
InterTrack: Tracking Human Object Interaction without Object Templates

Supplementary Material

In this supplementary, we provide more implementation
details for our tracking method and synthetic video genera-
tion. We also further analyze the design considerations and
discuss typical failure cases of our method. Please refer to
our supplementary video for video tracking results.

6. Implementation Details
We discuss the network architecture, training, and optimiza-
tion details in this section. Our code will be publicly re-
leased with clear documentation to foster future research.

6.1. CorrAE and human optimization

For our human CorrAE, we adapt the encoder from
PVCNN [43] which is also used in [47, 79]. It compresses
input point clouds of shape N × 3 into downsampled point
feature of shape 512 × 16. We add two additional point
convolution layer [43] to further compress it into latent vec-
tor zh of shape 1024 × 1. The latent code is then sent to
one MLP layer, followed by 6 blocks of MLP layers with
residual connection. The MLP compress the latent code to
512 dimension and each block consists of three MLP layers
with LeakeyReLU activation. The output dimensions of the
MLPs in each block are 256, 256, 512. The 512 dimension
feature vector is then sent to a large MLP which predicts
6890 SMPL vertices as a single vector.

We train our CorrAE with a loss weight λv2v = 100 for
the vertex to vertex loss and use Adam optimizer with learn-
ing rate of 3e-4. The model is trained on the GT SMPL
meshes from ProciGen training set. It takes around 12
hours to finish training on 4 RTX8000 GPUs with batch
size 32. The loss weights for the human optimization are:
λh

cd = 100, λp = 1e − 5, λacc = 100. We use Adam of
learning rate 0.001 and stochastic gradient descent to opti-
mize the human pose parameters, with a batch size of 256.
We optimize for 2500 steps which takes ∼30 minutes on an
A40@40GB GPU.

6.2. TOPNet and oject optimization

For the object pose TOPNet, we combine DINOv2[53] im-
age encoder with transformer [66]. DINOv2 encodes image
of shape 3×224×224 into a feature grid of 768×16×16.
We then add three 2D convolution layers with kernel size 4,
group normalization and leaky ReLU activation to further
compress the feature grid into a vector of shape 1×1×768.
This operation is similar to the one used in MagicPony [76].
The dimension of human feature is 294 = 25× 6+ 24× 6,
which consists of 25 body joints and their velocities and
SMPL body pose represented as rotation 6D[105]. We en-

code the human feature using two MLPs with a latent di-
mension 128 and output dimension 128. The human feature
is then concatenated with object visibility and image feature
vector and sent to transformer with 3 encoder layers [66].
Each encoder layer has 4 heads and feed forward dimen-
sion of 256. The temporal features are then sent to 3 MLP
layers with output dimensions of 128, 64, and 6.

We train the model with learning rate 3e-4 (Adam op-
timizer) and batch size 16, temporal window size 16. It
takes around 31 hours to converge on 4 RTX8000 GPUs.
We train two models for all 10 categories in ProciGen-V
dataset: one for large objects (chair, table, monitor) and
another one for small symmetric objects (all the rest cate-
gories). The loss weights for the object optimization are:
λo

cd = 10, λocc = 0.001, λr
a = 1000, λt

a = 200, λs
a = 1000.

We optimize canonical shape and per-frame poses with a
batch size of 64. For models trained on synthetic data only
we optimize for 16k steps as the initial shape is less accu-
rate, which takes around 2 hours. For models fine-tuned
on real data, we optimize only 6k steps which takes 50-60
minutes on one A40 GPU.

6.3. Joint optimization

The loss weights for the human (Lhum) and object (Lobj)
loss terms are the same as the ones used for separate op-
timization. The contact loss weight λc = 10. Note that
we optimize only the SMPL body pose and object rotation
parameters as this is used only for fine tuning the poses.

Similar to separate optimization, we use Adam with
learning rate 0.001 for human and 6e-4 for object. We re-
fine for 2500 steps with batch size 64, which takes in total
∼35 minutes on one A40 GPU.

