
Gaussians-to-Life: Text-Driven Animation of 3D Gaussian Splatting Scenes

Supplementary Material

S1. Implementation Details
We make our code available under the following
URL: https : / / github . com / wimmerth /
gaussians2life. Optimization of dynamics in a
single scene takes about 10 minutes on average. In our
experiments, video generation is limited to 8 frames to
balance computational constraints with the requirements of
the video diffusion model. We note that this also limits the
amount of motion that can be effectively distilled into the
scene.
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Figure S1. Temporal alignment of predicted trajectories from dif-
ferent viewpoints at t0. The sequence used as input to the next
optimization step is the sequence with the most overlap between
the source trajectories.

S1.1. Viewpoint Sampling
Our proposed approach for approximately multi-view con-
sistent video generation is based on the assumption that
there are no large viewpoint changes between subsequent
optimization steps. The viewpoint sampling strategy has
to reflect this constraint while still enabling guidance from
views all around the object. To do so, we start at an anchor
viewpoint and sample viewpoints on the sphere around the
scene center, where we first sample two endpoints lying at
the maximum azimuth change cazm,anchor ± mazm, with an
elevation deviating from celv,anchor by at most melv, and a
distance change of at most mdist · cdist,anchor, both sampled
uniformly. We then spread out nc views uniformly along
the path on the sphere from the anchor point to each end-
point. Finally, we disturb each point’s azimuth, elevation,
and distance with a small noise sampled using standard de-
viations σazm, σelv, σdist.

S1.2. Warping using Optical Flow
Before feeding the previously generated video vs−1 through
the video diffusion model encoder and using it as motion
prior for the generation of a video from the new viewpoint
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Figure S2. Warping of previously generated video frames vs−1 to
resemble a video captured from the viewpoint at the next optimiza-
tion step s. First, optical flow between the video frames of vs−1

is computed that is subsequently composed with the optical flow
computed between the renderings of the static 3D scene from the
two viewpoints at s − 1 and s. The composed flow is then used
to warp the video frames of vtis−1 to their respective equivalents
in the new video v′

ti
s−1 that is used as motion prior for the video

diffusion model.

(see Fig. 2), we aim to warp it to resemble the looks of a
video taken from the new viewpoint as closely as possible.

To do so, one possible approach is to estimate correspon-
dences between the renderings of the given, static 3D scene.
Using these correspondences, the optimal homography can
be computed, which can subsequently used for warping all
frames of the previous video using a perspective projec-
tion. While this approach seems reasonable, it comes with
the limitation that larger camera pose changes will result in
heavy distortions and unrealistic results. Additionally, fore-
and background objects are not taken care of separately.

To resolve these issues, we make use of an off-the-shelf
optical flow estimation method [48], which we use to com-
pute the optical flow flowt0

(s−1)→s between the static scene
renderings at steps s − 1 and s, as well as the optical flow
flowti→t0

s−1 from other frames in the previous video v
ti̸=0

s−1 to
the static scene rendering vt0s−1. Finally, we remap the opti-
cal flow flowt0

(s−1)→s using flowti→t0
s−1 to get flowti

(s−1)→s,
which is used to warp video frame vtis−1, see Fig. S2.

S1.3. Optimization-based Baseline
We model the deformations of the scene by optimizing a
neural network fθ that maps input coordinates x ∈ R3 and
a time t ∈ R to a change in position δx ∈ R3, and optionally
a change in rotation δq ∈ R4 and scaling δs ∈ R3. We thus
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Figure S3. Architecture of the neural deformation field used in our
optimization-based baseline. Learnable components in orange.

use the 3D scene initialization as canonical representation,
i.e., the displacement, rotation, or scaling of a Gaussian at
position x = µi in the static 3D scene at time t is obtained
through querying the deformation field fθ(x, t).

We employ a multi-resolution hash encoding for spatial
input coordinates x [31], as well as random Fourier features
as encoding for t [46]. We use a standard MLP with separate
heads for the prediction of displacement, rotation, and scale
changes, where we multiply outputs with t0.35, following
previous works [27], to fix the scene initialization at t = 0.

We further use a similar deformation technique as pre-
sented in Sec. 3.3, where we first sample a set of anchor
points using k-Means, that are used to query the deforma-
tion field, and motion is subsequently transferred to all 3D
Gaussians using the presented techniques in Sec. 3.3 to get
smoother deformations.

We use our approximately multi-view consistent videos
as guidance, where we employ standard rendering-based
losses, i.e. L1, D-SSIM, and LPIPS, as well as several reg-
ularization terms to promote rigid motion [18] and preserve
momentum [11], as well as local isometries [29]. Addi-
tionally, we make use of an optical flow supervision signal
following Gao et al. [12].

