
Supplementary

1 Theoretical proofs

Proofs for all the propositions in the paper, outlining the mathematical equivalence of our Block
model to the standard ALIF SNN.

Proposition 1. Membrane potentials without spike reset are computed as a convolution Ṽi[t] =(
Ii ∗ β̃i

)
[t] between input current Ii[t] and kernel β̃i[t] = (1 − βi)βti with the initial membrane

potential encoded as Ii[0] = Vi[0]
1−βi

.

Proof. We proceed our proof in two steps. In step 1, we unroll the discretized LIF difference equation
(without reset) in time and in step 2, we show how this is equivalent to the proposed convolution. *
Step 1, we prove the equivalence between the following equations

Ṽi[t] = βiṼi[t− 1] + (1− βi)Ii[t] (1)

Ṽi[t] = βti Ṽi[0] + (1− βi)
t∑

j=1

βt−ji Ii[j] (2)

We proceed by induction. For t = 1 in Equation 2 we obtain

Ṽi[1] = β1
i Ṽi[0] + (1− βi)

1∑
j=1

β1−j
i Ii[j]

= β1
i Ṽi[0] + (1− βi)Ii[1]

(3)

Hence the relation holds true for the base case t = 1. Assume the relation holds true for t = k ≥ 1,
then for t = k + 1 we derive

Ṽi[k + 1] = βiṼi[k] + (1− βi)Ii[k + 1]

= βi

(
βki Ṽi[0] + (1− βi)

k∑
j=1

βk−ji Ii[j]
)

+ (1− βi)Ii[k + 1]

= βk+1
i Ṽi[0] + (1− βi)

k∑
j=1

β
(k+1)−j
i Ii[j] + (1− βi)Ii[k + 1]

= βk+1
i Ṽi[0] + (1− βi)

k+1∑
j=1

β
(k+1)−j
i Ii[j]

(4)

This implies equivalence between Equations 1 and 2 for t = k + 1 assuming equivalence between
Equations 1 and 2 holds true for t = k. By the principle of induction, equivalence is established
given that both the base case and inductive step hold true.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Step 2, as per the proposition, we have

Ṽi[t] =
(
Ii ∗ β̃i

)
[t]

=

t∑
j=0

β̃i[t− j]Ii[j]

= (1− βi)
t∑

j=0

βt−ji Ii[j]

= (1− βi)βtiIi[0] + (1− βi)
t∑

j=1

βt−ji Ii[j]

= βti Ṽi[0] + (1− βi)
t∑

j=1

βt−ji Ii[j]

(5)

This is identical to Equation 2 and (by step 1) identical to Equation 1. Thus, the proposed convolution
in the Proposition computes the membrane potentials without reset.

Proposition 2. Function φ(S̃i)[t] =
∑t
k=1 S̃i[k](t−k+1) acting on S̃i ∈ {0, 1}T contains at most

one element equal to one φ(S̃i)[t] = 1 for smallest t satisfying S̃i[t] = 1 (if such t exists).

Proof. Firstly, if S̃(l)
i [t] = 0 for all t ∈ [1, T] then φ(S̃

(l)
i)[t] = 0 for all t ∈ [1, T] (follows from

substitution). Secondly, if S̃(l)
i [t1] = 1 for smallest t1 ∈ [1, T] then φ(S̃

(l)
i)[t1] = 1 (follows from

substitution) and there can exist no t2 > t1 such that φ(S̃
(l)
i)[t2] = 1 as

φ(S̃
(l)
i)[t+ 1] =

t+1∑
k=1

S̃
(l)
i [k]

(
(t+ 1)− k + 1

)
=

t∑
k=1

S̃
(l)
i [k]

(
(t+ 1)− k + 1

)
+ S̃

(l)
i [t+ 1]

=

t∑
k=1

S̃
(l)
i [k](t− k + 1) +

t∑
k=1

S̃
(l)
i [k] + S̃

(l)
i [t+ 1]

= φ(S̃
(l)
i)[t] +

t+1∑
k=1

S̃
(l)
i [k]

(6)

Thus φ(S̃
(l)
i)[t2] > φ(S̃

(l)
i)[t1] for all t2 > t1 as

∑t2
k=1 S̃

(l)
i [k] ≥

∑t1
k=1 S̃

(l)
i [k] = 1 > 0.