6.4. ProciGen-Video data generation

We start from ProciGen proposed in [79] to procedurally
generate interaction videos for new object shapes. The goal
is to change the human and object shape and render new
videos. We first sample a chunk of human and object poses
from interaction sequences in real data. The human is repre-
sented using SMPL [44] pose Θ = {θ1, ...,θN} and shape
B = {β1, ...βN} parameters, here 1, ..., N are the time in-
dex. We compute dense correspondence between original
object shape and new shape using an autoencoder [103],
which allows transferring contacts from original shape to
new shape. We also use the correspondence to initialize the
pose Ti ∈ R4×4 for the new object [79]. The initializa-
tion can lead to interpenetration problem, hence we further
optimize the body poses Θ, shapes B and object transfor-
mations T = {T1, ...TN} to satisfy contacts and temporal



Figure 6. Number of distinct object shapes used in our ProciGen-V dataset. Our method is scalable and can generate interaction for new
object shapes within these categories.

Figure 7. Distribution of interaction sequences per category in our ProciGen-V dataset. Our dataset is balanced for most categories
except for chair which contains more complex shape and interactions.

smoothness:

L(Θ, T ,B) = λcLc+λnLn+λcolliLcolli+λinitLinit+λaccLacc
(5)

where the contact loss Lc, normal loss Ln, interpenetration
Linit and initialization penalty Linit are defined in [79]. And
Lacc is the temporal smoothness loss defined in Eq. (2) ap-
plied to a sequence of SMPL vertices. Note that we also
randomly sample a body shape parameter from the MGN
dataset [3] to replace the original shape for more diversity.
The loss weights used are: Lc = 400, Ln = 6.25, Lcolli =
9, Linit = 100, Lacc = 10.

Once optimized, we use SMPL-D registration [3] which
adds per-vertex offsets to the SMPL vertices to model cloth-
ing deformation and texture. For the object, we use the

original textures from the CAD model. We also add small
random global rotation and translation to the full sequence
to increase diversity. We render the human and object in
blender with random lighting and no backgrounds. Some
example renderings can be found in ADD REF.

We generate interaction videos for 10 object categories.
The interaction poses are sampled from BEHAVE [6]
and InterCap [27], object shapes are sampled from Obja-
verse [13] and ShapeNet [8]. The distribution of distinct
object shapes can be found inFig. 6, and the number of in-
teraction sequences per-category can be found in Fig. 7. The
original BEHAVE and ShapeNet are captured at 30fps, we
generate synthetic data at 15fps and each sequence has 64
frames (4.27 seconds). In total, we generate 8477 sequences



Figure 8. Object pose error versus the temporal window size
used at inference time. The model was trained with window
size=16. Averaging predictions of each frame in different slid-
ing windows consistently leads to better pose estimations.

which amounts to 10 hours long videos. Our method can
scale up to include more objects and longer videos, which
is much more scalable than capturing real data.

7. Additional Analysis and Result
In this section, we provide additional analysis to the de-
sign considerations of our human and object reconstruction
modeuls. We also show generalization to unseen category.
Please refer to our video for more results and comparison.

7.1. Object pose TOPNet

Our TOPNet computes cross attention between W consecu-
tive images and directly predicts W rotations for them. We
train our model with W = 16 due to limited IO speed: with
a batch size of 16, it needs to load 256 images with corre-
sponding GT data which already takes 0.6 ∼ 1 second. Us-
ing longer window size significantly increases the training
time. In contrast, we find that the learned attention weights
can be applied larger window size even though the model is
trained for W = 16 only. We plot the object pose error with
different test time window size in Fig. 8. Here we report
the pose error as the vertex to vertex error (cm) after ap-
plying predicted and GT rotation to the GT object vertices.
We apply a sliding window of size W to process the full se-
quence, which means each image can appear several times
at different sliding windows. We average predictions of all
possible sliding windows, which also leads to smoother and
more accurate pose, see Fig. 8 (with running average).

