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1 PERFORMANCE DIFFERENCES BETWEEN

STS AND DTS

As illustrated in Figure 1, the orange solid circle line indicates
that both training and inference stages use the same time step on
CIFAR10-DVS (STS-CIF), while the blue solid circle line signifies
that during both stages employ different time steps with a training
time step of 10 on CIFAR10-DVS (DTS-CIF). In STS-CIF, accuracy
decreases from 83.17% in 𝑇 = 10 to 78.80% in 𝑇 = 5. Similarly, in
DTS-CIF, accuracy declines from 83.17% in 𝑇 = 10 to 77.60% in 𝑇 =
5.
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Figure 1: Accuracy of TET [2] on CIFAR10-DVS, N-Caltech101

and DVS-Gesture across various time steps with STS and DTS.

To address the reduction of latency in the inference stage, we
believe that it can be divided into STS andDTS, where STS represent-
ing ensuring consistency between the time steps during training
and inference stages in Spiking Neural Networks (SNNs), thereby
reducing the overall time steps during SNN training, DTS does not
guarantee the consistency of time steps between the training and
inference stages of SNNs, it only decreases the time step during
the inference stage. And as shown in Figure 1, it can be observed
that as the time steps exceed 5, the performance gap between the
STS and DTS methods of the TET [2] gradually narrows across
all three datasets. This phenomenon is primarily attributed to the
increasing number of event frames input to SNNs during the in-
ference stage with the increment of time steps. Consequently, the
SNNs acquires more comprehensive event data information learned
during the inference stage, leading to a significant improvement in
the performance of the DTS.

2 ANALYSIS AND DISCUSSION OF STEP-WISE

KNOWLEDGE DISTILLATION

Compared to the absence of Knowledge Distillation (KD) and the
application of vanilla KD, employing Step-wise Knowledge Distil-
lation (SKD) to make the output distribution of SNN more stable.

This enables the SNN to achieve higher classification accuracy at
lower time steps on neuromorphic datasets.

In our Hybrid Step-wise Distillation (HSD), we assume that
SKD is the process of transferring the output distribution from
the teacher model Artificial Neural Network (ANN) to the output
distribution of SNN at each time step. So the Step-wise knowledge
distillation is definitely greater than ordinary knowledge distillation.
To verify this hypothesis, we start with the meaning of Kullback-
Leibler (KL) divergence itself. KL divergence also known as relative
entropy, is a measure of the difference between two probability
distributions. The following will verify that the ordinary LKD is
the lower bound of LSKD. Prove as follows:

LSKD

=
1
𝑇2

𝑇2∑︁
𝑡=1

𝑁∑︁
𝑖=1

(
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𝑝
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)
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1
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)
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(1)

where the inequality is given by the Arithmetic Mean-Geometric
Mean Inequality. Because logarithmic functions are concave func-
tions, which means that the KL dispersion of SKD is bigger than
that of vanilla KD.

As illustrated in Figure 2, compared to KD, SKD incorporates
the temporal dimension information of SNN, namely, the output
distribution of SNN at each time step. This diminishes the impact
of individual time step outliers on the average output distribution,
thereby enhancing the generalization performance of SNN and
consequently achieving higher accuracy. Additionally, we visualize
the loss during the inference stage and observe that the loss of SKD
is lower than that of KD, further validating the efficacy of the SKD
module.

However, during the inference stage, we notice that both KD and
SKD exhibit a certain degree of upward trend in test loss, with KD
showing amore pronounced increase. This phenomenon canmainly
be attributed to the presence of some redundant information in the
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Table 1: Comparisons of Top-1 accuracy (%) performances with state-of-the-art methods on CIFAR10,𝑇 represents the time steps of the SNN

during the inference stage.

Method Type Method Venue Model 𝑇 ↓ Acc ↑
Hybrid Training Hybrid training [7] ICLR ’20 ResNet-20 250 92.22

ANN-SNN Conversion QCFS [1] ICLR ’22 ResNet-20 128 93.48

Direct Training

STBP-tdBN [9] AAAI ’21 ResNet-19 4 92.92
Dspike [4] NeurIPS ’21 ResNet-18 4 93.66
TET [2] ICLR ’22 ResNet-19 4 94.44
SLTT [6] ICCV ’23 ResNet-18 6 94.59

Hybrid Training HSD (Ours) - ResNet-19 4 94.71

HSD (Ours) - ResNet-19 1 93.24
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Figure 2: Comparisons of test accuracy and test loss performances

at each epoch of KD and SKD in𝑇 = 5 on CIFAR10-DVS.

dataset, making the fine-tuning phase prone to overfitting. Never-
theless, our proposed SKD module greatly alleviates the impact of
this phenomenon, effectively improving the model’s performance.