Proposition 3. The input current Ii,n+1[t] of neuron i simulated in Block n + 1 (of length TR) is
defined as follows, and enforces an absolute refractory period of length TR and a monosynaptic
transmission latency of D = TR.

Ii,n+1[t] =
(
bi +

N in∑
j=1

WijSj,n+1[t]︸ ︷︷ ︸
Feedforward current

+

N out∑
j=1

W rec
ij Sj,n[t]︸ ︷︷ ︸

Recurrent current

)
1zi,n[t] ≥ max

t
Si,n[t]︸ ︷︷ ︸

ARP mask

Proof. We proceed by showing that 1. the transmission latency is the same as in the standard model
and 2. the ARP mask enforces an ARP of identical length to the standard model.

1. Identical transmission latency: The relation between the time step 1 ≤ t ≤ T and the time step
1 ≤ tb ≤ TR in Block n ≥ 1 can be expressed as:

t = (n− 1)TR + tb (7)

As we assumed the transmission latency D = TR to be equal to the ARP length, we have

t− TR = ((n− 1)− 1)TR + tb (8)

2

and hence the input current Ii,n[t] to Block n at time t (i.e. time step tb in the Block) is computed
from the output spikes from the prior Block n− 1 at the same Block time step tb.

2. Identical ARP length: Case one, if neuron i emitted no spikes during Block n, then neuron i
should receive input current at every time step in Block n + 1, which the ARP mask permits (as
zi,n[t] ≥ maxt Si,n[t] = 0 for all t). Case two, if neuron i spiked during Block n, then the ARP
mask should appropriately mask out the input current to Block n+ 1 (to enforce an ARP of length
TR). The number of elements in zi,n which are smaller than one and equal to or larger than one is
equal to TR (can be shown by proof by contradiction):∑

1zi,n[t] < 1︸ ︷︷ ︸
Number of elements masked in Block n+ 1

+
∑

1zi,n[t] ≥ 1︸ ︷︷ ︸
Number of time steps from the spike onwards in Block n

= TR (9)

The construction of the Block ensures that at most one spike is emitted within a Block (where
zi,n[t] = 1) and no further spikes are emitted thereafter (where zi,n[t] > 1). The ARP mask ensures
that no spikes are emitted in the next Block for the time steps where zi,n[t] < 1 (as it only permits
input current to flow into the Block for time steps where zi,n[t] ≥ 1). Thus, the mask ensures enforces
the correct ARP length of TR steps.

Proposition 4. The initial membrane potential Vi,n+1[0] of neuron i simulated in Block n + 1 (of
length TR) is equal to the last membrane potential in Block n if no spike occurred and zero otherwise.

Vi,n+1[0] =

{
Vi,n[TR], if maxt Si,n[t] = 0

0, otherwise

Proof. Two cases are distinguished for correctly evolving the membrane potential of a neuron over
time. Case one, if no spike occurred in neuron i in Block n (i.e. maxt Si,n[t] = 0), then the initial
membrane potential of neuron i in Block n + 1 is equal to the final membrane potential value of
neuron i in Block n. Otherwise, case two, the initial membrane potential is set to zero (as no state
needs to be transferred as the neuron is in an absolute refractory state).

Proposition 5. The adaptive firing threshold θi,n+1[t] of neuron i simulated in Block n+ 1 (of length
TR) is constructed from the initial adaptive parameter ai,n+1[0], which is equal to its last value in
the previous Block if no spike occurred, and otherwise equal to an expression which accounts for the
effect of the spike on the adaptive threshold.