7.2. Human Reconstruction

We compare the correspondence across frames from HDM
and our method in Fig. 9. HDM is image-based method and
outputs point clouds without any ordering. On the other
hand, our method tracks the point across the full sequence.

We argue in Sec. 3.2 that the latent space of our Cor-
rAE is less interpretable which leads to slightly worse re-
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Figure 9. Visualization of the correspondence. HDM [79] out-
puts unordered points while our method consistently tracks the hu-
man and object across frames.

Input image Optimize latent code Optimize via SMPL

Figure 10. The problem of optimizing CorrAE latent code. The
latent space of our CorrAE entangles human pose and shape. Op-
timizing it directly also leads to less smooth surface.

sult compared to optimizing via SMPL layer (Tab. 5). Here
we visualize another problem of optimization via the Cor-
rAE: the surface points become less smooth, see Fig. 10. It
can be seen that some points on the feet spread out from
the original position, leading to a noisy surface. In contrast,
optimizing via SMPL layer guarantees a smooth surface.

7.3. Generalization to unseen categories

Our model was trained on ten common daily life object
categories. It works well for new object instances of the
same category, as can be seen in Fig. 1 and our supplemen-
tary video. We also test our method on unseen category in
Fig. 11. In general, our method can work on new categories
that are similar to those seen in our training set.

8. Limitation and Failure Case Analysis
Limitations. Despite impressive performance on bench-
mark datasets and strong generalization to real videos, there
are still some limitations of our method. First, our method
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Figure 11. Generalization to unseen category. We test our method to unseen category blackboard. It can be seen that our method can
reconstruct the shape and tracks the human object interaction.

Input image Ours Ours - side Input image Ours Ours - side

Figure 12. Example failure cases. Our method fails to reconstruct the object shape (left) as only one view of the object is seen in the
entire video. It can also struggle to predict extreme rare pose (right), leading to less faithful shape and tracking.

does not reconstruct the textures of the human and ob-
ject. Our method is easily compatible with Gaussian Splat-
ing [32] and adding colors to each point could potentially
further constraint the optimization [12]. Second, our dataset
contains only the categories from BEHAVE and InterCap.
Future works can capture more objects or explore synthe-
sizing interactions without real data [33]. Furthermore, our
method does not deal with object symmetries explicitly. Fu-
ture works can adopt good practices from object pose esti-
mation community [14, 59, 67] to further enhance the ro-
bustness of our method. Multi-human, multi-object inter-
action are also interesting directions to explore. We leave
these to future works.

Failure cases. We show two typical failure cases of our
method in Fig. 12. Overall, our method tracks humans reli-
ably in most cases while object tracking is more challenging
due to occlusions and lack of template shapes. Our method
can produce noisy object shape when there are not enough
views to reason the object. In Fig. 12 left, the chair remains
static in the full sequence, hence our method only receives

information about the chair in back side view. The object
shape aligns well with the input but the 3D structure is sub-
optimal. Future works can further improve our method by
imposing stronger object shape prior. For example, optimiz-
ing via a well-behaved latent space which provides better
output shape.

Our method can also predict noisy object pose under rare
or very dynamic interaction like Fig. 12 right. In this se-
quence, the arm and object move very quickly, leading to
noisy pose prediction which dominate the optimization and
results in inaccurate shape and tracking. Training on more
objects or with additional data augmentation such as Foun-
dationpose [72] could potentially generalize better. How-
ever, Foundationpose relies on CAD model and depth input.
One interesting direction is to develop methods that can it-
eratively improve object shape reconstruction and pose es-
timation. With our TOPNet, one can obtain initial object
reconstruction, which should be helpful to improve object
pose estimation. This iterative mutual improvement should
lead to better shape and pose tracking.



Figure 13. Example sequences from our ProciGen-Video dataset. We generate realistic interactions with diverse object shapes. Please
refer to our supplementary video for more examples.
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