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Gaussian Head & Shoulders: High Fidelity Neural Upper Body
Avatars with Anchor Gaussian Guided Texture Warping

Supplementary Material

In this supplementary material, we provide additional implementation and evaluation details in
Sec E], as well as extended results including additional ablation studies, limitations, and a com-
parison with SMPL-driven body avatar in Sec [B| Ethic discussions are in Sec [C] We also highly
recommend the readers to view our supplementary video.

A IMPLEMENTATION DETAILS

A.1 PREPROCESSING

Our data preprocessing pipeline for extracting FLAME parameters, camera parameters and body
landmarks is modified from (Zheng et al.| [2022)). After obtaining rough FLAME parameters from
DECA (Feng et al 2021), we further optimize the FLAME parameters to minimize the 68 facial
landmarks for 3000 iterations. For subject 001, we keep the original training and test split used
by PointAvatar (Zheng et al., 2023). For other subjects, we use the last 500 or 1000 frames as test
frames, depending on the total frame count in the video. For all subjects, we simply use the first
frame as the canonical training frame for initializing anchor Gaussians and updating the anchor cor-
respondences. We use DWpose (Yang et al.,[2023)) to detach the noise, neck and shoulder landmarks,
which are illustrated in Fig[9]

A.2 NETWORK ARCHITECTURE

We have three MLPs in total: MLP; which predicts the expression blendshapes £, pose blendshapes
P and LBS weights VW for each regular Gaussian and anchor Gaussian; MLP ¢ which predicts pose-
dependent fine texture; MLP,, which warps view space coordinates to texture space coordinates.
All three MLPs have 4 hidden layers and 128 neurons in each hidden layer. The standard Fourier
frequency positional encoding (Mildenhall et al., [2020) is applied to the pixel coordinate, FLAME
head rotation, camera translation and 2D landmarks before inputting to MLPy and MLP,,. The
pixel coordinate and 2D landmarks are encoded with a frequency of 10, and camera translation and
FLAME head rotation are encoded with a frequency of 2. All three MLPs are initialized to predict
Os at the beginning by setting the weights and bias of the output layer to 0. All MLPs use ReLU
as the intermediate activations. Tanh is used as the final activation for MLPf, no final activation is
used for MLP,,, and the final activation for MLLP; are the same as (Zheng et al., [2023).

We use a latent dimension D; = 32 for the latent texture T'y. The coarse texture T is initialized
to be the same as the white background, while the fine latent Ty is initialized and a random and
uniform distribution between [0, 1].

A.3 TRAINING DETAILS

For all subjects, we use Apead = 1, Aanchor = 1, Awarp = 0.025, Ay = 0.15. For VGG loss weight
Avea, we set it to O for the first 10K iterations, and then 0.1 for the rest of the training. This is
needed as we empirically observe that training the neural texture and warping field with a strong
VGG loss from the beginning severely harms their stability. The weights of FLAME regularization
are initially set to Ag = 1000, A\ = 1000, \yp» = 1 and are reduced by half at 15k, 30k, 45k
iteration respectively.

We train our model with Adam optimizer for 70k iterations in total, where the three stages of our
training take 4k, 46k and 20k iterations respectively. The learning rate for blendshapes and LBS
weight MLP MLP, neural texture, anchor Gaussian parameters and neural warping field are set to
103, which is halved at 30k-th and 60k-th iterations respectively. The learning rate and density
control hyperparameters for regular Gaussians are the same as proposed by the original paper (Kerbl
et al.,[2023), except that we use a density gradient threshold of 2.5 x 10~* before we start applying
VGG loss, and 8 x 1072 afterward. For every 10k iterations during the training, we also re-project all
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001 002 003 004

