt −

√
1− ᾱtϵθ(xt)√

ᾱt
, (10)

where ᾱ denotes the variance schedule of the diffusion process and ϵθ(xt) is the noise estimated by
the network. One other observation to note is that finding the derivative with respect to the current step
requires finding x̂t−1, which again requires an additional propagation through the diffusion network.
Hence, the dilemma of backpropagating through the UNet for guidance still remains unresolved.

3.1 TIME VARIANT CLASSIFIER GUIDANCE

We found a simple yet effective solution for this dilemma; if we take a look at the ODE estimate at
each step proposed by Song et al. Song et al. (2021a). Hence, rather than perturbing the Gaussian
kernel at each timestep, we perturb the components x̂t and ϵθ(xt) by a small amount. Specifically,
we perform the following operations:

x̂t = x̂t − cΣ
dr(x̂t, y)

dx̂t
, t > t0

ϵθ(xt) = ϵθ(xt)− dΣ
dr(x̂t, y)

dϵθ(xt)
, t < t0

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt)

)
+ σtϵ− ctΣ

dr(x̂t, y)

dx̂t
− dtΣ

dr(x̂t, y)

dϵθ(xt)
(11)

where r(x̂t, y) is a non negative distance function that measures the distance between the MMSE
estimate and condition, Σ is the variance of the latent estimate at each timestep as in Equation (8).
Please note that we perform a double descent here. The intuition behind the double descent is that
performing descent on one of the components, say x̂t, guides effectively at the end of the diffusion
process where αt−1 is one and vice versa. Hence, during the guidance with the gradient w.r.t. x̂t,
the maximum component of shift that happens to the sample is when we consider the flow of this
correction through x̂t. Hence, we define the value as the maximum component of xt−1 present in x̂t.

ct = c
√
αt−1. (12)
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Similarly, we define dt as the maximal component of ϵθ(xt) in xt−1. Hence,

dt = −d.
1− αt√
αt

√
1− ᾱt

. (13)

Hence, this term gives efficient guidance at all timesteps, bypassing the guidance at the later timesteps
alone as in MGD He et al. (2023). In the following section, we proceed to propose an effective
empirical estimate for c and d that works for a wide range of tasks.

3.2 A GRADIENT-DEPENDENT SCALING FACTOR ESTIMATE

Recently, Distance over Gradients (DOG) Ivgi et al. (2023) was proposed as an effective parameter-
free dynamic step size schedule for SGD problems. Given any Stochastic Gradient Descent (SGD)
optimization problem, the Distance over Gradient works as an effective learning rate. Recent works
Wu et al. (2023b) have found the diffusion process as a stochastic optimization problem and have
derived an SGD-based interpretation of the diffusion sampling process. Hence, inspired by both of
these works, we attempted an empirical guidance estimate of the form:

γt =


1e−5√

g2
T

, if t = T

maxi>t |fi−fT |√
ΣT

i=ig
2
t

, otherwise
(14)

where gt is the gradient of the loss function as defined in the equation, ft can be any of x̂t, xt, ϵθ(t)
at timestep t and f0 is the initial estimate of ft. We noticed that this empirical estimate works well
for the first-order sampling involving DPS Chung et al. (2023b) as well. We illustrate more results on
the effect of this plug-in value for different cases in the appendix. Hence, utilizing Equation (14), we
estimate c and d accordingly by substituting fi as x̂t and ϵθ(xt)

3.3 DIFFERENTIAL AUGMENTATION CLASSIFIER GUIDANCE

A common practice while performing classifier guidance to augment diffusion models with specific
regularization for guidance is to use the noisy estimate at timestep t and utilize it to compute the
loss function to regularize the current prediction. However, in many cases, such guidance can
give results with artifacts and color shifts, as portrayed in Figure 3 and Figure 5, due to excessive
guidance or insufficient guidance at intermediate timesteps that shift the results off manifold or
cause color shifts. One effective solution for this is to imitate different versions of artifacts or
color shifts on both the source image and the target image and utilize these augmented versions
for a boost in performance. Hence, to perform guidance with a much more robust guidance loss,
we introduce DiffuseAugment, an augmentation strategy for diffusion guidance during inference
time. Specifically, given an intermediate sample xt and condition y, we augment x̂t and y with
differentiable augmentations denoted by

x̂aug
t , yaug = T (x̂aug

t , yaug). (15)

We choose three different types of augmentations for T comprising random cutouts, random trans-
lations, and color saturations. Please note that the augmentation of y is dependent on the input
signal. For label-based conditioning such as identity or text, we do not perform augmentation for
y. For image space augmentations, we augment y with the same random augmentation as that of
x. While computing the effective loss, we find the average across all augmentations. We find that
DiffuseAugment significantly boosts the sampling fidelity and quality of the reconstructed image.
We present these results in Section 5.

