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A MORE DETAILS OF PACIA

A.1 ENCODER

Encoder for MoleculeNet. As the main network of the encoder, to process a molecule with GNN,
each node embedding hv represents an atom, and each edge evu represents a chemical bond. Here,
we use GIN (Xu et al., 2019) as the main network in encoder, which is a powerful GNN structure.
In GIN, the aggregation function in (1) is specified as adding all neighbors up: and for the update
function is adding the aggregated embeddings and the target node, and feeding to a MLP:
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where ✏ is a scalar parameter to distinguish the target node. To obtain the molecular representation,
the readout function in (2) is specified as
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Encoder for FS-Mol. Following existing works (Chen et al., 2022; Schimunek et al., 2023), we
directly adopt the PNA (Corso et al., 2020) network provided in FS-Mol benchmark (Stanley et al.,
2021) as the molecular encoder.

A.2 PREDICTOR

The classifier needs to make prediction of the query ĥ⌧,q , according to the N⌧ labeled support samples
{(h⌧,s, y⌧,s) | X⌧,s 2 S⌧}. We adopt an adaptive classifier (Requeima et al., 2019), which map the
labeled samples in each class to the parameters of a linear classifier, i.e.,
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where w± has the same dimension with h⌧,q , and b± is a scalar. Then the prediction is made by

ŷ⌧,q = softmax([w>
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+h⌧,q + b+]), (17)
where softmax(x) = exp(x)/

P
i exp ([x]i) and [x]i means the ith element in x.

A.3 UNIFIED GNN ADAPTER

The choice of e can be various (Wu et al., 2023), while in this work we adopt a simple feature-wise
linear modulation (FiLM) (Perez et al., 2018) function.

A.4 HYPERPARAMETERS

Here we provide the detailed hyperparameter setting of PACIA.

Hyperparameters on MoleculeNet. The maximum layer number of the GNN Lenc = 5, the
maximum depth of the relation graph Lrel = 5, During training, for each layer in GNN, we set
dropout rate as 0.5 operated between the graph operation and FiLM layer. The dropout rate of MLP
in (9) (10) and (11) is 0.1. For all baselines, we use Adam optimizer (Kingma & Ba, 2015) with
learning rate 0.006 and the maximum episode number is 25000. In each episode, the meta-training
tasks are learned one-by-one, query set size M = 16. The ROC-AUC is evaluated every 10 epochs
on meta-testing tasks and the best performance is reported. Table 4 shows the details of the other
parts. Experiments are conducted on a 24GB NVIDIA GeForce RTX 3090 GPU, with Python 3.8.13,
CUDA version 11.7, Torch version 1.10.1.

Hyperparameters on FS-Mol. The maximum layer number of the GNN Lenc = 8, the maximum
depth of the relation graph Lrel = 5, During training, the dropout rate of MLPL is 0.1. We use Adam
optimizer (Kingma & Ba, 2015) with learning rate 0.0001 and the maximum episode number is 3000.
In each episode, the meta-training tasks are learned with batch size 16, support set size N⌧ = 64, and
the others are used as queries. The average precision s evaluated every 50 epochs on validation tasks
and the the model with best validation performance is tested and reported. Table 5 shows the details
of the other parts.
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Table 4: Details of model structure for MoleculeNet.

Layers Output Dimension
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Table 5: Details of model structure for FS-Mol.

Layers Output Dimension

MLP in (9) input 1
|V⌧,s|

P
v2X⌧,s

⇥
hl
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⇤
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(·) | 1
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MLP in (10) fully connected with residual skip connection 1025

MLP in (11) fully connected with residual skip connection 513

MLP in (4)
input exp(|hl�1

⌧,i � hl�1
⌧,i |), fully connected, LeakyReLU 256

fully connected, LeakyReLU 128

fully connected 1

MLP in (5) fully connected, LeakyReLU 256

fully connected, LeakyReLU 256

MLPw in (16)
input 1

|S±
⌧ |

P
y⌧,s=c h⌧,s, fully connected with residual skip connection, LeakyReLU 256

2⇥ (fully connected with residual skip connection, LeakyReLU) 256

fully connected 256

MLPb in (16)
input 1

|S±
⌧ |

P
y⌧,s=c h⌧,s, fully connected with residual skip connection, LeakyReLU 256

2⇥ (fully connected with residual skip connection, LeakyReLU) 256

fully connected 1

B ADOPTING MAML FOR PROPERTY-LEVEL ADAPTATION

Denote all model parameter as ⇥. The model first predict samples in support set and get loss to
do local-update. Denote the loss for local-update as L

