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SyncTalklip: Highly Synchronized Lip-Readable Speaker
Generation with Multi-Task Learning

Anonymous Authors

ABSTRACT
Talking Face Generation (TFG) reconstructs facial motions con-
cerning lips given speech input, which aims to generate high-
quality, synchronized, and lip-readable videos. Previous efforts have
achieved success in generating quality and synchronization, and
recently, there has been an increasing focus on the importance of
intelligibility. Despite these efforts, there remains a challenge in
achieving a balance among quality, synchronization, and intelli-
gibility, often resulting in trade-offs that compromise one aspect
in favor of another. In light of this, we propose SyncTalklip, a
novel dual-tower framework designed to overcome the challenges
of synchronization while improving lip-reading performance. To
enhance the performance of SyncTalklip in both synchronization
and intelligibility, we design AV-SyncNet, a pre-trained multi-task
model, aiming to achieve a dual-focus on synchronization and in-
telligibility. Moreover, we propose a novel cross-modal contrastive
learning bringing audio and video closer to enhance synchroniza-
tion. Experimental results demonstrate that SyncTalklip achieves
state-of-the-art performance in quality, intelligibility, and synchro-
nization. Furthermore, extensive experiments have demonstrated
our model’s generalizability across domains. The code and demo is
available at https://sync-talklip.github.io.

CCS CONCEPTS
• Computing methodologies→ Computer vision; Phonology /
morphology.

KEYWORDS
multi-task learning, multimodal learning, talking head generation

1 INTRODUCTION
In the last few decades, Talking Face Generation (TFG) has emerged
as a key technology in the field of Human-Computer Interaction
(HCI) applications [12]. It is used in a range of activities, frommovie
dubbing [15], face animation [10, 27] to assisting communication
for the hearing-impaired through lip-reading. Owing to its broad
utility, TFG has attracted increasing attention from both industry
and academia.

The goals of the TFG are to generate high-quality, synchronized,
and lip-readable videos, which is shown in Fig. 1. The first two
of these have been achieved. For temporal synchronization, the
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It while change

It will change
Intelligibility / Readability Quaulity

Synchronization

Figure 1: The overview of the TFG task. Intelligibility is de-
fined as the extent to which the lip movements in the gener-
ated video can be comprehended through lip-reading. Syn-
chronization denotes the alignment of audio and video on a
temporal scale.

solution strategy involves integrating an auxiliary network [5] to
ensure audio-visual alignment. For generating quality, the strategy
involves skip connections [25] and generative adversarial networks
(GANs) [3, 9, 39]. The former helps to preserve the temporal dy-
namics of facial features, while the latter aids in simulating realis-
tic visual output. However, merely achieving high image quality
and lip-speech synchronization is not enough to ensure accurate
content transmission, because a high-quality image may contain
fine-grained lip errors, and precise synchronization may convey
incorrect textual content. The McGurk effect [7] points out that
when people simultaneously hear and see the semantically mis-
matched, yet synchronized, sequence of speech and lip movements,
they may recognize a phoneme from either the audio or the video,
or a fusion of the two. This demonstrates that the audio may mis-
lead you into believing that the generated video is lip-readable.
Therefore, to enhance the video’s intelligibility, it is essential to
detach the audio and separately consider the video’s lip-reading
performance. Recent work [34] introduces a lip-reading expert to
understand content, but sacrifices synchronization and generation
quality for intelligibility. Based on this background, our work is
dedicated to improving intelligibility while preserving quality and
synchronization.

Synchronization can be seen as a temporal-level alignment, while
intelligibility can be seen as a semantic-level alignment. To accom-
plish this dual-level alignment, we propose SyncTalklip, which syn-
thesizes the interaction mechanism between visual and auditory
information. This approach ensures that the visual representation
is not only closely synchronized with the input speech but also
more accurately reflects the true meaning of the linguistic content.
To address the issue of audio and video features decoupled during

https://sync-talklip.github.io
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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fine-tuning for the Visual Speech Recognition (VSR) task [26], we
design AV-SyncNet. It can better encode semantic-aligned embed-
dings from audio and video modalities. Besides, We design a novel
contrastive learning approach to enhance lip-speech synchroniza-
tion, which shares a joint embedding space with AV-SyncNet.

Our main contributions are as follows:
• We propose AV-SyncNet to balance synchronization and
lip-reading performance, which can better encode semantic-
aligned embeddings from audio and video modalities.

• We introduce SyncTalklip, which applies AV-SyncNet as a
supervisor and an initialization of the audio encoder. Addi-
tionally, SyncTalklip incorporates a novel cross-modal con-
trastive learning strategy for fine-grained alignment of audio-
video embeddings.

• Experimental results demonstrate that SyncTalklip achieves
state-of-the-art performance in quality, intelligibility, and
synchronization, yielding speaking faces that highly synchro-
nize audio contents while matching the linguistic message.

• We explore a variety of avenues for optimizing the model
and share the benchmark codes publicly, thus providing new
directions of exploration and a basis for further research.