4 EXPERIMENTS

Since our method comprises both linear and non-linear inverse tasks, for linear inverse tasks, we
follow DPS and evaluate our method utilizing two different benchmarks: (1) ImageNet Deng et al.
(2009) and (2) CelebA Liu et al. (2015). For non-linear tasks, we follow Freedom and evaluate using
the CelebA dataset. For linear tasks, we evaluate our method quantitatively for Super-resolution (×4),
Colorization, Inpainting (Box), and Gaussian deblurring tasks. For non-linear tasks, we evaluate
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Figure 3: Qualitative comparisons for Linear Tasks on ImageNet for 100 inference steps
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Figure 4: Qualitative comparisons for Linear Tasks on CelebA dataset for 100 inference steps

for Face Sketch guidance, Face Parse maps guidance, and Face ID guidance. Since our method
falls into the category of loss-guided diffusion models, we perform all quantitative evaluations using
existing methods that follow this kind of sampling. Please note that although we acknowledge the
parallel field of research in tackling inverse problems without backpropagation Wang et al. (2023);
Kawar et al. (2021), we excluded these methods for comparison as they tackle solely Linear inverse
problems. In contrast, loss-guided models are generic and applicable to a wider range of problems.

4.1 IMPLEMENTATION DETAILS

We perform all experiments on NVIDIA A6000 GPUs. For ImageNet Deng et al. (2009) based
tasks, we utilize the unconditional model released by Guided Diffusion. For Linear Tasks involving
faces, we use the model trained on the FFHQ dataset Karras et al. (2017) and perform experiments
on the CelebA dataset Liu et al. (2015) similar to DPS. For non-linear tasks, we follow Freedom
and utilize the model trained unconditionally on the CelebA dataset. We evaluate using conditions
derived from existing networks. For the high-resolution results presented in Figure 2, we utilized the
class-conditional model of resolution 512× 512 released by Guided Diffusion. For all experiments,
we used 100 sampling steps. For style transfer, we utilized Stable Diffusion Rombach et al. (2021)
v1.5. Please note that our sampling method is generic, and any sampler can be used. We fix the
number of augmentations in DiffuseAugment for all the experiments to 8. For linear inverse problems
we set the value of t0 to 5 in Equation (11) to 30 and for linear inverse problems we set t0 to 5

7
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Inpaint (Box) Colorization SR (× 4) Gaussian Deblur
Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓Cons ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Score-SDE Song et al. (2021b) 9.57 0.329 0.634 94.33 0.1627 0.3996 0.6609 118.86 20.75 0.5844 0.3851 53.22 23.39 0.632 0.361 66.81
ILVR Song et al. (2021b) - - - - - - - - 26.14 0.7403 0.2776 52.82 - - - -
DPS Chung et al. (2023a) 19.39 0.610 0.3766 58.89 0.0069 0.5404 0.5594 55.61 17.36 0.4969 0.4613 56.08 20.52 0.5824 0.3756 52.64
MGD Chung et al. (2023a) 27.21 0.7460 0.2197 11.83 0.0018 0.6865 0.4549 38.22 27.51 0.7852 0.2464 60.21 27.23 0.7695 0.2327 51.59

Ours 28.84 0.8491 0.1432 5.96 0.0014 0.7775 0.3036 20.89 29.47 0.8429 0.1757 46.95 27.30 0.7672 0.2202 42.70

Table 2: Quantitative evaluation of image restoration tasks on CelebA 256×256-1k with σy = 0.05,
We utilize 100 inference steps for all methods

Inpaint (Box) Colorization SR (× 4) Gaussian Deblur
Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ Cons ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Score-SDE Song et al. (2021b) 9.66 0.2087 0.7375 133.54 0.1723 0.3105 0.8197 194.87 14.07 0.2468 0.6766 129.91 15.39 0.3158 0.620 134.67
ILVR Song et al. (2021b) - - - - - - - - 15.51 0.4033 0.5253 64.13 - - - -
DPS Chung et al. (2023a) 15.23 0.4261 0.6087 97.90 0.021 0.3774 0.8011 106.25 14.94 0.3258 0.6594 87.26 17.19 0.3980 0.5817 84.74
MGD Chung et al. (2023a) 21.94 0.6920 0.2410 40.30 0.0057 0.5809 0.5427 73.75 23.12 0.6025 0.3936 70.83 23.13 0.6092 0.3695 61.49