S
⌧ (⇥) =

P
X⌧,s2S⌧

y>

⌧,slog (ŷ⌧,s), where
ŷ⌧,s is the prediction made by the main network with parameter ⇥. The loss for global-update is
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calculated with samples in query set, denoted as , LQ
⌧ (⇥

0

⌧ ) =
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⌧,qlog (ŷ⌧,q), where ŷ⌧,q

is the prediction made by the main network with parameter ⇥0

⌧ . Then Algorithm 3 can be adopted
for meta-training, and Algorithm 4 for meta-testing.

Algorithm 3 Meta-training with MAML
Input: meta-training task set T train

1: initialize ⇥ randomly;
2: while not done do

3: for each task T⌧ 2 T train do

4: evaluate r⇥L
S
⌧ (⇥) with respect to all samples in S⌧ ;

5: compute adapted parameters with gradient descent: ⇥0

⌧ = ⇥�r⇥L
S
⌧ (⇥);

6: end for

7: update ⇥ ⇥�r⇥
P

T⌧2T train
L
Q
⌧ (⇥

0

⌧ );
8: end while

9: return learned ⇥⇤.

Algorithm 4 Meta-testing with MAML
Input: learned ⇥⇤, a meta-testing task T⌧ ;

1: evaluate r⇥L
S
⌧ (⇥) with respect to all samples in S⌧ ;

2: compute adapted parameters with gradient descent: ⇥0

⌧ = ⇥�r⇥L
S
⌧ (⇥);

3: make prediction y⌧,q for X⌧,q 2 Q⌧ with adapted parameter ⇥0

⌧ ;

B.1 COMPARISON WITH EXISTING WORKS

We compare the proposed PACIA with existing few-shot MPP approaches in Table 6. As shown, we
manage to compare in perspectives of support of pre-training, property-level adaptation, molecule-
level adaptation. fast-adaptation and adaptation strategy. With the help of hypernetworks, our method
not only introduces novel molecule-level adaptation, but also can adapt on property-level more
effectively and efficiently.

Table 6: Comparison of the proposed PACIA with existing few-shot MPP methods.

Method Support Hierarchical adaptation Fast Adaptation
Pre-training Property-level molecule-level adaptation Strategy

IterRefLSTM ⇥
p

⇥
p

Pair-wise similarity

Meta-MGNN
p p

⇥ ⇥ Gradient

PAR
p p

⇥ ⇥ Attention+Gradient

ADKF-IFT
p p

⇥ ⇥ Gradient+statistical learning

MHNfs
p p p p

Attention+pair-wise similarity

GS-META
p

⇥
p p

Message passing

PACIA
p p p p

Hypernetwork

From the perspective of hypernetwork, the usage of the hypernetwork for encoder is related to GNN-
FiLM (Brockschmidt, 2020), which considers a GNN as main network. It builds hypernetwork with
target node as input to generate parameters of FiLM layers, to equip different nodes with different
aggregation functions in the GNN. What and how to adapt are similar to ours, but it is different that
the input of our hypernetwork for encoder is S⌧ and how we encode a set of labeled graphs.

In few-shot learning, some recent works (Requeima et al., 2019; Lin et al., 2021) use hypernetworks
to process the task context to make the model task-adaptive. Their hypernetworks have similar
functionality of our hypernetwork for encoder, that are used to map the support set to parameter to
modulate the main network, but their main networks are convolutional neural network (CNN) and
MLP respectively, there is significant difference about what to modulate. As for the usage of the
hypernetwork for predictor, which is used to evaluate an unlabeled sample with a set of labeled ones
to encode model architecture, did not appear in the literature.
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C MORE DETAILS OF EXPERIMENTS