2 RELATEDWORK
2.1 Talking Face Generation
Initial work [18, 28] used deep learning to learn the mapping of a
single speaker’s speech to a lip, and then inputting that person’s
speech into the model to get the corresponding lip. As they are
trained on only a specific speaker, they cannot synthesize new iden-
tities or voices. However, real-world applications require models
that can easily handle generic identities, whichmeans they can accu-
rately generate the corresponding lip movements given any speech.
This necessity has led to the development of speaker-independent
models [13, 16]. As the need for synchronization and quality be-
comes increasingly critical, most of the subsequent work focuses
on improving realism, audio-lip synchronization, etc., ignoring the
intelligibility issue. [4] employs facial keypoints to bridge audio
and video, and uses adversarial loss to make the generated video
more realistic. [24] enhances synchronization by introducing an
additional synchronization discriminator. [40] considers the video’s
speaking content, head gesture, and identification are considered
separately, which contributes in gesture control. In addition, it
applies contrast learning ideas to alignment constraints.

In recent work, [34] uses a lip-reading expert to deal with the
reading intelligibility problem of the TFG task, introduces the idea
of contrast learning to enhance synchronization, and uses [5], a
state-of-the-art network in the field of audio-video alignment, for
evaluation. However, it can not balance the individual properties
well enough to achieve both good synchronization and lip-reading
performance without compromising on metrics such as generation
quality. So we propose SyncTalklip, which employs a new auxiliary
lip-reading network to guarantee lip-reading performance while
preserving synchronization in a more reasonable way.

2.2 Audio And Video Voice Alignment Learning
AV-HuBERT [26] is a framework for self-supervised representation
learning [21] based on audio and video. In the pre-training phase, it

can map paired audio-video embeddings close together. Forcing the
model to capture temporal relations through a mask prediction task
helps to learn the relationship between speech and lip movements,
demonstrating that it can align the audio-video features semanti-
cally. The fine-tuned model performs well on the lip-reading task.
Therefore, supervising the TFG task with AV-HuBERT as a dis-
criminator can lead to an improvement in the intelligibility of the
generated video. However, synchronization is not focused on in
this self-supervised learning model.

SyncNet [5] is a deep neural network specifically designed for
visual synchronization of audio in video. The model trains two
independent coding networks for temporal offset detection, which
enables the network to recognize temporal deviations between
audio and video streams.

AV-HuBERT implements semantic-level alignment and Sync-
Net implements temporal-level alignment. Although both are sig-
nificant for audio-visual content, the focus on both components
remains insufficient in existing work. Therefore, we designed AV-
SyncNet, a pre-trained multi-task model aiming to integrate the
strengths of both.

3 METHOD
We propose a SyncTalklip network as shown in Fig. 2. Given our
focus on the mouth area, we mask and predict only the lower part of
the image to enhance detail capture. AV-SyncNet is introduced as a
lip-reading supervisor to obtain intelligibility improvement through
lip-reading loss. A novel cross-modality contrastive learning loss is
employed to improve synchronization. The model trains audio and
video encoders and generators during gradient backpropagation.

3.1 Rethinking Talking Face Generation
Although the AV-HuBERT [26] model is highly specialized for lip-
reading and the SyncNet [5] model excels in synchronization, nei-
ther model fully capitalizes on the combined benefits of these as-
pects. Previous TFG works [34] have considered the importance of
intelligibility of the generated video but have not completely har-
nessed the potential of synchronization and intelligibility together.
Therefore, we introduce SyncTalklip, which uses AV-SyncNet as
a submodule and aims to integrate the strengths of these two ar-
eas. By finely tuning the balance between lip-reading accuracy and
audio-video synchronization, SyncTalklip creates talking faces that
are both high-quality, synchronized, and intelligible.

Define 𝑓 𝑎 ∈ R𝑇×𝐷 , 𝑓 𝑣 ∈ R𝑇×𝐷 as the features generated by the
audio and video encoders, respectively, where T is the sequence
length and D is the embedding dimension. Previous work [34] has
attempted to directly bring 𝑓 𝑎 and 𝑓 𝑣 closer using cosine similarity,
which can be expressed as:

𝑆𝑖𝑚(𝑓 𝑎, 𝑓 𝑣) = 𝑓 𝑎 · 𝑓 𝑣
∥ 𝑓 𝑎 ∥2 · ∥ 𝑓 𝑣 ∥2

∈ (−1, 1) (1)

But there is no guarantee that the cosine similarity of the corre-
sponding paired audio-video feature is the maximal. Specifically, de-
note (𝑓 𝑎

𝑖
, 𝑓 𝑣
𝑖
) as the paired audio-video features, and {(𝑓 𝑎

𝑖
, 𝑓 𝑣

𝑗
)} 𝑗≠𝑖

as the unpaired audio-video features. There is no guarantee that:

∀𝑗 ∈ {1, . . . ,𝑇 }, 𝑗 ≠ 𝑖 𝑆𝑖𝑚(𝑓 𝑎𝑖 , 𝑓
𝑣
𝑖 ) ≥ 𝑆𝑖𝑚(𝑓 𝑎𝑖 , 𝑓

𝑣
𝑗 ) (2)



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SyncTalklip: Highly Synchronized Lip-Readable Speaker Generation with Multi-Task Learning ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Encoder