θi,n+1[t] = 1 + dip
t
iai,n+1[0]

ai,n+1[0] =

{
ai,n[TR], if maxt Si,n[t] = 0

pmi (as + p−1
i) otherwise

m =

TR∑
k

1zi,n[k] > 1, as =

TR∑
k

ai,n[k]Si,n[k]

Proof. We proceed our proof in two steps. In step 1, we show how the dynamic firing threshold of
neuron i in Block n+ 1 can be computed using initial adaptive parameter ai,n+1[0]; and in step 2,
we show how this initial adaptive parameter is derived.

Step 1, we prove the equivalence between the Block adaptive threshold (Equation 10) and the standard
adaptive firing threshold (Equations 11 and 12).

θi,n+1[t] = 1 + dip
t
iai,n+1[0] (10)

θi,n+1[t] = 1 + diai,n+1[t] (11)
ai,n+1[t] = piai,n+1[t− 1] + Si,n+1[t− 1] (12)

The spike term in Equation 12 can be dropped, as only the spike occurrence in Block n (and not
Block n+ 1) can affect the firing threshold in Block n+ 1 (due to the single spike constraint). Thus,

3

we rewrite Equation 11 as:

θi,n+1[t] = 1 + diai,n+1[t]

= 1 + dipiai,n+1[t− 1]

= 1 + dip
2
i ai,n+1[t− 2]

· · ·
= 1 + dip

t
iai,n+1[0]

Step 2, to derive the initial adaptive parameter ai,n+1[0], we distinguish two cases. Case one, neuron
i did not spike in Block n, in which case the initial adaptive parameter is set to the final adaptive
parameter ai,n[TR] in Block n. Case two, neuron i did spike in Block n, and we need to account
for the affect of this on the firing threshold in Block n+ 1. If the spike occurred at Block time step
1 ≤ TR −m ≤ TR for 0 ≤ m < TR we have

ai,n[TR] = piai,n[TR − 1]

= p2i ai,n[TR − 2]

· · ·
= pm−1

i ai,n[TR − (m− 1)]

= pm−1
i

(
piai,n[TR −m] + 1

)
= pmi

(
ai,n[TR −m] + p−1

i

)
= pmi

(
as + p−1

i

)
(13)

with as =
∑TR

k ai,n[k]Si,n[k] = ai,n[TR−m] (as Si,n[k] is one for k = TR−m and zero otherwise).
Lastly, m =

∑TR

k 1zi,n[k] > 1, as zi,n[k] > 1 at ever Block time step k > TR −m (see Proposition
2 proof showing zi,n to be a strictly increasing sequence if a spike occurred in Block n) and thus∑TR

k 1zi,n[k] > 1 =
∑TR

k=TR−m+1 1 = TR − (TR −m) = m.

2 Experimental details

All models were implemented using PyTorch [1] (although nothing prohibits the use of other auto
differentiation frameworks [1, 2]). The speedup benchmarks and neural fits were done on an NVIDIA
GeForce RTX 3090, and the training on the spiking classification datasets was done on an NVIDIA
GeForce GTX 1080 Ti. Following details apply to both our Block model and standard SNN model
which we used as a control.

2.1 Speed benchmarks

Synthetic spike dataset We generated binary input spike tensors of shape B×N ×T (B being the
batch size,N the number of input neurons and T the number of time steps). For every batch dimension
b a firing rate rb ∼ U(umin, umax) was uniformly sampled (with umin = 0Hz and umax = 200Hz
– Assuming 1 time step = 1ms), from which a random binary spike matrix of shape N × T was
constructed as a homogenous Poisson process, such that every input neuron in this matrix had a firing
rate of rbHz.

2.2 Supervised learning

Datasets We tested our model (and control) on two common spike classification datasets, the
Neuromophic-MNIST (N-MNIST) [3] and Spiking Heidelberg Digits (SHD) [4] dataset (both
released under the Creative Commons Attribution 4.0 International License). The N-MNIST dataset
is the classical MNIST dataset mapped onto a spike code using a neuromorphic vision sensor and the
SHD dataset comprises spoken digit waveforms converted into spikes using a model of the auditory
bushy neurons in the cochlear nucleus.