C.1 DATASETS

MoleculeNet. There are four sub-datasets for few-shot MPP: Tox21 (National Center for Advancing
Translational Sciences, 2017), SIDER (Kuhn et al., 2016), MUV (Rohrer & Baumann, 2009) and
ToxCast (Richard et al., 2016), which are included in MoleculeNet (Wu et al., 2018). We adopt
the task splits provided by existing works(Altae-Tran et al., 2017; Wang et al., 2021). Tox21 is a
collection of nuclear receptor assays related to human toxicity, containing 8014 compounds in 12
tasks, among which 9 are split for training and 3 are split for testing. SIDER collects information
about side effects of marketed medicines, and it contains 1427 compounds in 21 tasks, among
which 21 are split for training and 6 are split for testing. MUV contains compounds designed to be
challenging for virtual screening for 17 assays, containing 93127 compounds in 17 tasks, among
which 12 are split for training and 5 are split for testing. ToxCast collects compounds with toxicity
labels, containing 8615 compounds in 617 tasks, among which 450 are split for training and 167 are
split for testing.

FS-Mol. FS-Mol benchmark, which contains a set of few-shot learning tasks for molecular property
prediction carefully collected from ChEMBL27 (Mendez et al., 2019) by Stanley et al. (2021).
Following existing works (Chen et al., 2022; Schimunek et al., 2023), we use the same 10% of all
tasks which contains 233,786 unique compounds, split into training (4,938 tasks), validation (40
tasks), and test (157 tasks) sets. Each task is associated with a protein target.

C.2 BASELINES

We compare our method with following baselines:

• Siamese (Koch et al., 2015): It learns two neural networks which are symmetric on structure to
identity whether the input molecule pairs are from the same class. The performance is copied
from (Altae-Tran et al., 2017) due to the lack of code.

• ProtoNet
1 (Snell et al., 2017): It makes classification according to inner-product similarity between

the target and the prototype of each class. This method is incorporated as a classifier after the GNN
encoder.

• MAML
2 (Finn et al., 2017): It learns a parameter initialization and the model is adapted to each

task via few gradient steps on the support set. We adopt this method for all parameters in a model
composed of a GNN encoder and a linear classifier.

• EGNN
3 (Kim et al., 2019): It builds a relation graph that samples are refined, and it learns to

predict edge-labels in the relation graph. This method is incorporated as the predictor after the
GNN encoder.

• GNN-FiLM(Brockschmidt, 2020): GNN-FiLM has built hypernetwork with target node as input
to generate parameters of FiLM layers, which equips different nodes with different aggregation
functions in the GNN. We adopt this as encoder and a MLP as classifier and train on all samples in
meta-training tasks and samples in support set of all meta-testing tasks;

• IterRefLSTM (Altae-Tran et al., 2017): It introduces matching networks combined with long
short-term memory (LSTM) to refine the molecular representations according to the task context.
The performance is copied from (Altae-Tran et al., 2017) due to the lack of code.

• PAR
4 (Wang et al., 2021): It introduces an attention mechanism to capture task-dependent property

and an inductive relation graph between samples, and incorporates MAML to train.
• ADKF-IFT

5 (Wang et al., 2021): It adopt gradient-based strategy to learn the encoder where it
proposes Implicit Function Theory to avoid computing the hyper-gradient. And a Gaussian Process
is learned from scratch in each task as classifier.

1https://github.com/jakesnell/prototypical-networks
2https://github.com/learnables/learn2learn
3https://github.com/khy0809/fewshot-egnn
4https://github.com/tata1661/PAR-NeurIPS21
5https://github.com/Wenlin-Chen/ADKF-IFT
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• Pre-GNN
6 (Hu et al., 2019): It trains a GNN encoder on ZINC15 dataset with graph-level and

node-level self-supervised tasks, and fine-tunes the pre-trained GNN on downstream tasks. We
adopt the pre-trained GNN encoder and a linear classifier.

• GraphLoG
7 (Xu et al., 2021): It introduces hierarchical prototypes to capture the global semantic

clusters. And adopts an online expectation-maximization algorithm to learn. We adopt the pre-
trained GNN encoder and a linear classifier.

