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SyncTalklip: Highly Synchronized Lip-Readable Speaker
Generation with Multi-Task Learning
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1 BASELINE
ATVGnet employs an intermediate representation-based approach,
initially predicting facial landmarks before generating realistic im-
ages. Wav2Lip, a representative of reconstruction methods, claims
state-of-the-art (SOTA) performance in lip-sync synchronization.
Talklip is the first method to prioritize intelligibility, but at the
expense of synchronization. It uses AV-HuBERT as a supervisor.
Faceformer represents an emerging approach, namely the sequence-
to-sequence manner, which employs a transformer to process the
entire audio and output a video sequence. Originally, FaceFormer
was designed to generate a vertex sequence (3D scan data) from an
audio sequence. It does not work if we simply replace the vertex
sequence with the image sequence. Thus, we adopt the video en-
coder and corresponding visual input to replace the style encoder
in FaceFormer and add a skip connection between the visual input
and the output image. PC-AVS is also a reconstruction method that
disentangles identity, speech content, and poses. The latter methods
do not publicly share their code or training materials. Thus, their
performances are documented based on available data.

2 THE MAIN IDEA OF SYNCTALKLIP (FREEZE)
During the training process of AV-SyncNet, the audio-video em-
beddings are aligned. However, during the fine-tuning process of
SyncTalklip, the alignment of these embeddings is adjusted to en-
hance lip readability. As mentioned in Sec. 3.4, the AV-SyncNet
audio encoder is frozen during the training of the SyncTalklip. In-
stead, an additional audio encoder is employed to participate in
the update process. The output from the frozen AV-SyncNet en-
coder serves as the input for computing cross-modality contrast
loss, but it does not participate in gradient updates. In this way,
the alignment between audio and video embeddings is maintained,
preserving the initial synchronization established by AV-SyncNet.

3 MORE EXAMPLES
There are some examples in Fig. 3. We strongly encourage the
reader to check out the demo video on our website: https://sync-
talklip.github.io. It presents the results of ablation studies, extended
model outcomes, and outcomes from other models.

4 LIP-READING EXPERTS
AV-HuBERT trained on LRS2 (224h) is used to test 𝑊𝐸𝑅1, AV-
HuBERT trained on LRS3 (433h) is used to test𝑊𝐸𝑅2. Conformer is
used to test𝑊𝐸𝑅3. Their abilities are shown in Tab. 1. AV-SyncNet
serves as the supervisor, and lip-reading experts are employed to
assess the capabilities of our model.

5 MODULE ARCHITECTURE
The details of the generator to synthesize a face image are provided
in Tab. 2. The details of the discriminator to penalize unrealistic
synthesized face images are provided in Tab. 3. The discriminator

Audio
Encoder AV-SyncNet

AV-SyncNet

Video
Encoder

Generator

Video Audio

Generated Video

L1

Figure 1: The main framework of SyncTalklip (freeze). The
figure does not depict all the losses but conveys the main
idea. AV-SyncNet remains frozen from start to finish, and the
drawing-in process is consistent with that of AV-SyncNet.

not all about

they are move

but it is size

lives

Figure 2: The examples of the SyncTalklip. The related audio
is from the LRS2 dataset.

only takes the lower half of faces as inputs. We use a video encoder
to extract the identity and pose information to a united visual

https://sync-talklip.github.io
https://sync-talklip.github.io
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Table 1: The ability of all lip-reading experts mentioned in
our work. AV-SyncNet(conv) denotes the convolution opera-
tion applied before calculating the audio and video loss.

Method
Utt(hrs)

WER(%)
Train Test

AV-HuBERT
LRS2(224h) LRS2(224h) 25.0
LRS3(433h) LRS3(433h) 28.6

AV-SyncNet LRS2(224h) LRS2(224h) 26.0
AV-SyncNet (conv) LRS2(224h) LRS2(224h) 26.1

Conformer LRS2+LRS3 LRS2(224h) 40.9

embedding from a concatenation (6×96×96) of an identity and a
pose image.

Table 2: Generator architecture. All parameters listed in the
column of Filters for Conv2D are kernel sizes, output chan-
nels, strides, padding, and repetition of layers. Conv 2D T.
means 2D transposed convolutional layers which has an ex-
tra parameter called output padding, placed after the padding
parameter.

Layer Type Filters Output dim.
Conv 2D {[1, 1], 512, [1, 1], 0} × 1 512 × 1 × 1
Conv 2D T. {[3, 3], 512, [2, 2], 0} × 1 512 × 3 × 3
Conv 2D {[3, 3], 512, [1, 1], 1} × 1 512 × 3 × 3
Conv 2D T. {[3, 3], 512, [2, 1], 1} × 1 512 × 6 × 6
Conv 2D {[3, 3], 512, [1, 1], 1} × 2 512 × 6 × 6
Conv 2D T. {[3, 3], 384, [2, 1], 1} × 1 384 × 12 × 12
Conv 2D {[3, 3], 384, [1, 1], 1} × 2 384 × 12 × 12
Conv 2D T. {[3, 3], 256, [2, 1], 1} × 1 256 × 24 × 24
Conv 2D {[3, 3], 256, [1, 1], 1} × 2 256 × 24 × 24
Conv 2D T. {[3, 3], 128, [2, 1], 1} × 1 128 × 48 × 48
Conv 2D {[3, 3], 128, [1, 1], 1} × 2 128 × 48 × 48
Conv 2D T. {[3, 3], 64, [2, 1], 1} × 1 64 × 96 × 96
Conv 2D {[1, 1], 64, [1, 1], 1} × 2 64 × 96 × 96
Conv 2D {[3, 3], 32, [1, 1], 1} × 1 32 × 96 × 96
Conv 2D {[1, 1], 3, [1, 1], 0} × 1 3 × 96 × 96