L1 Loss

Fusion

Encoder

Fusion

Share
Parameter

hello world ... <eos>

hello world ... <eos><sos>

Seq2seq 
Loss

Target Text

Decoder

(a) AV-SyncNet

Video
Encoder

AV-SyncNet 
Encoder

Generator

AV-SyncNet

Lipreading 
Loss

Contractive 
Loss

Reference

Rec Loss

Adversarial 
Loss

G
ro

u
n

d
 t

ru
th

Local/Global
Generated

(b) SyncTalklip

Frozen

Tunable

Figure 2: The overview of our two-stage training strategy. Stage 1, AV-SyncNet is pre-trained for the lip-reading task, simulta-
neously ensuring fine-grained alignment of the audio-video embeddings. We consider two different methods of alignment:
local-level and global-level. Note that the audio is pre-processed by ResNet[29] and the video is pre-processed by FFN[11].
Stage 2, the trained AV-SyncNet is applied to SyncTalklip, so that the generated video combines the performance of both
synchronization and intelligibility.

In fact, there isn’t even a guarantee that 𝑆𝑖𝑚(𝑓 𝑎
𝑖
, 𝑓 𝑣
𝑖
) will be

relatively large among {𝑆𝑖𝑚(𝑓 𝑎
𝑖
, 𝑓 𝑣

𝑗
)}𝑇

𝑗=1. Our AV-SyncNet model
essentially customizes a more sensible distance metric for SyncTalk-
lip, which can be seen as a customized distance abstract space.
It ensures that the lip-reading performance degrades as little as
possible while bringing the L1 distance of 𝑓 𝑎 and 𝑓 𝑣 closer dur-
ing the training process. Through this metric, the distance of the
paired audio-video features, denoted as 𝐷𝑖𝑠𝑡 (𝑓 𝑎

𝑖
, 𝑓 𝑣
𝑖
), will be rela-

tively small among {𝐷𝑖𝑠𝑡 (𝑓 𝑎
𝑖
, 𝑓 𝑣

𝑗
)}𝑇

𝑗=1. In this way, when training
SyncTalklip, it becomes more effective to draw the audio-video
features closer within the same distance abstraction space.

3.2 AV-SyncNet
AV-SyncNet merges the benefits of semantic-level alignment and
temporal-alignment to avoid subtle lip synchronization problems
while ensuring the accuracy of visual representation. SyncTalklip
will map paired audio-video embeddings close together during pre-
training, but downstream tasks will corrupt the alignment. There-
fore, we constrain the audio-video embeddings through L1 loss,
which can better converge to a local minimum than other losses
[38], such as L2 loss. Drawing closer in this abstract space may also
give the model a better understanding of other attributes, such as
speech habits and facial expression preferences [32], which will be
proved in Sec. 4. Knowledge learned with different goals interacts
and reinforces each other, so the process of drawing closer is also
a process of gaining a deeper understanding of semantics. In Fig.
2 (a), the encoder is pre-trained and fintune on the downstream

task. Then it is used as an initialization of the audio encoder and a
lip-reading expert in the SyncTalklip.

Pretrain. The encoder is pre-trained using a self-supervisedmethod,
which is the same as [11]. Two steps are alternated during pre-
training: feature clustering and mask prediction. The clustering
phase uses a discrete latent variable model to form {𝑧𝑡 }𝑇𝑡=1, and
the model then performs mask prediction through the Transformer
[30] architecture to learn a better representation of the audio and
video in the semantic space 𝑓𝑚 = {𝑓𝑚𝑡 }𝑇

𝑡=1 ∈ R𝑇×𝐷 , where T is
the sequence length, D is the embedding dimension, and m means
modality. Given the output probability {𝑝𝑡 }𝑇𝑡=1, The pre-training
loss is:

𝐿 = −
∑︁

𝑡 ∈𝑀𝑎∪𝑀𝑣

log𝑝𝑡 (𝑧𝑡 ) − 𝛼
∑︁

𝑡∉𝑀𝑎∪𝑀𝑣

log𝑝𝑡 (𝑧𝑡 ) (3)

where𝑀𝑎 and𝑀𝑣 denote the frames that are masked for the audio
and video. 𝛼 controls the contribution of the unmasked regions in
the overall objective.

Finetune. The pre-trained model is fine-tuned for the lip-reading
task, and the paired audio-video embedding is simultaneously
aligned using Eq. 5, which effectively solves the fine-grained syn-
chronization problem, and at the same time maintains the lip-
reading ability. As shown in Fig. 2 (a), with audio-only data as
input, the data is processed by the fusion module and pre-trained
encoder as 𝑓 𝑎 = {𝑓 𝑎𝑡 }𝑇

𝑡=1 ∈ R𝑇×𝐷 . Similarly, the video-only data
is processed as 𝑓 𝑣 = {𝑓 𝑣𝑡 }𝑇𝑡=1 ∈ R𝑇×𝐷 . The 𝐿𝑎𝑣 is then used to
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bring 𝑓 𝑎 and 𝑓 𝑣 closer under L1 distance. A tunable transformer de-
coder is appended to autoregressively decode 𝑓 𝑣 into probabilities
𝑝 (𝜔𝑡 |{𝜔𝑖 }𝑡−1𝑖=1 , 𝑓

𝑣), where 𝜔𝑖 is the ground-truth transcription.