• MGSSL
8 (Hu et al., 2019): It trains a GNN encoder on ZINC15 dataset with graph-level, node-

level and motif-level self-supervised tasks, and fine-tunes the pre-trained GNN on downstream
tasks. We adopt the pre-trained GNN encoder and a linear classifier.

• GraphMAE
9 (Hou et al., 2022): It presents a masked graph autoencoder for generative self-

supervised graph pre-training and focus on feature reconstruction with both a masking strategy and
scaled cosine error. We adopt the pre-trained GNN encoder and a linear classifier.

• Meta-MGNN
10 (Guo et al., 2021): It incorporates self-supervised tasks such as bond reconstruction

and atom type prediction to be jointly optimized via MAML. It uses the pre-trained GNN encoder
provided by (Hu et al., 2019).

• Pre-PAR: The same as PAR but uses the pre-trained GNN encoder provided by (Hu et al., 2019).
• Pre-ADKF-IFT: The same as ADKF-IFT but uses the pre-trained GNN encoder provided by (Hu

et al., 2019).

C.3 PERFORMANCE COMPARISON WITH PRE-TRAINING

Baselines with Pre-training. We compare with the following baselines with (w/) pre-training:
(i) Methods which fine-tune pre-train GNN encoders, including Pre-GNN (Hu et al., 2019),
GraphLoG (Xu et al., 2021), MGSSL (Zhang et al., 2021), GraphMAE (Hou et al., 2022); (ii)
Few-shot MPP methods incorporating pre-trained encoders provided by (Hu et al., 2019), including
Meta-MGNN (Guo et al., 2021), Pre-PAR (Wang et al., 2021) and Pre-ADKF-IFT Chen et al.
(2022). All encoders have the same structure (Hu et al., 2019) and are pre-trained on ZINC15
dataset (Sterling & Irwin, 2015). We equip our PACIA with the same pre-trained encoder, and name
it as Pre-PACIA.

Table 7: Test ROC-AUC obtained with pre-trained GNN encoder.

Method Tox21 SIDER MUV ToxCast
10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot

Pre-GNN 83.02(0.13) 82.75(0.09) 77.55(0.14) 67.34(0.30) 67.22(2.16) 65.79(1.68) 73.03(0.67) 71.26(0.85)

GraphLoG 81.61(0.35) 79.23(0.93) 75.18(0.27) 67.52(1.40) 67.83(1.65) 66.56(1.46) 73.92(0.15) 73.10(0.39)

MGSSL 83.24(0.09) 83.21(0.12) 77.87(0.18) 69.66(0.21) 68.58(1.32) 66.93(1.74) 73.51(0.45) 72.89(0.63)

GraphMAE 84.01(0.27) 81.54(0.18) 76.07(0.15) 67.60(0.38) 67.99(1.28) 67.50(2.12) 74.15(0.33) 72.67(0.71)

Meta-MGNN 83.44(0.14) 82.67(0.20) 77.84(0.34) 74.62(0.41) 68.31(3.06) 66.10(3.98) 74.69(0.57) 73.29(0.85)

Pre-PAR 84.95(0.24) 83.01(0.28) 78.05(0.15) 75.29(0.32) 69.88(1.57) 66.96(2.63) 75.48(0.99) 73.90(1.21)

Pre-ADKF-IFT 86.06(0.35) 80.97(0.48) 70.95(0.60) 62.16(1.03) 95.74(0.37) 67.25(3.87) 76.22(0.13) 71.13(1.15)

Pre-PACIA 86.40(0.27) 84.35(0.14) 83.97(0.22) 80.70(0.28) 73.43(1.96) 69.26(2.35) 76.22(0.73) 75.09(0.95)

Performance with Pre-training. Table 7 shows the results. We can see that Pre-PACIA obtains
significantly better performance except the 10-shot case on MUV, surpassing the second-best method
Pre-ADKF-IFT by 3.10%. MGSSL defeats the other methods which fine-tune pre-trained GNN
encoders, i.e., Pre-GNN, GraphLoG, and GraphMAE. However, it still performs worse than Pre-
PACIA equipped with Pre-GNN, which validates the necessity of designing a few-shot MPP method

