
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: HINER: Neural Representation for
Hyperspectral Image

Anonymous Authors

1 CLASSIFICATION ON COMPRESSED HSI
1.1 Adaptive Spectral Weighting (ASW)
Architecture. ASW consists of two modules: WeightMLP W and
ConvMLP M, in which the output 𝑰𝑐 ∈ R𝑁×𝐻×𝑊 maintains the
original shape. Next, let’s ignore the residual for simplicity, and
this process can be abbreviated as:

𝑰𝑐 = M(W(𝑰 )) . (1)

WeightMLP generates an n-dimensional vector𝑾 ∈ R𝑁×1 us-
ing a small MLP. The vector𝑾 is then utilized to weight the HSI
spectral-wisely. The purpose of this step is to adaptively emphasize
or de-emphasize certain spectral bands. Assuming 𝑰 ∈ R𝑁×𝐻×𝑊 ,
the output 𝑷 of WeightMLP can be written as:

𝑷 = 𝑰 ⊙𝑾 =


𝑰 1
𝑰 2
. . .

𝑰𝑛

 ⊙

𝑊1
𝑊2
. . .

𝑊𝑛

 =

𝑊1𝑰 1
𝑊2𝑰 2
. . .

𝑊𝑛 𝑰𝑛

 =

𝑷1
𝑷2
. . .

𝑷𝑛

 ∈ R𝑁×𝐻×𝑊 . (2)

Then 𝑷 is passed to ConvMLP M comprising 1x1 conv to ag-
gregate cross-spectral information. Let 𝑨 ∈ R𝑁×𝑀×1×1 and 𝑩 ∈
R𝑀×𝑁×1×1 represent the two convolution layers used in the M,
respectively:

𝑨 = [𝛼1, 𝛼2, . . . , 𝛼𝑛]𝑇 ,∀𝛼 ∈ R𝑀×1;

𝑩 = [𝛽1, 𝛽2, . . . , 𝛽𝑛] ,∀𝛽 ∈ R1×𝑀 . (3)

Considering the 𝜆-th band of output 𝑰𝑐 , it can be written as

𝑰𝑐 [𝜆, :, :] = 𝛼𝑇1 𝛽
𝑇
𝜆
𝑷1 + 𝛼𝑇2 𝛽

𝑇
𝜆
𝑷2 + . . . 𝛼𝑇𝑛 𝛽

𝑇
𝜆
𝑷𝑛 (4)

Combining Eq. 1, it can be found that ASW first spectral-wisely
re-weight the reconstructed HSI by multiplying learned vector𝑾 ,
and then aggregate cross-spectral information.

Optimization. By employing ASW, the optimization of 𝑰 is
converted into the optimization of network parameters. This con-
version can be readily accomplished through gradient descent tech-
niques. Then the input of classification network becomes the out-
put of ASW 𝑰𝑐 , by which the the 𝒖(𝑰 ) = | |𝑰 − 𝑰 | | is translated
to 𝒖(𝑰 ) = | |𝑰 − 𝑰𝒄 | | to constrain classifier’s input. We relax the
constraint to prevent the necessity of introducing ground truth,

𝒖 (𝑰 ) = | |𝑰 − 𝑰𝒄 | | ≈ | |𝑰 − 𝑰𝒄 | | = | |𝑰 − SAW(𝑰 ) | |. (5)

Given the condition | |𝑰 − 𝑰 | | < 10−3, this relaxation holds valid.
Finally, our optimization objective can be expressed as the amal-
gamation of the classification loss L𝐶 and the reconstruction loss
L𝑅 , as described in Eq. (8) of the main paper:

argminL𝐶 + 𝛽 · L𝑅 (𝑰 , 𝑰𝑐 ) (6)

1.2 Implicit Spectral Interpolation (ISI)
Data Augmentation has shown promise for training robust deep
neural networks against unforeseen data bias or corruptions [1, 2].
Intuitively, augmented samples encourage perturbing the under-
lying source distribution to enlarge predictive uncertainty of the
current model, so that the generated perturbations can improve the
model generalization during training. One intuitive manifestation
of generalization is the flatness of the loss landscape. As described
in the main paper, a flatter loss landscape, indicative of better gen-
eralization, exhibits relatively small loss changes under parameter
perturbations, whereas a sharp loss landscape indicates otherwise.