Lip-reading Loss. The lip-reading loss is used to maintain the
intelligibility of the model, which is a sequence-to-sequence loss.
It is calculated after the decoder module using cross-entropy loss.
Define 𝑆 as the length of the target text, and the lip-reading loss
can be expressed as:

𝐿𝑙𝑖𝑝 = −
𝑆∑︁
𝑡=1

log𝑝 (𝑤𝑡 |{𝑤𝑖 }𝑡−1𝑖=1 , 𝑓
𝑣). (4)

Av-alignment Loss. Considering the problem mentioned in Sec.
3.1, this loss is used to create a customized distance metric for
SyncTalklip, which is a crucial basis for Eq. 12. Define 𝜏 as a tem-
perature ratio, which is a hyperparameter that weights the degree
of synchronization. Then the 𝐿𝑎𝑣 can be expressed as:

𝐿𝑎𝑣 = F
(
∥ 𝑓 𝑎 − 𝑓 𝑣 ∥1 · 𝜏

)
(5)

Define 𝐿𝑙𝑖𝑝 as the loss of the lip-reading, and 𝐿𝑎𝑣 as the loss of
bringing embeddings closer. The AV-SyncNet loss is:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑎𝑣 · 𝐿𝑎𝑣 + 𝜆𝑙𝑖𝑝 · 𝐿𝑙𝑖𝑝 (6)

where 𝜆𝑎𝑣 and 𝜆𝑙𝑖𝑝 scale the contributions of different loss items.

3.3 SyncTalklip
As shown in Fig. 2 (b), the generated frames first undergo frame-
level loss computation, after which the predicted frames are added
back to the original sequence for stream-level loss computation. De-
note the original video frame as 𝑣𝑖 ∈ R𝐶×𝐻×𝑊 , and the generated
video frame as 𝑣𝑖 ∈ R𝐶×𝐻×𝑊 , where 𝐶 denotes the channels. Take
the prediction of frame 𝑖 as an example, the complete sequence
is 𝑉 = [𝑣1, ..., 𝑣𝑖 , ..., 𝑣𝑇 ] ∈ R𝑇×𝐶×𝐻×𝑊 . The encoded modality em-
beddings 𝑓 𝑎 and 𝑓 𝑣 are fed into the generator, which yields 𝑣𝑖 .
Then compute the frame-level loss of (𝑣𝑖 , 𝑣𝑖 ): reconstruction loss
and adversarial loss. Subsequently, the lip-reading effect of the
generated video stream 𝑉 is evaluated with a frozen AV-SyncNet,
from where the lip-reading loss is calculated. At the same time,
it can also generate the video embedding 𝑓 𝑣 as a byproduct. The
tunable audio encoder is init by the AV-SyncNet encoder, and gen-
erates the audio embedding 𝑓 𝑎 . Then 𝑓 𝑎 and 𝑓 𝑣 are brought closer
through our novel cross-modality contrastive loss. Stream-level loss
including contrastive loss and lipreading loss controls the genera-
tion ability, affecting the semantic and temporal alignment of the
generated audio-visual outcome. In this process, all gradients are
back-propagated to the generative system and the discriminator.

Reconstruction Loss. Reconstruction loss is used to minimize the
distance between the generated image and the real image. In this
way, the model learns the pixel-level details of the generated image.
The reconstruction loss is formulated as:

𝐿rec =
1
𝑇

𝑇∑︁
𝑖=1

∥𝑣𝑖 − 𝑣𝑖 ∥1 (7)

Adversarial Loss. Adversarial Loss utilizes the framework of Gen-
erative Adversarial Networks (GAN) [6], this loss function forces
the generated images to be more visually realistic. Through adver-
sarial training [14], the generator learns to create realistic-looking
images that are difficult to distinguish by the discriminator, thus en-
hancing the realism of the generated images. 𝑣 represents a sample
drawn from a real data distribution, and 𝑣 is the generated frames
by our model. 𝐷 (𝑣) denotes the probability that the discriminator
network evaluates 𝑣 to be true. The discriminator 𝐷 tries to output
a high probability value for the true sample 𝑣 and a low probability
value for the fake sample generated by SyncTalklip. The model
minimizes 𝐿𝑔𝑎𝑛 :

𝐿𝑔𝑒𝑛 = E[log(1 − 𝐷 (𝑣))] (8)
𝐿𝑑𝑖𝑠𝑐 = E[log(1 − 𝐷 (𝑣))] + E[log(𝐷 (𝑣))] (9)

𝐿𝑔𝑎𝑛 = 𝐿𝑔𝑒𝑛 + 𝐿𝑑𝑖𝑠𝑐 (10)

Lip-reading Loss. Lip-reading loss is generated by the lip-reading
supervisor. This loss aims to improve the performance of the system
in terms of intelligibility to ensure the correct delivery of linguistic
content. It is calculated in the same way as Eq. 4. However, the
AV-SyncNet here is frozen, and the gradient is used to update the
generation system during backpropagation.