Ours 23.49 0.7271 0.2001 30.72 0.0055 0.6804 0.3362 52.76 24.23 0.6818 0.2884 43.00 23.31 0.6157 0.3566 58.38

Table 3: Quantitative evaluation of image restoration tasks on ImageNet 256×256-1k with
σy = 0.05. Bold: best, We utilize 100 inference steps for all methods

4.2 QUALITATIVE ANALYSIS

We present results on Gaussian Deblurring, super-resolution, and colorization. As we can see,
DPS fails since 100 steps of diffusion are used, and the DPS scaling factor is not strong enough to
perform proper guidance within 100 steps of diffusion. We set the amount of posterior noise for
the measurement as 0.05 in all experiments. MGD works remarkably well for the deblurring and
inpainting tasks; however, it fails for colorization since early guidance is required for the flow of
natural colors.

For ImageNet tasks, the performance of DPS falls more because the problem is more ill-posed. This
can be seen in the eagle diagram, where the method is unable to reconstruct the eagle properly. In
contrast, our method performs relatively better, producing much more realistic images. We highlight
the performance improvement on colorization since we argue that these results are obtained because
of the early flow of gradients. For non linear invere problems, as we can see, Freedom is able to
produce realistic-looking results for even the difficult task of Parse Maps to Faces. We argue that this
is because backpropagation through the UNet purifies the gradient flow; hence, the generated images
look much more naturalistic.

4.3 QUANTITATIVE ANALYSIS

We utilize Dreamguider and quantitatively evaluate CelebA and ImageNet datasets. The results for
face restoration tasks are shown in Table 2 and 3. We evaluate these tasks utilizing four different
metrics. SDEdit Meng et al. (2021) fails for the task of face inpainting and colorization as a single
perturbation in the noisy domain throws the image off the manifold. DPS requires more inference
steps for proper guidance. ILVR is originally designed for super-resolution. Hence, we quantitatively
evaluate ILVR Choi et al. (2021) only for the task of super-resolution. Since DPS and MGD are
applicable to all cases, we evaluate with these methods. As we can see, our approach obtains better
results than the baselines because of the flow of gradients, which allows for better reconstruction
quality. For faces, the difference is much more highlighted in the task of colorization, where we get a
significant boost of 18 FID score above the baseline. General linear inverse problems in ImageNet are
much more complex than in faces; hence, there is an overall drop in metrics for the natural domain
images in ImageNet. In our case, DiffAugment purifies the gradient; hence, we look for much better
realistic-looking images. However, MGD does not produce realistic results for sketch-to-image and
anime-to-face synthesis.

5 ABLATION STUDIES

We perform extensive ablation studies with respect to the effect of DiffuseAugment as well as the
effect of each guidance term. For the ablation experiments, rather than utilizing the whole testing
dataset of 1000 images, we utilize 100 images and report the average LPIPS value.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

D
eg

ra
de

d
M

G
D

Fr
ee

do
m

O
U

R
S

Face-sketch guidance Face-parse guidance ID guidance
Figure 5: Qualitative comparisons for Non-linear Tasks on CelebA dataset for 100 inference steps

Semantic Parsing ID Guidance Face Sketch

Method Distance↓ LPIPS↓ FID↓ Distance↓ LPIPS↓ FID↓ Distance↓ LPIPS↓ FID↓
First-order

Freedom Yu et al. (2023) 1864.51 0.6030 66.89 0.3767 0.7058 81.40 39.05 0.6583 86.51

Zeroth-order
MGD He et al. (2023) 2698.27 0.6995 104.32 0.4291 0.7178 92.61 39.34 0.6576 70.42
Ours 2722.51 0.6199 79.42 0.3780 0.5932 82.70 39.03 0.5509 69.51

Table 4: Non-linear tasks. Best results out of zeroth-order optimization algorithms are highlighted.
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Figure 6: Ablation analysis on linear and non-linear tasks. FaceID guidance & ImageNet superresolu-
tion

5.1 EFFECT OF DIFFUSEAUGMENT

We notice that for linear tasks, even for low values of T such as T = 20, just by increasing the
number of augmentations at the output to 8, the perceptual quality drastically improves, matching
that of diffusion inference with T = 50 with just 2 augmentations. Further, we notice that although
the effect of augmentations is very significant for linear tasks, the performance is not that significant
or rather drops in some cases for low T such as T = 20; this is because with 20 diffusion steps, most
intermediate MMSE estimates remain noisy, and hence the guidance network ArcFace Deng et al.
(2019) cannot handle such input and hence returns irregular gradients affecting the quality. However,
we can see that as T increases and when there are enough gradient steps, DiffuseAugment plays a
significant role in boosting the performance.