We propose a simple yet effective strategy, Implicit Spectral
Interpolation, to augment training samples, thereby facilitating
improved performance on compressed HSI,

S =
∑︁

HINER (𝜆 +𝑈 (−𝜂, 𝜂)) , (7)

where 𝑈 (−𝜂, 𝜂) represents a uniform distribution that adds ran-
dom variables to 𝜆 to generate diverse reconstructed (perturbed)
samples. In addition, we randomly disable and enable the spectral
interpolation of the wavelengths in each forward pass, like [3]:

𝜂 =

{0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

0.1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝
. (8)

Here we use 𝜂 = 0.1 and 𝑝 = 0.5.

2 EXPERIMENTS
2.1 Experimental Setup
2.1.1 Datasets.

• Indian Pines is collected by the AVIRIS sensor over the
Indian Pines Proving Ground in northwestern Indiana, used
for compression and classification purposes. It consists a
scene of 145×145 pixels with 224 spectral bands spanning
the wavelength range of 400-2500 nm. This scene is a subset
of a larger scene. The Indian Pines scene predominantly
consists of two-thirds agriculture and one-third forest or
other perennial natural vegetation. Additionally, there are
two major two-lane highways, a railroad line, and some low-
density housing areas, alongwith other buildings and smaller
roads. Sixteen classes are labeled (e.g., corn, grass, soybean,
woods, and so on), with some classes being very rare (fewer
than 100 samples for alfalfa or oats). After removing noisy
bands, the number of bands is reduced to 200: [104-108], [150-
163],220. Despite its limited size, this dataset serves as one of
the main reference datasets in the community. A graphical
representation of a sample from this dataset is presented in
Fig. 1(a).

• Pavia University is captured by the ROSIS sensor in Pavia,
Northern Italy, with the purpose of compression and clas-
sification. The image dimensions are 610×340 pixels, and it
comprises 103 spectral bands. The image has been segmented
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(a) Indian Pines (b) Pavia University (c) Pavia Centre (d) CHILD

Figure 1: Dataset visualization

into 9 distinct classes, including asphalt, meadows, gravel,
trees, metal sheet, bare soil, bitumen, brick, and shadow.

• Pavia Centre is a 1096×715 pixels image, where the number
of spectral bands is 102. The geometric resolution is 1.3
meters. Image differentiates 9 classes each, including water,
trees, asphalt, self-blocking bricks, bitumen, tiles, shadows,
meadows, and bare soil.

• CHILD [4] comprises 141HSI images captured by the PMVIS
system, which measures 145 spectral samples ranging from
450 nm to 950 nm. The spatial resolution of each image is
960 × 1056 pixels. In this paper, we selected one HSI image
from the dataset, named 20210803172558, for our experiment.
Figure 1(d) shows its sample image.

Here Table 1 displays the training and testing datasets distribu-
tion in classification.

Table 1: Land-cover classes of uesed Indian Pine and Pavia
University datasets, with the standard training and testing
distribution.

classes training testing spatial resolution

Indian 16 695 (3.3%) 9671 145x145

PaviaU 9 3921 (1.9%) 40002 610x340

2.1.2 Evaluation Metrics.

• PSNR (Peak Signal-to-Noise Ratio) quantifies the ratio of a
signal to its noise, which calculates the ratio of the square of
the maximum possible amplitude of the signal to the mean
square error (MSE) in the signal. PSNR is employed as a
measure of distortion in compression, where higher values
correspond to better quality. The PSNR for an HSI with 𝑁

spectral bands can be formulated as:

𝑃𝑆𝑁𝑅(𝐼 , 𝐼 ) = 1
𝑁

𝑁∑︁
𝑖=1

10 log10

(
max2 (𝐼𝑖 )
𝑀𝑆𝐸 (𝐼𝑖 , 𝐼𝑖 )

)
(9)

• bpppb (bits per pixel per band) is used to evaluate the con-
sumption of compressed bitrate. For 𝐼 ∈ R𝑁×𝐻×𝑊 , the
bpppb is calculated as follows:

𝑏𝑝𝑝𝑝𝑏 =
𝜃 (𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠) · 𝑏𝑒 + 𝜃 (𝑑𝑒𝑐𝑜𝑑𝑒𝑟 ) · 𝑏𝑑

𝐻 ×𝑊 × 𝑁
(10)

where 𝜃 measures the parameters quantities and 𝑏 denotes
the corresponding bit-width.

• CR (Compression Ratio) serves as a metric to quantify the
compression effect, and it is defined as:

𝐶𝑅 =
𝑏𝑝𝑝𝑝𝑏𝑔𝑡

𝑏𝑝𝑝𝑝𝑏𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

. (11)

• OA (Overall Accuracy) is employed to measure the overall
classification accuracy. OA is calculated as the number of
correctly categorized samples divided by the total sample
size.

• AA (Average Accuracy) refers to the mean value of classifi-
cation accuracy across all classes. It involves calculating the
accuracy of each individual category and then averaging the
accuracies of all categories.

• 𝜿 (kappa coefficient) serves as a statistical measure of consis-
tency between the classification maps and the ground truth.
The 𝜅 ranges from -1 to 1, where 1 signifies perfect con-
sistency, 0 indicates stochastic consistency, and -1 implies
complete inconsistency, where a higher 𝜅 signifies better
performance of the model.

2.1.3 Implementation.

• HINER. In addition to the specifications outlined in the
main paper, we employ a quantization bit-width of 8 bits for
our experiments. Furthermore, for positional encoding, we
set 𝑏 = 1.25 and 𝑙 = 80.

• FHNeRF and Rezasoltani. FHNeRF and Rezasoltani are
two state-of-the-art methods in the implicit neural represen-
tation of HSI, which take the original pixel coordinates as
input and use 𝑠𝑖𝑛𝑒 activations. Given that there are no pub-
licly accessible source codes, we faithfully reproduce them.
We use a 5-layer/15-layer perceptron and change the hidden
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dimension to build models of different sizes for FHNeRF [5]/
Rezasoltani [6], respectively. Both methods are trained for
15000 iterations with Adam optimizer [7] using a learning
rate cosine descent strategy.

• JPEG2000. For JPEG2000 compression, we utilize Open-
JPEG to independently encode each spectral band. Initially,
we transform the original HSI into individual raw files, with
each file corresponding to a spectral band. Subsequently, we
compress and decompress each raw file using OpenJPEG. Af-
ter the decompression process, we convert the reconstructed
raw files back into the MAT (matlab) format. This facilitates
the comparison between the reconstructed data and the orig-
inal data, enabling the computation of PSNR.

• VVC. For VVC compression, we initially convert a MAT file
into individual PNG files, with each PNG file corresponding
to a spectral band. These PNG files are then merged into a
YUV file, comprising a sequence of ’frames’ at consecutive
wavelengths. Subsequently, we perform compression using
the VTM tool on the YUV file. However, due to VTM’s lack
of support for compressing 16-bit YUV files, we utilize 8-
bit YUV files instead. After compression and subsequent
decompression, we obtain the reconstructed YUV file. Next,
we employ ffmpeg to convert the YUV file back into PNG
files. The subsequent steps are akin to the JPEG2000 process,
where we combine the individual PNG files back into a single
MAT data format and compare the results with the original
data to compute the PSNR.