Contrastive Loss. Utilizing the concept of contrastive learning,
we propose a novel cross-modal contrastive learning strategy for
audio-visual fine-grained alignment. Although it differs from tradi-
tional methods, the underlying idea remains similar. This strategy
enhances the model’s performance in synchronization and intelligi-
bility by bringing paired embeddings closer together and increasing
the distance between unpaired embeddings in L1 space, which cor-
responds to AV-SyncNet. Accordingly, the model minimizes the
following loss:

𝜃 (𝑥, 𝑥 ′) = F
(
∥ 𝑓 𝑥 − 𝑓 𝑥

′
∥1 · 𝜏

)
(11)

𝐿cav =
∑︁
𝑖∈Υ

𝜃 (𝑎𝑖 , 𝑣𝑖 ) −
∑

𝑗∈Υ, 𝑗≠𝑖 𝜃 (𝑎𝑖 , 𝑣 𝑗 )
|Υ | − 1

(12)

where the temperature coefficient, denoted by 𝜏 , is used to control
the degree of scaling, and 𝑓 𝑥 is the embedding of the modality
frame 𝑥 . The symbol Υ represents all masked frames. As mentioned
earlier in Sec. 3.3, 𝜏 = {𝑖} in that case. The cardinality of the set
Υ is given by |Υ|. F represents a linear layer. Since it has been
guaranteed by AV-SyncNet that the 𝐷𝑖𝑠𝑡 (𝑓 𝑎

𝑖
, 𝑓 𝑣
𝑖
) will be relatively

small among {𝐷𝑖𝑠𝑡 (𝑓 𝑎
𝑖
, 𝑓 𝑣

𝑗
)}𝑇

𝑗=1, as mentioned in Sec. 3.1, so it is
sensible to minimize 𝐿𝑐𝑎𝑣 .

By combining different loss functions, SyncTalklip employs a
multi-task learning strategy [14] designed to optimize multiple ob-
jectives simultaneously. This strategy allows the model to not only
perform well on a single task, but also to ensure synchronization
of speech and lip movements as well as correct understanding of
content while maintaining visual fidelity.

The SyncTalklip loss is:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑐𝑎𝑣 · 𝐿𝑐𝑎𝑣 + 𝜆𝑔𝑎𝑛 · 𝐿𝑔𝑎𝑛 + 𝜆𝑟𝑒𝑐 · 𝐿𝑟𝑒𝑐 + 𝜆𝑙𝑖𝑝 · 𝐿𝑙𝑖𝑝 (13)

where 𝜆𝑐𝑎𝑣, 𝜆𝑔𝑎𝑛, 𝜆𝑟𝑒𝑐 and 𝜆𝑙𝑖𝑝 scale the contributions of different
loss items.
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Table 1: Evaluation on LRS2 and LRS3. Note that the SyncTalklip and TalkLip models are trained on the LRS2 (224h) dataset.
WER1 (%) and WER2 (%) are scored by the AV-HuBERT, which are train on LRS2 and LRS3 seperately. Some models focus on
other features, like 3D, so we didn’t compare them in depth.

Method
LES2 LRS3

LSE-C↑ LSE-D↓ PSNR↑ SSIM↑ WER1 ↓ LSE-C↑ LSE-D↓ PSNR↑ SSIM↑ WER2 ↓
Ground Truth 8.25 6.25 - 1.00 25.0 7.62 6.88 - 1.00 28.6

ATVGnet[40]* 5.05 8.65 30.42 0.75 113.7 - - - - -

3D Identity Mem[37]* 4.18 9.26 29.86 0.69 - - - - - -

PC-AVS[40]* 6.73 7.30 29.89 0.74 - - - - - -

MakeItTalk[41] 6.47 7.69 29.87 0.71 101.3 6.46 7.72 29.85 0.69 111.2

Faceformer[8] 6.42 7.80 29.47 0.84 97.6 6.44 7.71 29.79 0.69 114.7

Wav2Lip[24] 8.40 6.58 31.36 0.85 82.1 7.71 6.89 32.47 0.90 109.0

TalkLip[34] 8.53 5.87 30.42 0.81 23.4 7.97 6.59 30.21 0.80 23.2

SyncTalklip (ours) 9.29 5.52 31.85 0.93 19.7 8.38 6.41 32.16 0.93 19.1
Performances of methods with * are collected from [23] and [34]. For [8] and [41], we used the model given in the paper and did a partial test in LRS3.

3.4 Trade off between Synchronization and
Intelligibility

During the fine-tuning of AV-SyncNet, we adopted a novel strat-
egy that incorporates a convolutional module before the alignment
of audio-visual embeddings. This approach is designed to capture
deep semantic relationships between neighboring frames, thereby
shifting the model’s focus from the local level to the global level
[17]. However, it comes at the cost of sacrificing fine-grained su-
pervision, in exchange for a deeper comprehension of the semantic
information.

To further improve the performance of the model, we freeze
the AV-SyncNet audio encoder during the training of SyncTalklip.
In this method, the output from the audio encoder serves as the
input for computing contrast loss, yet it does not participate in the
gradient updates. Instead, an additional audio encoder is employed
to participate in the update process. The processing flow of the
module is shown in the supplementary in detail.