PSNR SSIM LPIPS |PSNR SSIM LPIPS [PSNR SSIM LPIPS |[PSNR SSIM LPIPS
INSTA 18.58 0.751 0.269{22.90 0.880 0.177|22.24 0.809 0.175|19.45 0.784 0.310
SplattingAvatar |18.49 0.737 0.307|25.34 0.876 0.171|21.34 0.790 0.220{19.83 0.765 0.351
PointAvatar 22.83 0.822 0.100{30.61 0.924 0.062|28.12 0.874 0.077|23.99 0.837 0.133
FlashAvatar 19.87 0.782 0.133|25.44 0.894 0.082{24.79 0.869 0.063|20.42 0.795 0.216
GaussianAvatars|19.96 0.774 0.184(24.52 0.895 0.094|23.15 0.828 0.107{19.37 0.813 0.308
GS* 23.26 0.814 0.082{32.99 0.937 0.046|29.85 0.888 0.054|24.18 0.836 0.139
Ours 25.95 0.856 0.064(31.98 0.949 0.042|31.26 0.917 0.042|24.68 0.839 0.120
Ours No MLP  [24.48 0.840 0.070(31.44 0.942 0.042|28.85 0.892 0.051{24.61 0.837 0.120

005 006 007 008

PSNR SSIM LPIPS [PSNR SSIM LPIPS |[PSNR SSIM LPIPS [PSNR SSIM LPIPS
INSTA 19.47 0.757 0.251|23.44 0.861 0.165|18.68 0.733 0.291{19.97 0.675 0.246
SplattingAvatar [20.06 0.763 0.250{22.78 0.838 0.201|20.15 0.754 0.257{19.97 0.665 0.432
PointAvatar 22.82 0.847 0.142{29.42 0.929 0.043|22.30 0.826 0.088(21.61 0.748 0.174
FlashAvatar 19.65 0.789 0.152{24.25 0.871 0.060|20.02 0.770 0.116{20.56 0.691 0.197
GaussianAvatars | 17.72 0.792 0.200{24.48 0.877 0.137|19.72 0.773 0.186|18.86 0.654 0.328
GS* 22.80 0.847 0.129(29.56 0.924 0.039|22.31 0.820 0.099{22.60 0.762 0.173
Ours 24.48 0.895 0.074{30.97 0.943 0.033|23.26 0.856 0.074|21.47 0.726 0.111
Ours No MLP  [22.19 0.860 0.078{28.71 0.912 0.037|21.49 0.827 0.081|22.02 0.765 0.116

Table 3: Quatitative evaluation of full self-reenactment task We report PSNR?T, SSIMT, and
LPIPS| ,and color the best and second-best methods for each subject respectively.

anchor Gaussians to the image plane of the canonical image plane, and remove the anchor Guassians
that are out of the view frustum. This is to prevent unconstrained anchor Gaussians from applying
noisy regularization on the texture warping field.

Following (Zheng et al., 2023)) and (Zheng et al.,[2022), we also add a static bone, which does not
take any transformation with the FLAME expression and poses.

As our preprocessing pipeline does not track eye movement, for subjects with significant eye move-
ments in the training frames, i.e., subjects 002 and 005, we do not update the opacity and SH of
regular Gaussians in the third stage to prevent undesirable view-dependent artifacts. For subjects
where the semantic mask fails, i.e., subject 003, the No MLP texture may contain significant noise
in the head region. We hence manually define a rough bounding box for this subject to clean the No
MLP texture for self-reenactment and cross-reenactment tasks.

The training takes around 2 hours for each subject on an RTX4080 Ti.

A.4 EVALUATION DETAILS

Following (Zheng et al.|[2023)) and (Grassal et al., 2021), we also fine-tune the pre-tracked FLAME
expression, pose parameters, camera translation and body landmarks during the training to account
for inaccuracies in the preprocessing pipeline. We use Adam optimizer with a learning rate of 10~4
and optimize them from the 30k-th iteration. For test-time tracking optimization, we only use L2
RGB loss. Since we do not have a direct gradient flowing back from the body texture to the FLAME
parameters, we also optimize a translation and rotation offset for the body texture mapping.

B ADDITIONAL RESULTS

B.1 VIDEOS

We strongly encourage the readers to watch the videos containing self-reenactment and cross-
reenactment results in the supplementary.