2.2 Encoding Complexity
In Sec. 4.2 of the main paper, we have shown that HINER is faster
than pixel-wise FHNeRF and Rezasoltan in encoding. Here, we fur-
ther evaluate the image encoding speed compared to HNeRV, as
shown in Table 2. As observed, HINER achieves a higher speed com-
pared to HNeRV, partly due to our encoder having fewer parameters.
Additionally, after positional encoding, only a small input vector
∈ R1×160 needs to be processed by the MLP. This is smaller than the
image matrix, e.g., ∈ R720×360 in Pavia University, requiring mul-
tiple down-sampling operations with convolution. Consequently,
our encoder has lower encoding complexity and better compression
performance.

Table 2: Encoding time comparison.

Method Encoder Size
Model Size (MB)
0.2 0.5 1.5

HINER 0.12 MB 480s 500s 790s
HNeRV 0.22 MB 570s 620s 850s

2.3 Classification on Compressed HSI
Here, we present additional results regarding classification on com-
pressed HSI samples. In Fig.2, we visualize the spatial distribution
of the training and testing sets, along with the classification map.
Additionally, Table3 and Table 4 exhibit quantitative performance
at various compression ratios (CRs). For our method, all compressed

(a) Training (b) Testing (c) Result

Figure 2: Classification map obtained by our model on the
Pavia University dataset

Table 3: Quantitative performance of the Indian Pines.

Method CR OA (%) AA (%) 𝜅

SF ×1 81.86 87.81 0.7919

SF ♣ ×71 80.61 85.90 0.7784
Ours ♣ ×71 86.54 91.17 0.8465

SF ♣ ×28 79.15 84.27 0.7633
Ours ♣ ×28 87.03 90.99 0.8519

SF ♣ ×13 79.23 86.73 0.7651
Ours ♣ ×13 86.45 90.94 0.8457

Table 4: Quantitative performance of the Pavia University.

Method CR OA (%) AA (%) 𝜅

SF ×1 91.07 90.20 0.8805

SF♣ ×109 86.29 87.89 0.8203
Ours♣ ×109 88.93 88.96 0.8529

SF♣ ×54 86.75 88.77 0.8249
Ours♣ ×54 88.55 89.36 0.8484

SF♣ ×35 86.13 89.09 0.8189
Ours♣ ×35 88.20 89.27 0.8438

HSIs with different CRs are evaluated using the same classification
model trained at a CR of 28/109 for Indian Pine/ Pavia University
datasets. In contrast, the SF method is re-trained for each CR to
achieve the best performance. It is evident from the results that our
method demonstrates superior performance in all cases, showcasing
high robustness across various compression ratios.

An interesting observation is that a lower compression ratio may
not result in better accuracy. This phenomenon is consistent with
previous works [8–10] that for certain compression techniques,
a higher CR may not significantly degrade the performance of
pixel-based classification as the homogenization effect increases
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the similarity among pixels of the same area. In addition, land-cover
type is also believed to be one of the factors as compression also
has different effects on classification results of different land-cover
types [11].

2.4 Ablation Studies
2.4.1 Positional Encoding. As discussed in Section 3.2, MLPs
are susceptible to the well-known spectral bias [12, 13], wherein
they tend to learn low frequency components of the signal. Thus,
directly inputting the wavelength 𝜆 into the encoder without po-
sitional encoding would lead to the network’s incapacity to ad-
equately capture high-frequency variation [14, 15]. We illustrate
this phenomenon with the regression curve shown in Figure 3. Ini-
tially, during the earlier epochs, the performance of HINER w/o
PE exhibits a similar regression performance with HINER w/ PE,
indicating comparable capability in learning low-frequency com-
ponents of the signal. However, as the epochs progress, the gap
widens, highlighting the superior efficiency of positional encoding
in capturing high-frequency information.

0 50 100 150 200 250 300
Epochs

20

25

30

35

40

45

50

PS
N

R
 (d

B
)

HINER w/ PE
HINER w/o PE

Figure 3: Regression curve of HINER w/ & w/o PE.