6http://snap.stanford.edu/gnn-pretrain
7http://proceedings.mlr.press/v139/xu21g/xu21g-supp.zip
8https://github.com/zaixizhang/MGSSL
9https://github.com/THUDM/GraphMAE

10https://github.com/zhichunguo/Meta-Meta-MGNN

17

http://snap.stanford.edu/gnn-pretrain
http://proceedings.mlr.press/v139/xu21g/xu21g-supp.zip
https://github.com/zaixizhang/MGSSL
https://github.com/THUDM/GraphMAE
https://github.com/zhichunguo/Meta-Meta-MGNN


Under review as a conference paper at ICLR 2024

instead of simply fine-tuning a pre-trained GNN encoder. Moreover, comparing Pre-PACIA and
PACIA in Table 1, the pre-trained encoder brings 3.05% improvement in average performance due to
a better starting point of learning.

C.4 A CLOSER LOOK AT MOLECULE-LEVEL ADAPTATION

In this section, we pay a closer look at our molecule-level adaptation mechanism, proving evidence
of its effectiveness.

C.4.1 PERFORMANCE UNDER DIFFERENT PROPAGATION DEPTH

Figure 5 compares Pre-PACIA with “w/o M” (introduced in Section 5.3) using different fixed layers
of relation graph refinement on Tox21, where the maximum DepthL = 5. As can be seen, Pre-PACIA
equipped performs much better than “w/o M” which takes the same depth of relation graph refinement
as in PAR. This validates the necessity of molecule-level adaptation.

(a) 10-shot case. (b) 1-shot case.

Figure 5: Comparing Pre-PACIA with “w/o M” using different fixed propagation depth of relation
graph on Tox21.

C.4.2 DISTRIBUTION OF PROPAGATION DEPTH

Figure 6(a) plots the distribution of learned l0 for query molecules in meta-testing tasks for 10-shot
case of Tox21. The three meta-testing tasks contain different number of query molecules in scale:
6447 in task SR-HSE, 5790 in task SR-MMP, and 6754 in task SR-p53. We can see that Pre-PACIA
choose different tl for query molecules in the same task. Besides, the distribution of learned l0

varies across different meta-testing tasks: molecules in task SR-MPP mainly choose smaller depth
while molecules in the other two tasks tend to choose greater depth. This can be explained as most
molecules in task SR-MPP are relatively easy to classify, which is consistent with the fact that
Pre-PACIA obtains the highest ROC-AUC on SR-MPP among the three meta-testing tasks (83.75 for
SR-HSE, 88.79 for SR-MPP and 86.39 for SR-p53).

Further, we pick out molecules with l0 = 1 (denote as Group A) and l0 = 4 (denote as Group B) as
they are more extreme cases. We then apply “w/o M” with different fixed depth for Group A and
Group B, and compare them with Pre-PACIA. Figure 6(b) shows the results. Different observations
can be made for these two groups. Molecules in Group A have good performance with smaller depth
relation graph, they can achieve higher ROC-AUC score than the average of all molecules using
Pre-PACIA. These indicate they are easier to classify and it is reasonable that Pre-PACIA choose
l0 = 1 for them. While molecules in Group B are harder to classify and requires l0 = 4.
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(a) Distribution of learned l0. (b) Performance comparison.

Figure 6: Examine molecule-level adaptation of Pre-PACIA on 10-shot tasks of Tox21.

19


	Introduction
	Related Works
	Preliminaries of Few-shot Molecular Property Prediction
	Problem Setup
	Encoder-Predictor Framework

	Hierarchical Adaptation of Encoder-Predictor Framework
	A Unified GNN Adapter
	Learning and Inference

	Experiments
	Performance Comparison on MoleculeNet
	Performance Comparison on FS-Mol
	Ablation Study
	A Closer Look at Hierarchical Adaptation Mechanism

	Conclusion
	More Details of PACIA
	Encoder
	Predictor
	Unified GNN Adapter
	Hyperparameters

	Adopting MAML for Property-Level Adaptation
	Comparison with Existing Works

	More Details of Experiments
	Datasets
	Baselines
	Performance Comparison with Pre-training
	A Closer Look at Molecule-level Adaptation
	Performance under Different Propagation Depth
	Distribution of Propagation Depth