As shown in the videos, existing methods either fail to model the body properly (INSTA (Zielonka
et al.l [2022)), SplattingAvatar (Shao et al., [2024))), or fail to learn the details on head and body
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001 002 003 004

PSNR SSIM LPIPS |PSNR SSIM LPIPS [PSNR SSIM LPIPS |[PSNR SSIM LPIPS
INSTA 26.62 0.898 0.082(34.89 0.963 0.032|29.80 0.922 0.071|28.35 0.941 0.069
SplattingAvatar |24.29 0.876 0.109(32.66 0.958 0.034{25.06 0.881 0.098|27.13 0.932 0.073
PointAvatar 26.17 0.904 0.079{34.93 0.968 0.021|30.90 0.923 0.053|29.65 0.948 0.045
FlashAvatar 27.44 0.911 0.069{35.61 0.973 0.021|30.30 0.939 0.037|28.09 0.942 0.046
GaussianAvatars |25.52 0.896 0.078(33.11 0.960 0.038|27.52 0.886 0.058|27.75 0.945 0.064
GS* 27.10 0.906 0.062{37.61 0.975 0.015|32.26 0.928 0.038|30.55 0.950 0.042
Ours 29.31 0.926 0.047{36.91 0.981 0.013|33.36 0.943 0.030(31.58 0.957 0.039
Ours No MLP  [29.16 0.924 0.048(36.89 0.981 0.013|32.06 0.939 0.034{31.45 0.956 0.041

005 006 007 008

PSNR SSIM LPIPS [PSNR SSIM LPIPS |[PSNR SSIM LPIPS [PSNR SSIM LPIPS
INSTA 29.15 0.940 0.054{33.43 0.977 0.022|22.98 0.871 0.119(33.18 0.975 0.022
SplattingAvatar |28.75 0.938 0.061{31.93 0.967 0.030|23.56 0.873 0.121{32.92 0.976 0.024
PointAvatar 31.39 0.952 0.036{34.94 0.981 0.016|24.85 0.893 0.062|32.32 0.977 0.025
FlashAvatar 31.03 0.957 0.030{34.00 0.982 0.017|23.14 0.881 0.073|33.03 0.980 0.018
GaussianAvatars [29.71 0.956 0.039(33.47 0.978 0.020|26.32 0.937 0.050{30.88 0.971 0.023
GS* 32.36 0.959 0.030{35.62 0.983 0.014|25.00 0.892 0.064|33.99 0.980 0.020
Ours 33.90 0.967 0.027{36.90 0.987 0.012(26.35 0.921 0.045|36.14 0.988 0.013
Ours No MLP [33.74 0.967 0.026(36.77 0.987 0.012]|25.00 0.909 0.048|35.27 0.988 0.012

Table 4: Quatitative evaluation of head-only self-reenactment task. We report the metrics with
the body region masked out. Note that the body region is still used during the training.

002
PSNR SSIM LPIPS

005
PSNR SSIM LPIPS

007
PSNR SSIM LPIPS

No Anchor Loss
No Warp Loss

Ours

24.96 910 .088
32.86 .949 .041
31.98 .949 .042

2291 .854 117
24.19 .891 .081
24.48 895 .074

19.30 .773 .134
22.74 .848 .076
23.26 .856 .074

Table 5: Quatitative ablation. We show the anchor constraint is necessary for learning sharp and
correct body texture. While the warp loss might not necessarily improve the performance for the
self-reenactment task, it is needed for cross-reenactment with out-of-distribution poses.

(PointAvatar (Zheng et al., [2023)). While the pure Gaussian Splatting baseline (GS*) could learn
the face and body with much better details, it still learns blurry textures and presents severe artifacts
when the subject is moving in extreme head rotation. It is most obvious for the self-reenactment
and cross-reenactment videos of subject 005 — many Gaussians modeling the cloth texture are not
well-aligned with each other, as a result, they cannot move naturally with the head motion. In
comparison, our method can learn extremely sharp textures with robust performance under novel
poses and motions.

B.2 ABLATION

Additional ablation results are presented in Table [5] and Figure demonstrating the critical role
of the anchor loss in achieving sharp and precise textures. Although the warp loss Lyrp does
not necessarily improve the numerical metrics for the self-reenactment task, Fig ?? illustrates its
importance in preventing the significant failure when combining neural warping with additional
Euclidean transformation.