4 EXPERIMENT
4.1 Dataset
The LRS3 dataset [2] consists of obtained from TED talks covering
a large number of speakers and background noise environments.
These videos contain sentences in the English language, which is
beneficial for lip-reading and visual speech recognition research.
The LRS3 dataset is widely used in research on lip-reading tech-
niques due to its diversity and size. The LRS2 dataset [1] is from
BBC, which consists of video, audio, and text for each sample, where
the sample rates are 16 kHz for audio and 25 fps for video. The
dataset contains more than 1,000 speakers, nearly 150,000 utter-
ance instances, and nearly 63,000 different words, which makes
the dataset extremely rich in data. The LRS2 dataset is particularly
suitable for studying how to perform effective lip-reading in long
video sequences, as it covers continuous natural conversations. The
VoxCeleb2 dataset [22] contains over 1 million video clips from

YouTube videos. These clips are from over 6,000 celebrities and
cover multiple languages, accents, and background noise condi-
tions. VoxCeleb2 is often used to train cross-modal recognition
systems, especially those that combine visual and audio informa-
tion. We only use the English portion of the VoxCeleb2.

4.2 Implement Details
We detect faces in each image as the Region of Interest (ROI) and
then crop the ROI to 96 × 96 pixels. Audio waveforms are prepro-
cessed into mel-spectrograms. For AV-SyncNet, the inputs are lip
ROIs for the visual stream and log filterbank energy features for
the audio stream. For SyncTalklip, a randomly picked image within
the video is used as the identity reference, and the pose reference
is the same as the target face image, except that it masks the lower
half of the face to prevent our SyncTalklip model from learning
movements in the lip region. Based on the pre-trained model, we
fine-tune the AV-SyncNet for 180K steps and train SyncTalklip for
60K steps on a single Nvidia 3090 GPU.

AV-SyncNet is pre-trained on LRS3 (433h) and VoxCeleb2, and
fine-tuned on LRS2 (224h). The model consists of 24 transformer
blocks, 1024 embedding dimensions, 4096 feed-forward dimensions,
and 16 attention heads. In the pre-training phase, five clustering-
mask iterations are conducted as mentioned in Sec. 3.2. In the
fine-tuning phase, the model is guided by a multi-task loss function,
which includes lip-reading and local-level alignment tasks. For
SyncTalklip (conv) model, a convolutional submodule is added
for global-level alignment, which can better capture the temporal
knowledge and add flexibility to the overall system.

SyncTalklip is trained on the LRS2 dataset. The training process
is conducted as follows: First, in the video part, the predicted video
frames are masked and then fed into the audio and video encoders
to generate the corresponding audio and video embeddings respec-
tively. The Generation module generates the predicted frames and
calculates the frame-level loss and stream-level loss. On the one
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Table 2: Lip-reading effect of AV-SyncNet. AV-SyncNet(conv)
denotes the convolution operation applied before calculat-
ing the audio and video loss. AV-SyncNet retains a good lip-
reading capability while aligning the audio and video, and
the alignment quantization results are shown in the supple-
mentary.

Method Train AV-Align WER(%)↓
AV-HuBERT LRS2(224h) × 25.0

AV-SyncNet LRS2(224h) ✓ 26.0

AV-SyncNet(conv) LRS2(224h) ✓ 26.1

Conformer LRS2+LRS3 × 40.9

hand, the generated frames are compared with the correspond-
ing frames of ground truth to compute the adversarial loss and
reconstruction loss. On the other hand, it is inserted back into the
original video sequence. The generated video stream is input to the
trained expert system AV-SyncNet for lip reading task to compute
the loss, while in the lip reading task a byproduct is generated, i.e.,
the corresponding video embedding. Contrastive loss is computed
by combining the video embedding here with the audio embedding
generated during the generation process. The detailed information
of our method can be found in the supplementary.

4.3 Metrics
PSNR [31] and SSIM [19, 35] are used to evaluate the quality of the
generated frames, LSE-D and LSE-C [24] are used to evaluate the
synchronization of audio and video, and WER is used to evaluate
the performance of the generated video in the lip reading task.

Quality. PSNR and SSIM are used to evaluate the image quality,
PSNR is based on the average of the squares of the errors and
reflects the magnitude of the difference between the original image
and the distorted image, the higher the PSNR the better the quality
of the image, SSIM takes into account the structural information of
the image, the brightness, the contrast, etc., and the closer its value
is to 1 means the higher the quality.

Synchronization. The LSE-D has been widely used as a measure
of synchronization and employs the mechanism of the sliding win-
dow in a geometrical sense, which is a minimum of the Euclidean
distance from the audio to the center of the corresponding video
window [24]. LSE-C is widely used in previous works [24, 34].

Intelligibility. The word error rate (WER) is used as the eval-
uation index of speech recognition, which is defined as𝑊𝐸𝑅 =

(𝑆 +𝐾 + 𝐼 )/𝑁 , where 𝑆 denotes the number of words replaced, 𝐾 de-
notes the number of words deleted, 𝐼 denotes the number of words
inserted, and 𝑁 denotes the total number of words in the reference
text.𝑊𝐸𝑅1 and𝑊𝐸𝑅2 are scored by the AV-HuBERT (large) [26],
which are train on LRS2 and LRS3 seperately, while𝑊𝐸𝑅3 is scored
by the Conformer [20, 33].

Table 3: Ablation experiments. w/o novel-contrastive loss: tra-
ditional contrastive learning is used instead. w/o AV-SyncNet:
AV-HuBERT is used instead. More details is shown in supple-
mentary.