S1.4. DreamGaussian4D Baseline
DreamGaussian4D [38] is a video-to-4D method that works
by first generating a static 3D asset using multi-view SDS or
the feed-forward LGM model [47]. This 3D model is then
deformed, guided by SDS with a multi-view image diffu-
sion model that is conditioned on the frames of a guidance
video from an anchor viewpoint. To enable a comparison
to our method, we use the same 3DGS initialization and
the same first sampled diffusion videos for both methods.
Further, if a mask for the moving 3D objects is given, we
apply it to the 3DGS scene and only use this object as in-
put to DreamGaussian4D, which is necessary as the method
is based only on single objects without backgrounds and
will otherwise collapse the backgrounds. At test time, we
can then add the background Gaussians back into the 3D
scene. Importantly, we do not use the second stage of their
pipeline, which extracts per-frame meshes and further re-
fines textures on them using SDS with a video diffusion
model, as we cannot integrate 3D meshes into the full 3DGS
scene.

Figure S4. Colormap used for flow visualization in Fig. 7 as pro-
posed by Baker et al. [5].

S1.5. Hyperparameters
We linearly decrease the noise level from 0.75 to 0.2 for
the diffusion model inputs and similarly decrease the latent
interpolation weight λprevious from 0.6 to 0.0. We use 40
de-noising steps for video generation from new viewpoints.
We estimate the motion of every 3D Gaussian from its near-
est n ∈ [50, 150] anchor trajectories, where we increase n
over time as more and more anchor trajectories are added.
For this, we generally use a high temperature τ (Eq. (4))
but experiment with different weighting strategies. We note
that we tracked 1600 points per video originally, but this
number is usually reduced to about 600 valid trajectories
that lie within the object bounding box at t0 and that have
consistent tracking. Due to the high memory consumption
of the used video diffusion model and limited computing re-
sources, we limit our experiments to the generation of n = 8
frame guidance videos.

In the comparison against our baseline method, we op-
timize the deformation field for 14,000 steps. We increase
the regularization level over the duration of the optimiza-
tion and use both the rendering- and the optical flow-based
losses. In addition, we reduce the latent interpolation from
0.5 to 0.0 and the noise level from 0.75 to 0.4 throughout
the optimization. Every 4,000 steps, we sample new guid-
ance videos from 15 viewpoints and alternate between these
viewpoints during the optimization.

S2. Additional Results
S2.1. Quantitative Ablation
The quantitative evaluation of generative models is chal-
lenging due to missing ground truth. While comparisons
with target data distributions can sometimes be computed
for 2D or 3D generative models, this is impossible for our
method, which would require a collection of ground-truth
motions for a given 3D scene. In our case, we believe that
a possible metric that can be used is the CLIP similarity
score, which we present and extend for measuring coher-
ence among video frames in the next paragraph.

CLIP Similarity Radford et al. [37] presented CLIP, a
vision-language model that is trained to align the represen-



Table S1. Quantitative results for several ablated versions of our method on the Mip-NeRF 360 LEGO bulldozer scene. We note that this
evaluation mainly shows the insufficiency of any single quantitative metric. The qualitatively best result (see Fig. 7) does not outperform
the other versions on any single one of the metrics but does perform the most consistently across all categories.

Metric Ours
No MV

Diffusion
No 2D-3D

lifting
Rigid motion

estimation
Fewer inter-

polation anchors
More inter-

polation anchors
Motion Amount (rank) 3 4 5 2 1 6

Displacement (10−4) 1.84 1.83 1.82 2.02 2.09 1.54
Geometry / Physics (∅ rank) 3.00 2.50 4.75 4.25 5.25 1.25

Rigidity (10−5) 1.70 1.52 5.12 2.46 3.24 1.15
Momentum (10−5) 3.92 4.02 14.44 4.32 4.62 3.36
Isometry (10−5) 3.11 2.85 6.92 5.10 5.72 2.03
Rotation similarity (10−4) 4.00 3.35 0.01 4.31 8.04 2.65
Appearance (∅ rank) 2.50 3.50 6.00 3.00 3.00 3.00

CLIPtext (10−2) 33.06 33.02 29.48 33.14 33.07 32.65
CLIPtemporal (10−2) 99.68 99.67 96.90 99.63 99.64 99.72
Rank over all categories 1 (2.83) 4 (3.33) 6 (5.25) 2 (3.08) 2 (3.08) 5 (3.42)

tations of a vision encoder CLIPV with those of a text en-
coder CLIPT . It is possible to use this model as an evalua-
tion method, as we can take the cosine similarity computed
between the features from the image and the text encoder
for generated 2D outputs given a text prompt.

A straightforward metric to measure text alignment is the
averaging over multiple frames taken from multiple view-
points:

CLIPtext(f, s, p) = Ev∼V,t∼[0,1]

[cos (∠(CLIPV (g(f(s, p); v, t)),CLIPT (p)))] ,
(7)

where f is the optimized 4D-scene taking a static 3D scene
s and a text prompt p as input, and g(·; v, t) is the rendering
of the 4D-scene at timestep t and from viewpoint v.

In the following, we propose a second metric to capture
the temporal coherence of rendered videos. For that, we av-
erage the similarity of the extracted image embeddings over
pairs of successive video frames. Coherency in successive
frames can thus be measured, which also is a good measure
for the temporal coherence of the full video when averaged
over all frame pairs of the generated video:

CLIPtemporal(f, s, p) = Ev∼V,t∼[0,1)

[cos(∠(CLIPV (g(f(s, p); v, t)),

CLIPV (g(f(s, p); v, t+ δt))))],

(8)

where δt is the difference between two video frames in prac-
tice. We note that this metric is maximized with static scene
renderings, which need to be considered during evaluation.