B.3 TEXTURE CLEANING

When distilling the pose-dependent fine texture into the coarse texture for our no MLP version,
we utilized DeepLabV3 (Chen et al.| 2017) to obtain a coarse mask of the background and set the
values of those pixels to 1. This is needed because the body texture contains a padding region to
account for the body part that is moving in and out during the video. A majority section of the
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Figure 7: Qualitative evaluation of self-identity reenactment.
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PointAvatar G o Ours (No MLP)

Figure 8: Qualitative evaluation of cross-identity reenactment.

Figure 9: Landmarks. We use DWPose (Yang et al., 2023 to detect nose, neck and shoulder
landmarks to use as input to MLP; and MLP,,.

U
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Figure 10: Qualitative Ablation.
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Figure 11: Qualitative comparison with full body avatar methods. Due to the limited landmarks
available on the shoulders and chest, existing SMPL tracking methods fail to obtain correct SMPL
parameters. Fully body neural avatars that rely on SMPL hence fail to learn accurate and robust
body. While our method does not include SMPL 3DMM, the use of static virtual bone and neural
texture warping allow us to learn the body texture accurately.
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Figure 12: Texture cleaning. We show the body texture without masking (a) and with cleaning (b),
as well as the rendering without texture cleaning (c) and with texture cleaning (d).

004 007
PSNR SSIM LPIPS|PSNR SSIM LPIPS

GSAvatar 17.08 .811 .178 |16.64 .744 .143
Ours 26.82 .887 .094 |23.87 .885 .052
Ours No MLP|26.70 .885 .094 [22.43 .861 .056

Table 6: Body Only Quantitative Comparison with Full Body Avatars. We show that existing
full body neural avatar methods that rely on SMPL deformation perform significantly worse than
our methods. Metrics are computed after masking out the background and head regions.

padding, especially the padding region on the top the left and right sides, are rarely used and trained
during optimization. As a result, the fine texture colors obtained in those regions can produce noisy
artifacts; see Fig[12}

B.4 COMPARISON WITH FULL BODY AVATARS

To verify our choice of driving anchor Gaussians only with head 3DMM (FLAME), we select two
subjects that show a larger portion of the upper body and compare our method with GSAvatar, a
Gaussian Splatting based full body neural avatar methods that deform the representation based on
SMPL (Hu et al., 2024b). As the code release of GS Avatar only supports SMPL instead of SMPLX,
we simply use semantic masks to remove the head region during the training and compare only the
reconstruction quality of the body part. As shown in Tab [6] and Fig [I1] since the existing SMPL
tracking methods for monocular videos are developed only for views that include the whole body,
the fitted SMPL is significantly misaligned with the GT (Sun et al., |2021)), even after fine-tuning
during Gaussian optimization. As a result, the clothed body reconstructed by GSAvatar presents
several artifacts under novel poses and are significantly misaligned the GT. Our method is able to
reconstruct the chest and shoulders with much better quality and accuracy. We would also like to
note that, although we do not include body 3DMM in our method, due to the usage of virtual static
bone, technically speaking, the effect is exactly the same as have a SMPLX 3DMM where the body
and hand parts (SMPLX and MANO) are kept static during the whole sequences.

B.5 NOVEL VIEW SYNTHESIS

We show novel view synthesis results of our method in Fig. [T4 Typically, because our method
modeled the body as 2D texture, it would be difficult to render it from novel views, just as StyleA-
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Figure 13: SMPLX Estimation via OSX|Lin et al|(2023). Some latest SMPLX prediction methods
such as OSX|Lin et al| are capable of predicting more accurate body 3DMM annotation than
landmark optimization pipeline used in (2024b). However, as they are still mainly trained
and optimized on frames with full-body or upper-body portraits with arms visible, their performance
can be degraded with our tight framing setting: they tend to struggle with shoulders and can fail to
detect any body with extreme poses such as the one shown in last column. Regardless, please note
that we do not incorporate SMPLX not only because the annotation accuracy is not guaranteed, but
also to keep a fair comparison with our baselines, where only FLAME 3DMM is used for LBS.

w/
Homography

w/o
Homography

Figure 14: Novel View Synthesis Results. Since our method is trained only with monocular video
where only limited view angles are included for the body, we can only render novel views with small
displacement to the training views, similar to all other monocular neural avatar methods.
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Real3DPortrait 5 -