Method LSE-C↑ PSNR↑ WER(%) ↓

SyncTalklip 8.81 31.85 26.8
w/o novel-contrastive learning 7.74 30.17 35.1

w/o AV-SyncNet 8.53 30.42 30.4
w/o contrastive loss module 6.42 30.12 48.3
w/o lip-reading loss module 8.40 31.36 73.9

4.4 Main Results
We finetune the AV-SyncNet on LRS2, the performance of which
is shown in Tab. 2. This result shows that it has good retention in
lip-reading ability. The trained model is then used in SyncTalklip.
In order to verify the reading intelligibility of the generated videos,
the generated videos are put to test the lip-reading task on the
LRS2 test set using AV-HuBERT to calculate the Word Error Rate
(WER). As illustrated in Tab. 1, SyncTalklip demonstrates excellent
performance across various key metrics, particularly in LSE-C,
LSE-D, and WER. Specifically, SyncTalklip achieves leading LSE-
C and LSE-D scores, which proves its superior synchronization
capabilities. The PSNR and SSIM metrics are on par with Wav2Lip,
which is well-known for its synchronization capabilities, and the
scores of our model are closer to the ground truth.

Moreover, SyncTalklip achieves the lowest WER among all com-
peting methods when evaluated by AV-HuBERT, which achieves
SOTA performance on the lip-reading task. Note that𝑊𝐸𝑅1 and
𝑊𝐸𝑅2 for some methods exceed 100%. This is because the evaluator
predicts a much longer sentence. To distinguish between the lip-
reading supervisor in the model and the evaluator used to assess
the intelligibility of the generated images, we utilize the Conformer
[33] [20] architecture in teacher-forcing mode[36] for assessment,
and the results are shown in Tab. 4. These results underscore the
ability of SyncTalklip to produce high-quality visual content with-
out sacrificing synchronization. Overall, these results underscore
the superiority of SyncTalklip in TFG.

4.5 Ablation
As shown in Tab. 3, a series of experiments are conducted to verify
the usefulness of the lip-reading module, novel contrastive learning
module, and AV-SyncNet. The module ensuring generation quality
has been validated for its efficacy [24, 34]. Therefore, we will subse-
quently conduct ablation studies solely on the modules responsible
for synchronization and intelligibility.

Ablation on novel contrastive learning module. Using AV-SyncNet
model as the supervisor, the contrastive learningmodule is removed,
while the lip-reading module is retained. The experimental results
reveal that the videos generated by the model show a significant
dip in synchronization and a slight decrease in intelligibility. Fur-
thermore, we still use AV-SyncNet model as the supervisor, but
employ traditional contrastive learning instead, and the lip-reading
module is retained. The experimental results reveal that the videos
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Table 4: Model Optimization Exploration. The second row displays the effects of adding a convolution module, while the
third row demonstrates the effects of freezing the AV-SyncNet module. The right side of the table illustrates the results of the
generalizability test conducted on the LRS3 dataset. WER3 (%) is scored by Conformer.

Method
LRS2 LRS3

LSE-C↑ LSE-D↓ PSNR↑ SSIM↑ WER3 ↓ LSE-C↑ LSE-D↓ PSNR↑ SSIM↑ WER3 ↓
TalkLip 8.53 5.87 30.42 0.81 30.4 7.97 6.59 30.21 0.80 30.4

SyncTalklip 9.29 5.52 31.85 0.93 26.8 8.38 6.41 32.16 0.93 42.5

SyncTalklip(conv) 9.16 5.58 30.79 0.92 25.6 8.27 6.50 30.98 0.92 44.3

SyncTalklip(freeze) 8.21 6.35 31.97 0.93 25.6 7.29 7.24 32.20 0.94 81.8

generated by the model show a slight decrease in both synchro-
nization and intelligibility. These two experiments demonstrate
the contribution of our novel cross-modality contrastive learning
strategy.

Ablation on lip-reading module. Using AV-SyncNet model as the
supervisor, the lip-reading module is removed, while the novel con-
trastive learning module is retained. It shows that this configuration
of the model achieves good results in maintaining synchronization
and quality. However, it is also worth noting that the model exhibits
significant shortcomings in terms of intelligibility.

Ablation on AV-SyncNet. Using the AV-HuBERT model as the
supervisor, the novel contrastive learning module and lip-reading
module are retained. It shows that the videos generated by the
model have a slight decrease in all attributes, which proves the
significance of AV-SyncNet.

These experimental results also demonstrate that relying solely
on either module fails to yield the desired outcomes. This highlights
the critical need for integrating these modules to produce video
content that is high-quality, synchronized, and comprehensible.

4.6 Appropriate Model is All You Need
To trade off between synchronization and intelligibility, we con-
ducted convolution and freeze exploration. As shown in Tab. 4,
the models outperform in different aspects. We also performed
zero-shot generalizability tests on the LRS3 dataset using the model
trained on LRS2.

Convolution. During the fine-tuning of AV-SyncNet, we explored
a strategy that involves incorporating a convolutional module be-
fore computing the distance between vectors. After extensive train-
ing, our model has optimized the Word Error Rate (WER) by 1.2%
compared to the baseline, as detailed in Tab. 4. However, this im-
provement in intelligibility comes at the expense of a slight decrease
in synchronization and authenticity. The convolutional process
shifts the model’s focus from local to global features. A larger con-
volution kernel enables the model to capture more holistic semantic
information, prioritizing a deeper understanding of the content over
fine-grained details. Conversely, a smaller kernel preserves local
nuances, enhancing the quality of individual frames. A larger win-
dow size offers profound insights into the overall semantics, but
this can result in a lack of detailed one-to-one supervision and
lower the single-frame quality. Fundamentally, this represents a

balance between a global perspective and local precision within
the architecture of the model.