4

Weight initialisation All network connectivity weights were sampled from a uniform distribution
U(−

√
N−1,

√
N−1) with N number of afferent connections. All biases were initialised as 0. The

hidden neurons were initialised with a membrane time constant of 20ms (i.e. β(l)
i = exp(−DT

20)), an
adaptive time constant of 150ms (i.e. p(l)i = exp(−DT

150)) and adaptive parameter of d(l)i = 1.8. The
readout neurons were initialised with a membrane time constant of 20ms.

Clamping time constants To enforce correct neuron dynamics, we clamped the values of β(l)
i into

the range [0.01, 0.99] and the values of p(l)i into the range [0.0, 0.999]

β
(l)
i =

{
0.99, if β(l)

i > 0.99

0.01, if β(l)
i < 0.01

(14)

p
(l)
i =

{
0.999, if p(l)i > 0.999

0.0, if p(l)i < 0.0
(15)

Readout neurons Every network had an output layer of readout neurons (containing the same
number of neurons as the number of classes within the dataset trained on), where we removed the
spike and reset mechanism (as done in [5]). The output of the readout neuron c in response to input
sample b was taken to be the summated membrane potential over time ob,c =

∑
t V

L
b,c[t] (L being the

readout layer).

Supervised training loss We trained all networks to minimise a cross-entropy loss (with B and C
being the number of batch samples and dataset classes respectively)

L = − 1

B

B∑
b=1

C∑
c=1

ybc log(ŷbc) (16)

Variable ybc ∈ {0, 1}C is the one hot target vector and ŷbc are the network prediction probabilities,
which were obtained by passing the readout neuron outputs obc through the softmax function.

ŷbc =
exp(obc)∑C
k=1 exp(obk)

(17)

Surrogate gradient We tested training on the SHD dataset using three different surrogate gradient
functions, including the multi-Gaussian [6], fast sigmoid [7] and the boxcar [8, 9] function - all which
have shown to perform well in training SNNs.

∂S
(l)
i [t]

∂V
(l)
i [t]

= 1.15N (V
(l)
i [t] | 0, 0.52)− 0.15N (V

(l)
i [t] | 3, 32) (18)

− 0.15N (V
(l)
i [t] | −3, 32) (multi-Gaussian) (19)

∂S
(l)
i [t]

∂V
(l)
i [t]

= (10|V (l)
i [t]|+ 1)−2 (fast sigmoid) (20)

∂S
(l)
i [t]

∂V
(l)
i [t]

=

{
0.5, if |V (l)

i [t]− θ(l)i | ≤ 0.5

0, otherwise
(boxcar) (21)

(22)
We chose the multi-Gaussian function as this obtained the best performance (Supplementary Figure
1a).

Detaching gradients Detaching gradients from flowing through the spike reset and recurrent
connections has been shown to improve classification accuracies when training SNNs [5]. We
thus explored 1. allowing gradients to flow through all elements within the computational graph
(i.e. attached) and 2. detaching the surrogate gradient from all elements within the computational
graph, except for the feedforward connections to other neurons (i.e. detached). We found that
detaching improved test accuracies across all the tried surrogate gradient functions on the SHD
dataset (Supplementary Figure 1b).

5

Training procedure We used the Adam optimiser (with default parameters) [10] for all training,
starting with an initial learning rate of 0.001, which was decayed by a factor of 10 every time the
number of epochs reached a new milestone. Model weights were saved if the training error at the end
of each epoch was lowered. The hyperparameters are found in Supplementary Table 1.

Additional results Forward (i.e. inference using the network) speedup can be found in Supplemen-
tary Figure 2. Here we used the same simulation setup as the one we used for benchmarking the
training speedups. We also compared the forward pass of our model to other publicly available SNN
implementations, the Norse library [11] and the Spiking Jelly library [12], and found our method to
run considerably faster (Supplementary Table 2). We benchmarked a simple one layer SNN network
of 100 units on the forward pass, over 1000 time steps with 200 input units (with a batch size of 128).
As expected, we found the Norse (0.30s) and SpikingJelly (0.18s) implementations took a similar
time to our standard SNN implementation (0.33s) with the SpikingJelly implementation running
slightly faster (as they are all governed by the same sequential time complexity). In contrast, our
Blocks model (using a 50 steps ARP) ran over an order of magnitude faster (0.016s) than the other
implementations.