2.4.2 Reconstruction Loss. Here, we present an ablation study
concerning the 𝛾 in Eq. (4) of the main paper:

L𝑅 =

𝑁∑︁
𝑛=1

| |𝐼𝑛 − 𝐼𝑛 | |︸          ︷︷          ︸
𝐿1 𝑙𝑜𝑠𝑠

+𝜸 ·
𝑁∑︁
𝑛=1

180
𝜋

arccos ©­«
®̂
𝐼𝑇𝑛 · ®𝐼𝑛

∥®̂𝐼𝑇𝑛 ∥2∥®𝐼𝑛 ∥2

ª®¬︸                                 ︷︷                                 ︸
𝐶𝐴𝑀

, (12)

As depicted in Table 5, we set 𝛾 = 0.01 in our experiments.

Table 5: Ablations on coefficient 𝛾 between L1 loss and CAM.

𝛾 PSNR

0.005 44.11
0.001 43.93
0.01 44.14
0.1 43.87

2.4.3 Adaptive Spectral Weighting. We conduct thorough ex-
periments from next two aspects.

Optimization Objective. As described in Sec. 3.3 of the main
paper and Sec. 1.1 of the supplementary material, the optimization
objective of ASW is formulated as:

argminL𝐶 + 𝛽 · L𝑅, (13)

where L𝑅 is introduced to constrain the input of the classifier (also
the output of ASW) in the neighborhood of the ground truth. As
illustrated in Table 6, when L𝑅 is omitted (i.e., 𝛽 = 0), there is a
notable decrease in accuracy. This phenomenon also corroborates
the validity of our theoretical analysis, i.e., for downstream classi-
fication on compressed HSI, task accuracy is not only related to the
classification loss but also to the reconstruction fidelity. Ultimately,
we set 𝛽 = 2.5 to achieve a balance between these two losses.

Table 6: Ablations on reconstruction loss.

𝛽 OA(%) AA(%) 𝜅

5 82.3 87.85 0.7979
2.5 87.03 90.99 0.8519
1.4 84.88 90.57 0.8282
0.5 83.88 88.6 0.8166
0 81.5 85.09 0.789

Classification-Oriented Reconstruction. Additionally, we
conduct ablation experiments to examine the effect of adding ASW
before the classifier, as shown in Table 7. The inclusion of ASW
results in PSNR decrease of the inputted reconstructed HSI of the
classifier but an obvious improvement in classification accuracy.
This suggests that ASW is able to adaptively weight HSI under the
supervision of classification loss, thereby facilitating the translation
of reconstruction from perceived visual quality to classification
accuracy.

Table 7: Ablations on ASW.

PSNR OA (%) AA (%) 𝜅

w/o ASW 44.25 79.15 84.27 0.7633

w/ ASW 34.71 84.06 88.24 0.8187

2.4.4 Random uniform variables in ISI. In Sec. 3.3 of the main
paper, we implement Implicit Spectral Interpolation (ISI) by intro-
ducing random variables on wavelengths:

S =
∑︁

HINER (𝜆 +𝑈 (−𝜂, 𝜂)) , (14)

where𝑈 (−𝜂, 𝜂) represents a uniform distribution that adds random
variables to 𝜆. When trained with S, the classification network
exhibits improved generalization and reduced accuracy degradation
on compressed HSI. It is crucial to note that ground truth HSI is
not introduced during training for ISI. Table 8 shows the impact of
different 𝜂 (here the 𝜂 is not normalized). ISI proves to be a robust
method across various 𝜂 values. For consistency, we set 𝜂 = 0.1 as
the default setting.
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Table 8: Ablations on uniform perturbation 𝜂.

𝜂 OA(%) AA(%) 𝜅

0.05 87.13 90.06 0.8526
0.1 87.03 90.99 0.8519
0.15 85.68 90.9 0.8369
0.2 85.93 91.29 0.8399
0.4 86.88 91.37 0.8502
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