Freeze. To further improve the model’s performance, we exper-
imented with freezing the AV-SyncNet audio encoder during the
training of SyncTalklip. The results are shown in Tab. 4. The exper-
imental results demonstrate that the frozen SyncTalklip achieves
a 1.2% improvement in word error rate (WER) compared to the
base model, indicating an increase in content comprehensibility.
However, there is a noticeable decrease in synchronization. This out-
come can be attributed to the freezing operation, which preserves
the lip-reading performance of AV-SyncNet, thereby enhancing its
capability in this specific aspect. Nevertheless, this preservation
also constrains the potential for synchronization improvements
due to insufficient supervision of the audio-video synchronization.
Additionally, after freezing, the model shifts a greater focus onto
Generative Adversarial Networks (GANs), leading to further en-
hancements in the quality of the generated images. This strategy
produces results that excel in terms of intelligibility and genera-
tion quality, making it meaningful for improving human-computer
interaction experiences in dynamic real-world scenarios.

Generalizability on the LRS3. In addition, we evaluated the gen-
eralization ability of the models on the LRS3 dataset, which is
shown in Tab. 4. Compared to SyncTalklip (freeze), SyncTalklip and
SyncTalklip (conv) are more capable of generalization, which means
that using the SyncTalklip (freeze) model on zero-shot datasets
should be done with caution. The freeze operation inherently limits
the number of parameters that can be updated, thus reducing the
ability of the model to absorb new information. This reduction in
model complexity affects its flexibility, making it less adaptable
than its unfrozen counterpart. Interestingly, the freeze operation
seems to focus the model’s learning on improving the quality of
image generation.

4.7 Perceptual Evaluation
One hundred videos, randomly selected from real and generated
datasets, are evaluated in our study. Each video is assessed by
one participant, with a total of twenty participants involved. The
scoring range is from one to five. The evaluation covered three
main dimensions: video intelligibility, i.e., how clearly the viewer
can understand the verbal content in the video; authenticity, which
assesses how similar the generated video is to a real human video;
and synchronization, i.e., how well the lip movements in the video
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Figure 3: We compare sequential snapshots from two video-generated sentences to evaluate various methods. The top row,
denoted as Ground Truth, depicts the actual lip movements from the video. Below, the synthesized frames from the models
SyncTalklip, TalkLip, and Wav2Lip are presented. Our method closely mirrors the ground truth, particularly in lip synchro-
nization and the intelligence of mouth shapes, demonstrating superior performance in both video quality and the realism of
mouth movements. More examples can be seen in supplementary.

Table 5: Perceptual Evaluation. INTL, SYNC, and AUTH stand
for Intelligibility, Synchronization, and Authenticity, respec-
tively.

Method INTL↑ SYNC↑ AUTH↑
Wav2Lip 2.43 ± 1.12 4.54 ± 0.47 4.35 ± 0.22
TalkLip 3.12 ± 1.24 3.84 ± 0.72 3.25 ± 0.47

SyncTalklip 3.27 ± 0.76 4.44 ± 0.43 4.41 ± 0.23
Ground Truth 3.53 ± 0.93 4.85 ± 0.14 4.96 ± 0.04

match the speech. During the evaluation process, we asked the
evaluators to score the videos based on these three dimensions after
watching each video sample, so as to comprehensively assess the
quality of the videos generated by our method and its performance
in different aspects. The experimental results show that our model
is superior in perceptual evaluation, which is shown in Tab. 5.

In order to qualitatively evaluate the different approaches, we
show two snapshots of the generated speech face videos in Fig. 3.
These snapshots visualize the generation quality of each model,
and we encourage to go to the demo page to see a more detailed
presentation. Specifically, the first row provides snapshots of the
real videos, followed by images synthesized by various methods.
Through the figures, we are able to see that the image frames

generated by our proposed method are very similar to the real video
and perform the best in terms of video quality and naturalness of
mouth movements as well.

5 CONCLUSION
In this paper, we analyze the challenges faced in the TFG task, and
propose a novel SyncTalklip network to synthesize talking face
videos with great quality, synchronization, and reading intelligibil-
ity. The Experimental results indicate that SyncTalklip surpasses
existing methods across all the key performance metrics. A novel
cross-modality contrastive learning approach is adopted in our
model, which mainly contributes to the synchronization. Besides,
AV-SyncNet customized a distance metric for SyncTalklip, whose
effectiveness has been demonstrated. Additionally, we introduce
variants such as global-level SyncTalklip and AV-SyncNet-frozen
SyncTalklip, which excel at different attributes. Based on your needs,
you can choose the appropriate model among the three. Moving
forward, we aim to further explore audio-video synchronization
and content generation technologies to realize more natural and
enriched human-computer interaction experiences. Meanwhile, we
anticipate that the community will engage in more extensive test-
ing and application of SyncTalklip, thereby driving progress and
fostering innovation in related technologies.
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