2.3 Neural fits

Dataset preprocessing We fitted the model to in vitro whole-cell patch clamp electrophysiological
recordings from neurons in layer 4 in mouse primary visual cortex, provided by the Allen institute
[13, 14]. These neurons were injected with a varying current at different amplitudes. For each neuron,
the training and test datasets were those stipulated by the Allen Institute (50% for training and 50%
for testing). We only fitted and reported our results on neurons which had four repeats for each unique
current injection. We processed the input data by 1. removing all the long periods in the recordings
during which no current was injected, 2. resampling the data to have a DT= 0.1ms, and lastly 3.
normalising the data by subtracting the mean and by dividing by the standard deviation of the training
dataset. We used the spike times provided by the Allen Institute for fitting.

Weight initialisation The neuron input weight was initialised to a constant value of s
100 for scale

value s, ensuring that the input weight was correctly rescaled for different simulation resolutions
(e.g. s = 1 corresponds to simulating with DT= 0.1ms and s = 2 corresponds to simulating with
DT= 0.2ms). The bias was initialized to 0. The membrane time constant was initialized to 20ms,
the adaptive time constant was initialized to 100ms, and the adaptive parameter was initialized to
d = 0.1

s .

Supervised training loss Each ALIF neuron model was optimised to produce the same spike times
of the real neuron being fit to. This was achieved by minimising the van Rossum distance DR [15]
between the predicted model spike train x and real neuron spike train y, defined as

DR(τR) =

√
1

τR

∫ T

0

(
k ∗ x(t)− k ∗ y(t)

)2
dt (23)

with exponential kernel k = H(t) exp(−t
τR

) andH being the heaviside function. We used τR = 100ms
for all our reported results.

Training procedure We used the Adam optimiser (with default parameters) [10] for every neuron
fitted, with a learning rate of 0.0001. Training was carried out over 200 epochs in full batch mode
(i.e. estimating gradients from the entire training dataset). Model parameters were saved whenever
the training score improved, and training was halted if there was no improvement over the last five
epochs.

Explained temporal variance We used the explained temporal variance (ETV) metric to assess
the goodness-of-fit of the fitted models to the neural data (used on the Allen Institute website). The
metric has a value of zero when the model predicts at chance and a value of one for a perfect fit to the
data, and is defined as:

ETV =
ETVraw

ETVmax
(24)

6

ETVraw measures the pairwise explained variance of the data with the model and ETVmax measures
the upper limit on how well the model can perform (i.e. how much of the neuron’s response variability
from repeat to repeat can be accounted for).

ETVraw =
∑
r

var (g ∗ x) + var (g ∗ yr)− var (g ∗ x− g ∗ yr)
var (g ∗ x) + var (g ∗ yr)

(25)

ETVmax =
∑
r

var (g ∗ ȳ) + var (g ∗ yr)− var (g ∗ ȳ − g ∗ yr)
var (g ∗ ȳ) + var (g ∗ yr)

(26)

Here x is the predicted model spike train, yr is recorded neuron spike train for repeat r, g is a
Gaussian kernel (with mean µ = 0 and standard deviation σ = 150ms) and ȳ[t] = 1

R

∑R
r (g ∗ yr)[t]

is the mean recorded (and smoothed) neuron response. Convolving the spike trains with the Gaussian
kernel converts them into peristimulus time histograms.

Additional results Zoomed-in plots of the neural traces can be found in Supplementary Figure 3,
and the membrane time constant distribution of the fitted V1 neurons can be found in Supplementary
Figure 4.

References
[1] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 32, 2019.

[2] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

[3] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:
437, 2015.

[4] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking data sets for the systematic evaluation of spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[5] Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural Computation, 33(4):899–925,
2021.

[6] Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3
(10):905–913, 2021.

[7] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking
neural networks. Neural Computation, 30(6):1514–1541, 2018.