5.2 EFFECT OF DIFFERENT COMPONENTS OF GUIDANCE

We present the ablation analysis of the effect of different terms of guidance in Figure 6. Please note
that for this experiment, we set the number of augmentations from DiffuseAugment as 1. We also
turn off time travel sampling for this experiment. For this experiment, we perform guidance with
respect to ϵθ(t) until t0 and perform guidance with respect to x̂t for t > t0. Here t = 100 represents
pure gaussian noise and t = 0 represents the image. As we can see, guidance with x̂t alone faces
a drop in performance initially for a low number of inference steps for non linear cases. We argue
that this is because the guidance flow through the MMSE estimate is weak during the earlier steps
of diffusion. Although time travel sampling helps to alleviate this issue, careful parameter tuning is
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required to obtain satisfactory results. We also notice that guiding utilizing the gradients of the output
noise of the network closer to the start of the generation process produces better results.

6 LIMITATIONS AND FUTURE WORKS

Although we illustrated the working across various tasks for pixel space diffusion models, the direct
approach cannot be used for latent diffusion models for the task of linear inverse problems, and
one might have to apply multiple steps of time travel sampling to fix this issue, making a large
computational overhead of the overall sampling time. We emphasize that this problem arises due to
the reconstruction error in the VAE that encodes the image to the latent space. In the future, we will
attempt to improve upon this with better optimization techniques. Moreover, although the proposed
empirical estimate based on distance over gradients works for most tasks and shows the existence of
an optimal parameter estimate, a thorough mathematical evaluation and the most optimal parameters
are still missing. We leave this problem up to future works to estimate the optimal guidance parameter.

7 CONCLUSION

In this paper, we proposed an improvement to existing loss-guided techniques for zero-shot conditional
generation with an unconditional diffusion model. Specifically, we proposed a sampling technique
that removes the need to backpropagate through the diffusion U-Net in order to tackle sampling for
general inverse problems. We also present an empirical function for automatic scaling parameters
that removes the need for manual scaling parameter tuning, which was previously a huge hurdle
in using classifier-free guidance. The newly proposed scaling parameter also removes the need
for model-specific tuning of start and end guidance steps. We also introduced a differentiable data
augmentation method that significantly improves the sampling fidelity. We illustrated the working of
our method across 4 linear and 3 non-linear tasks across faces and real image domains. Our sampling
technique produces photorealistic samples with much lower sampling time and higher fidelity than
existing methods.
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A APPENDIX

B ALGORITHM OF DREAMGUIDER

We present the over algorithm of dreamguider without time travel sampling and the parameter
estimation algorithm in Algorithm 1

C PROOF FOR PERTURBED MARKOVIAN KERNEL EQUATION

In the main paper, we emphasized that any positive distance function can be utilized for performing
conditional generation using the perturbed Markovian kernel equation. Here we proceed to derive
the perturbed transition step. For the proof we closely follow the work from Dickenson et al Sohl-
Dickstein et al. (2015). Given a unconditional transition distribution pθ(xt−1|xt) and a distance
function r(., y), where y is the condition provided Please note that we assume r(., y) has relatively
small variance compared to pθ(xt−1|xt), We know that at equilibrium state, the distribution at any
timestep t ina diffusion model can be written as

p(xt−1) =

∫
p(xt)pθ(xt−1|xt)dxt. (16)

To estimate a perturbed transition kernel p̂(xt−1|xt),we start the perturbed distribution as

p(xt−1)r(xt−1, y) =

∫
r(xt, y)p(xt)p̂θ(xt−1|xt)dxt. (17)

By simple algebraic manipulations, taking r(xt−1, y) to the other side, we get

p(xt−1) =

∫
r(xt, y)

r(xt−1, y)
p(xt)p̂θ(xt−1|xt)dxt. (18)

By comparing Equation (16) and Equation (18) we can see that one solution for the transitional
distribution is

p̂θ(xt−1|xt) = pθ(xt−1|xt)
r(xt−1, y)

r(xt, y)
. (19)