Real3DPortrait
Source Image
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Figure 15: Comparison with Real3DPortrait in Cross-Reenactment Task. Al-
though Real3DPortrait is trained with multi-identity datasets with rich facial prior extracted from the
training, it fails to produce high-quality reenactment with extreme poses and cannot render shoul-
ders and chest due to fixed tight framing in the training. Our method generates more faithful and
accurate results in comparison.

vatar[Wang et al|(2023). However, one key novelty of our method is the use of Anchor Gaussians as
a constraint between 3D and 2D, and we can hence effectively utilize them to achieve a certain ex-
tent of novel view rendering. Specifically, we render the head Gaussians and the Anchor Gaussians
at each novel view, reproject the Anchor Gaussians back to the image plane to obtain their 2D coor-
dinates, and further compute a homography that minimizes the anchor constraint 10ss L4 ,chor- This
will ensure the body to move properly with the head and they always stay connected. Please note
that similar to the existing neural avatar reconstruction method using monocular view, we can only
render novel views with small displacement to the training views, as extrapolated views significantly
degrade the results.

B.6 ADDITIONAL BASELINES

We include comparisons with additional baseline Real3DPortrait (2024); see Fig [13}
StyleAvatar[Wang et al| (2023)) unfortunately degenerates and fails on our dataset; see Fig[T6]

In Fig [I7] and Table [7} we included comparison with Real3D-Portrait trained on single identity
video. We trained the motion adapter for 100,000 steps on a single A100 GPU, which takes around
80 hours. We then trained the HTB-SR model for 80,000 steps, which takes around 30 hours. The
inference speed of Real3D-Portrait is around 20 FPS on a single GPU. Note that in comparison, our
method only requires less than 3 hours to train and can infer with around 130 FPS. It can be seen that
our method is able to generate the head and cloth with much better quality. In Real3D-Portrait, a
torso model is used to predict 2D warping from body keypoints to deform the latent image for fused
body generation. While this approach can effectively learn to correctly connect the head to the body,
without 3D-2D constraints from anchor Gaussian, it fails to learn sharp textures on the clothes. This
result also matches our No Anchor Loss ablation in Fig[T0]
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GT 0 iter

Figure 16: StyleAvatar Wang et al.| (2023). Results. We attempted to evaluate StyleAvatar on our

dataset with the original framing. However, it seems that StyleAvatar quickly degenerates and fails
after training for 10K iterations.

Real3D-Portrait Ours (No MLP)

Figure 17: Additional Comparison with Real3D-Portrait Ye et al.|(2024). We re-trained Real3D-
Portrait on our single identity video to generate fair comparisons. We trained the motion adapter for
100,000 steps on a single A100 GPU, which takes around 80 hours. We then trained the HTB-SR
model for 80,000 steps, which takes around 30 hours. The comparison shows that our method is
able to reconstruct both the head and the cloth texture with much better quality.
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004

PSNR SSIM LPIPS
Real3D-Portrait 16.07 .739 .209
Ours 24.68 .839 .120
Ours No MLP 24.61 .837 .120
Real3D-Portrait (Head)|23.01 .895 .083
Ours (Head) 31.58 .957 .039
Ours No MLP (Head) |31.45 .956 .041

Table 7: Quantitative Comparisons with Real3D-Protrait Hu et al. (2024a)) in Self-Reenactment
Task.

B.7 LIMITATIONS

Although we propose a no MLP version that is able to render at novel poses with 130 FPS, as it
completely relies on rigid homography transformation to map body texture to the view space, it is
unable to model any non-rigid deformation in the body. In addition, for sequences with extreme
head rotations, it might move the body in a way that is not exactly aligned with the ground truth,
as shown in the supplementary videos. However, we observe that the results produced with this no
MLP version still present a faithful rendering. For cases where the non-rigid body deformation is
important, we recommend the use of the full version, whose rendering speed is around 70 FPS and
can be further optimized by caching the fine texture only.

C ETHICS

We captured 4 human subjects with mobile phones for our experiments. All subjects have signed
consent forms for using the captured video in this research and publication. We will release the data
for subjects with permission.

Our method constructs faithful and animatable head avatars and can be used to generate videos of
real people performing synthetic poses and expressions. We do not condone any misuse of our work
to generate fake content of any person with the intent of spreading misinformation or tarnishing their
reputation.
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