6 SYNCHRONIZATION METRIC
6.1 The definition of the PRI
To evaluate the alignment ability of AV-SyncNet from another angle,
we propose the primacy index (PRI), which is a novel metric. This
metric can use embeddings as input, which is different from the
LSE-C and LSE-D mentioned in the Sec. 4.3. Given N audio-video
embeddings, the dimension of each is D. Denote 𝑓 𝑎

𝑖
and 𝑓 𝑣

𝑖
as the

Table 3: Discriminator architecture. All parameters listed
in the column of Filters are kernel sizes, output channels,
strides, padding, and repetition of layers.

Layer Type Filters Output dim.

Conv 2D [7, 7], 32, [1, 1], 1] × 1 32 × 48 × 96
Conv 2D [5, 5], 64, [1, 2], 1] × 1 64 × 48 × 48
Conv 2D [5, 5], 64, [1, 1], 1] × 1 64 × 48 × 48
Conv 2D [5, 5], 128, [2, 2], 1] × 1 128 × 24 × 24
Conv 2D [5, 5], 128, [1, 1], 1] × 1 128 × 24 × 24
Conv 2D [5, 5], 256, [2, 2], 1] × 1 256 × 12 × 12
Conv 2D [5, 5], 256, [1, 1], 1] × 1 256 × 12 × 12
Conv 2D [5, 5], 512, [2, 2], 1] × 1 512 × 6 × 6
Conv 2D [5, 5], 512, [1, 1], 1] × 1 512 × 6 × 6
Conv 2D [3, 3], 512, [2, 2], 1] × 1 512 × 3 × 3
Conv 2D [3, 3], 512, [1, 1], 1] × 1 512 × 3 × 3
Conv 2D [3, 3], 512, [1, 1], 1] × 1 512 × 1 × 1
Conv 2D [1, 1], 512, [1, 1], 1] × 1 512 × 1 × 1

i-th embeddings of audio and video, respectively. First, calculate
the distance matrix𝑀 ∈ R𝑁×𝑁 , where𝑀𝑖 𝑗 represents the distance
between 𝑎𝑖 and 𝑣 𝑗 . Denote 𝑡𝑖 as the rank of the𝑀𝑖𝑖 in the i-th row,
so the 𝑡𝑖/𝑁 is the importance of the𝑀𝑖𝑖 . Then the PRI is defined as
follows:

𝑃𝑅𝐼 =

∑𝑁
𝑖=1 𝑡𝑖

𝑁 × 𝑁
∈ (0, 1)

The distance of the 𝑎𝑖 and 𝑣 𝑗 is calculated as follows:

𝑀𝑖 𝑗 = ∥𝑎𝑖 − 𝑣 𝑗 ∥1

6.2 The relationship between LSE-D and PRI
LSE-D employs a sliding window strategy, calculating the distance
between a given frame and other frames within the window. Denote
the window size as S, where the interval [i, i+S] is considered as
within the sliding window. Calculate the distance between 𝑎𝑖 and
𝑣 𝑗 , where 𝑗 ∈ [𝑖, 𝑖 + 𝑆]. This yields the distance metrics:𝑀 ∈ R𝑁×𝑆 .
Average across the S dimension and calculate the minimum of the
resulting values, which forms the basis of the LSE-D algorithm.

The distance of 𝑎𝑖 and 𝑣 𝑗 , is calculated as follows:

𝑀𝑖 𝑗 =
𝑓 𝑎
𝑖
· 𝑓 𝑣

𝑗

∥ 𝑓 𝑎
𝑖
∥2 · ∥ 𝑓 𝑣𝑗 ∥2

∈ (−1, 1)

Compared to LSE-D, PRI has a fixed window size and utilizes differ-
ent distance metrics. What’s more, LSE-D is generated by SyncNet,
which takes videos as input, whereas PRI utilizes embeddings as
input.

6.3 Performance
As shown in the Tab. 4, the alignment of AV-SyncNet is on par
with SyncNet at the embedding level. The outcome for AV-HuBERT
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is less than 0.5, which demonstrates that its alignment has been
corrupted during the fine-tuning process.

Table 4: Your table caption here.

Method AV-HuBERT SyncNet AV-SyncNet

PRI 0.51 0.45 0.47

7 PRIMARY HYPERPARAMETER
The learning rate is set to 1×10−4, and the batch size is configured at
8. In AV-SyncNet, the parameters 𝜆𝑎𝑣 and 𝜆𝑙𝑖𝑝 are empirically set to
1 each. In SyncTalklip, the values are set as follows: 𝜆𝑐𝑎𝑣 = 1×10−3,
𝜆𝑔𝑎𝑛 = 7×10−2, 𝜆𝑟𝑒𝑐 = 1×10−5, and 𝜆𝑙𝑖𝑝 = (1−𝜆𝑐𝑎𝑣 −𝜆𝑔𝑎𝑛 −𝜆𝑟𝑒𝑐 )
respectively.
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