[8] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep
continuous local learning (decolle). Frontiers in Neuroscience, 14:424, 2020.

[9] Alexandre Bittar and Philip N Garner. A surrogate gradient spiking baseline for speech command
recognition. Frontiers in Neuroscience, 16, 2022.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[11] Christian Pehle and Jens Egholm Pedersen. Norse - A deep learning library for spiking neural
networks, January 2021. URL https://doi.org/10.5281/zenodo.4422025. Documenta-
tion: https://norse.ai/docs/.

7

http://github.com/google/jax
https://doi.org/10.5281/zenodo.4422025

[12] Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei
Huang, Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine
learning infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480,
2023.

[13] Ed S Lein, Michael J Hawrylycz, Nancy Ao, Mikael Ayres, Amy Bensinger, Amy Bernard,
Andrew F Boe, Mark S Boguski, Kevin S Brockway, Emi J Byrnes, et al. Genome-wide atlas of
gene expression in the adult mouse brain. Nature, 445(7124):168–176, 2007.

[14] Michael J Hawrylycz, Ed S Lein, Angela L Guillozet-Bongaarts, Elaine H Shen, Lydia Ng,
Jeremy A Miller, Louie N Van De Lagemaat, Kimberly A Smith, Amanda Ebbert, Zackery L
Riley, et al. An anatomically comprehensive atlas of the adult human brain transcriptome.
Nature, 489(7416):391–399, 2012.

[15] Mark CW van Rossum. A novel spike distance. Neural Computation, 13(4):751–763, 2001.

Table 1: Dataset and corresponding training parameters.

N-MNIST SHD
Dataset (train/test) 60k/10k 8156/2264

Input neurons 1156 700
Dataset classes 10 20

Epochs 30 40
Batch size B 64 64
Time steps T 300 600

Time resolution ∆t (ms) 1 2
LR decay epoch milestones N/A (15, 30)

Table 2: Comparison to other SNN libraries. Forward pass simulation duration of our model
compared to other publicly available SNN implementations.

Duration (s)
SpikingJelly [11] 0.18s

Norse [12] 0.30s
Standard SNN (our implementation) 0.33s

Block SNN (our model) 0.016s

10 20 30 40 50

ARP (steps)

0

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

a bmulti-Gaussian
fast sigmoid
boxcar

multi-Gaussian fast sigmoid boxcar
ARP (steps)

0

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

SG attached
SG detached

Figure 1: Surrogate gradient search. a. Accuracy on the SHD dataset using our model for different
surrogate gradient functions. b. Accuracy on the SHD dataset using our model when attaching the
surrogate gradient to all elements within the computational graph vs detaching it from everything
besides the connections to efferent neurons. Bars plot the mean and standard error over three runs.

8

50 100

ARP (steps)

0

10

20

30

40

50

Sp

ee
du

p
×

 T = 512

Batch
32
64
128

50 100

ARP (steps)

0

10

20

30

40

50

 T = 1024

50 100

ARP (steps)

0

10

20

30

40

50

 T = 2048

1 2 3 4 5

Layer

0

10

20

30

40

50

 T = 1024

Neurons
128
256
512

a b

Figure 2: Forward speedup of our model. a. Forward speedup of our accelerated ALIF model
compared to the standard ALIF model for different simulation lengths T , ARP time steps and
batch sizes. b. Forward speedup over different number of layers and hidden units (with ARP time
steps= 40, T = 1024 and batch= 64; bars plot the mean and standard error over ten runs). Assuming
DT= 0.1ms, then 10 time steps = 1ms.

9

DT=0.1ms ARP=2ms

noise 1 noise 2

DT=0.1ms ARP=8ms

DT=4ms ARP=4ms

100ms

Figure 3: Zoomed-in versions of the neural traces from Figure 5b.

10

15 20 25

 Mem brane t im e constant τ

0

10

20

30

40

50

60

C
ou

nt

Figure 4: Membrane time constant distribution of the neurons fitted in Figure 5.

11

	Theoretical proofs
	Experimental details
	Speed benchmarks
	Supervised learning
	Neural fits