3 TEMPERATURE COEFFICIENT 𝑇 AND 𝜆

In this section, we examine the impact of hyper-parameters in SKD
and the principles guiding their selection. We show the effect of
hyper-parameters in SKD and the principles of their selection. As
depicted in Figure 3, the results underscore that the temperature
coefficient 𝑇 , when either too large or too small, fails to accurately
capture the differences in probabilities between categories. There-
fore, selecting an appropriate temperature coefficient𝑇 is crucial. In
our method, we set the temperature 𝑇 to 10 for optimal results. Ad-
ditionally, the parameter 𝜆 governs the extent to which SKDmodule
influences the final loss. If 𝜆 is excessively large or too small, it
may not effectively guide the loss function in updating the weights.
Hence, in our method, we set 𝜆 to 5 for optimal performance.

It is noteworthy that in the initial epochs, the accuracy on testing
set reaches 70.00%. This can be attributed to the utilization of weight
and threshold information during the pre-training phase using HSD.

4 VISUALIZATION OF CONFUSION MATRIX

Figure 4 shows the confusion matrix of our HSD and TET [2]
on CIFAR10-DVS. In the right plot, the diagonal elements appear
darker than in the left plot, indicating that HSD outperforms TET.
Enriched event frame information and teacher model ANN assist
SNN in better distinguishing differences between different cate-
gories at lower time steps.
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Figure 3: Comparisons of test accuracy performances at each epoch

of HSD in𝑇 = 5 on N-Caltech101 with different hyper-parameter

settings.
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Figure 4: Comparisons performances with confusion matrix of TET

and HSD in𝑇 = 5 on CIFAR10-DVS.

5 PERFORMANCE OF CIFAR10

To assess the generalization capabilities of our HSD method, we
conduct experiments on the static CIFAR10 dataset. We employ
the direct training SNN using the commonly used ResNet-19 [2]
architecture, following the experimental setup inspired by the TET
method. Our ANN-SNN conversion is independently trained and
not initialized with pre-existing weights. Our method is regarded as
a fusion of ANN-SNN conversion and direct training SNN, introduc-
ing knowledge distillation. In this context, the ANN serves not only
as a pre-training model but also as a teacher model, aiming to lever-
age the entirety of knowledge acquired during ANN training. Given
that current methods achieve respectable classification accuracy
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Table 2: Comparison of model parameter and types of neurons with

state-of-the-art methods on CIFAR10-DVS.

Method Model Time Steps Neuron Param (M) Acc (%)

PLIF [3] SNN-4 20 PLIF 17.4 74.8
Dspike [4] ResNet-18 10 LIF 11.7 75.4
EventMixer [8] ResNet-18 10 PLIF 11.7 81.5
NDA [5] VGG-11 10 LIF 132.9 81.7
TET [2] VGG-SNN 10 LIF 9.3 83.2
SLTT [6] VGG-SNN 10 LIF 9.3 83.1

TET [2] VGG-SNN 5 LIF 9.3 78.8
SLTT [6] VGG-SNN 5 LIF 9.3 76.1
HSD (Ours) VGG-SNN 5 IF 9.3 81.1

at relatively lower time steps through direct training SNN on the
static CIFAR10 dataset, such as at 2 and 4, we conduct experiments
with consistent training and inference time steps.

In Table 1, our HSD method achieves a performance of 93.24%
in 𝑇 = 1, surpassing even the results of some methods in 𝑇 = 4, and
our HSD outperforms TET with an accuracy of 94.44%, showing
an improvement of 0.27% in 𝑇 = 4. At the same time, our HSD
method, built upon the ANN-SNN conversion, integrates direct
training SNN. Therefore, in terms of latency, compared to ANN-
SNN conversion methods, it achieves a lower time step without a
significant decrease in accuracy. Compared to the direct training
SNN,we utilize anANN as a teachermodel, enablingHSD to achieve
higher classification accuracy at lower time steps.

6 COMPARISON OF MODEL PARAMETERS

To validate the efficiency of our model, we select the model param-
eters for evaluation. Due to the integration of ANN in our method,
the model’s parameters increases during the training stage. How-
ever, during the inference stage, only the SNN is utilized. Therefore,
we evaluate the model parameters during the inference stage. As
shown in Table 2, the selected VGG-SNN model [2] has a parameter
count of 9.3 M, lower than the ResNet-18 model used by Dspike [4].
Furthermore, our model achieves higher accuracy. Under the same
model parameters, the accuracy of our HSD model also surpasses
that of TET. Additionally, since SNNs employ IF neurons, which
only involve additive operations due to the absence of a leakage fac-
tor compared to commonly used LIF and PLIF neurons, they exhibit
better computational efficiency when deployed on hardware.
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