Also since normalization constants doesn’t affect the score function or transition step, Absorbing xt

to the normalization factor of pθ(xt−1|xt), another valid perturbed transition kernel is
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Algorithm 1 Dreamguider

Input: distance function r(, .y), condition y , Timesteps T
1: xT ∼ N (xT ; 0, I)
2: for t = T − 1, . . . , 1 do
3: Σ =

√
1− ᾱt

4: ϵ ∼ N (ϵ; 0, I)

5: x̂t =
xt−

√
1−ᾱtϵθ(xt)√

ᾱt

6: Compute dr(x̂t,y)
dx̂t

, dr(x̂t,y)
dϵθ(xt)

7: update c = ESTIMATE(t, ϵθ(xt),
dr(x̂t,y)
dϵθ(xt)

)

8: update d = ESTIMATE(t, x̂t,
dr(x̂t,y)

dx̂t
)

9: ct = c
√
αt−1

10: dt = −d. 1−αt√
αt

√
1−ᾱt

11: if t < t0 then
12: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt)

)
+ σtϵ− dtΣ

dr(x̂t,y)
dϵθ(xt)

13: else
14: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt)

)
+ σtϵ− ctΣ

dr(x̂t,y)
dx̂t

−
15: end if
16: end for
17: function ESTIMATE(t, fi, gt)
18: if t = T then
19: γt =

1e−5√
g2
T

20: Store fT ,
21: else
22: γt =

max i>t|fi−fT |√
ΣT

i=ig
2
t

23: end if
24: Store

√
ΣT

i=ig
2
t

25: return γt
26: end function return x0
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p̂θ(xt−1|xt) = pθ(xt−1|xt)
r(xt−1, y)

Z
. (20)

Please note that the term Z does not affect the transition step in the reverse process when the variance
of r(., y) is small.

(a) Face Colorization
c = 1.11, d = 99.30

(b) Face Superresolution (x4)
c = 2.88, d = 202.39

(c) Face Inpainting
c = 0.63, d = 45.85

(d) Gaussian Deblur
c = 0.60, d = 74.09

(e) Sketch to Face
c = 0.28, d = 3.85

(f) FaceID Guidance
c = 33.10, d = 593.15

(g) Parsemaps to Face
c = 0.001, d = 0.13

Figure 7: Figure illustrating the guidance scales for different tasks.

Method Freedom Dreamguider(1) Dreamguider(2) Dreamguider(3)

Sketch to Face 24.95 17.55 27.04 35.09
FaceID to Face 24.94 20.45 31.89 41.80
FaceParse to Face 56.25 48.35 75.43 107.02

Table 5: Non-linear tasks ablation analysis on time taken, the value is represented in seconds

D TIME COMPARISON FOR DREAMGUIDER WITH TIMETRAVEL SAMPLING
AND FREEDOM(FIRST ORDER) FOR NON LINEAR TASKS

We present the time taken by Freedom, a first order algorithm for one step of time travel sampling
Lugmayr et al. (2022); Yu et al. (2023) in Table 5
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E ESTIMATED PARAMETER VALUE FOR DIFFERENT TASKS

In this section, we present the result and the parameter estimated by our approach for different tasks.
For this experiment, we use 100 timesteps of diffusion and present the value at the 100th timestep.
Here we define d as the scaling factor of the scaling constant of the the loss derivative relative to
ϵθ(xt) and c as that of x̂t as in the main paper . The corresponding results are shown in Figure 7

F NON CHERRY PICKED RESULTS FOR DIFFERENT TASKS.
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Figure 8: Figure illustrating Non cherry picked results for ImageNet colorization
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Figure 9: Figure illustrating Non cherry picked results for ImageNet superresolution
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Figure 10: Figure illustrating Non cherry picked results for Gaussian deblurring on ImageNet
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Figure 11: Figure illustrating Non cherry picked results for face colorization
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Figure 12: Figure illustrating Non cherry picked results for face superresolution
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Figure 13: Figure illustrating Non cherry picked results for Gaussian Deblurring

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
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Figure 14: Figure illustrating Non cherry picked results for face inpainting
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Figure 15: Figure illustrating Non cherry picked results for sketch to face synthesis
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Figure 16: Figure illustrating Non cherry picked results for Face ID guidance
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Figure 17: Figure illustrating Non cherry picked results for Face Parse Guidance
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