Regularization Terms as Metrics Besides evaluating the
visual quality and appearance of dynamic scenes using
CLIP losses, we argue that reporting the scores for some
of the regularization terms can be used to determine the ac-
tual temporal and geometric consistency of scenes. As such,

regularization terms are based on the idea of steering the op-
timization towards animations that are more plausible; they
can also be used to validate the optimized results.

In our evaluation in Tab. S1, we thus report the scores for
four regularization terms proposed by previous works, that
measure local rigidity [29], momentum preservation [11],
local isometry preservation [29], and local rotation similar-
ity [29]. We note, however, that these scores are minimized
(best possible result) for zero motion. Thus, these metrics
are also not sufficient as stand-alone tools to quantify the
quality of generated motion.

Finally, we also report the average displacement of the
3D Gaussians between all timesteps. As we realize that
bringing motion into the scenes is often challenging, we
mark higher values for these categories as better. However,
as before, this metric alone can not quantify the quality of
the generated motion, as a diverging scene, where 3D Gaus-
sians are moved freely in the space, would have a very high
value.

As can be seen in Tab. S1, the qualitatively best result
does not top the quantitative rankings for any single metric.
It is, however, the best method when averaging performance
across all three evaluation categories: motion amount, ge-
ometry and physics, and appearance.

Analyzing the results further, we can see parallels with
our qualitative analysis. When no multi-view consistent
diffusion is used, performance deteriorates slightly, while
using an optimization-based baseline leads to significantly
worse results. Contrarily, the results when using rigid mo-
tion estimation are worse in terms of geometric metrics,
i.e., rigidity, than when using linear interpolation, as ana-
lyzed in Sec. 4.4.

We also see that using fewer anchor trajectories for mo-
tion estimation leads to more average displacement, but
with strong losses in rigidity, isometry and also appearance,
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Figure S5. Failed generations of the video diffusion model. While
open video diffusion models like DynamiCrafter [58] sometimes
result in generation of artifacts when queried with OOD-samples,
even more closed-source models like Luma Dream Machine strug-
gle with realistic generation of the desired motion.

indicating a stronger scattering of the 3D Gaussians. Us-
ing more anchor trajectories for the deformation estimation
leads to opposite behavior, where motion is more rigid, but
on average less movement is generated due to the smoothing
effect of using too many anchors.

S3. Limitations
As outlined in Sec. 5, our proposed method exhibits several
limitations. In this section, we will provide more details on
these shortcomings.

While we are able to perform faithful deformations of
given 3D scenes, our method is currently mainly limited by
the guiding video diffusion model. More specifically, cur-
rent open video diffusion models lack camera control and
are often inconsistent in their generations, both for the same
view with different random seeds and for multi-view gener-
ation with the same seed. As main limitation, we found that
the text conditioning often does not succeed and inappropri-
ate motion is generated. Additionally, resulting videos can
exhibit artifacts, or heavily diverge from the given image
condition to resemble more in-distribution data. In Fig. S5,
we show a examples for these video diffusion model fail-
ures.

Another limitation of our method is that it is currently
unable to compensate for camera motion in the guidance
videos. While prompting (e.g., appending “static camera”),
or using explicit camera-posed video diffusion models can
help alleviate this problem, a more sophisticated solution
would be to estimate camera poses before projecting mo-
tion from 2D videos to 3D, using similar techniques as, e.g.,
proposed in monocular dynamic reconstruction works [25].

Finally, as mentioned in Sec. 5, the proposed method
only deforms given 3D scenes without adding or removing
Gaussians. This can result in the emergence of “holes”, as
can be seen in Fig. 7 for the toy bulldozer scenes. Another
limitation that can be observed in these scenes is the re-
liance on object masks for deformation, as otherwise neigh-

boring Gaussians can be easily deformed together with the
object itself. This is caused by the point cloud nature of
the 3DGS representation, where there is no clear notion on
which Gaussians belong to the same object. However, as
mentioned before, obtaining these masks is possible using
off-the-shelf open-world 3D segmentation models [36].

S4. Ethical Considerations
Finally, we would like to briefly address some ethical con-
siderations in connection with our method. While the cur-
rent results do not yet harbor potential dangers due to the
brevity of the generated motion, it should not go unmen-
tioned that the presented method, like all generative mod-
els, harbors the danger of deception, e.g., by means of deep
fakes. While there are specialized methods for animating
people and faces [1, 20, 33, 41] that could be more danger-
ous in these aspects, our method is still not without danger,
as it can be applied to all kinds of objects and scenes. It
is therefore necessary that such methods are developed and
used responsibly, with clear guidelines and oversight to pre-
vent misuse.

https://lumalabs.ai/dream-machine


Figure S6. Approximately multi-view consistent video generations, starting from one video generated from an anchor viewpoint. The
3D scene is kept static between all generation steps to demonstrate the effect of the proposed latent interpolation. See the supplementary
videos that also contain examples without the proposed latent interpolation for a comparison.
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