
A Appendix

A.1 Detailed procedure of bottom-up cascade pruning

The procedure of the proposed bottom-up cascade pruning (BCP) is illustrated here. As shown in
Algorithm 1, the BCP greedily prunes channels and tokens block-by-block until the performance
drop reaches the default threshold (allowable drop ε).

Algorithm 1 Bottom-up Cascade Pruning.
Input:

The pretrained ViT modelM and the number of blocks L;
The global allowable drop ε and the ratio of token pruning caused drop ρ;
The training set Dtrain;

1: sample images from Dtrain as the testing set Dtest;
2: respectively set allowable drops for token pruning and channel pruning: εt = ρ · ε/L, εc = ε/L;
3: get best accuracy with ψbest = Acc (M,Dtest);
4: for each l ∈ [1, L] do
5: set accuracy ψl = 0, set pruned number of tokens p = 1, and get the number of left tokens nlt;
6: while (ψbest − ψl < εt)and(p > 0) do
7: set the number of tokens from block l to L as nlt − p;
8: select tokens according to LFE and get compressed modelMprune;
9: get accuracy with ψl = Acc (Mprune,Dtest);

10: update p with p = min
(
d(2− (ψbest − ψl)/εt) · pe , dp+ nlt/3

)
;

11: end while
12: set the number of tokens from block l to L as nlt − p;
13: sample images from Dtrain as set Dl and get accuracy with ψl = Acc (Mprune,Dtest);
14: get the number of left channels nlc, and set pruned number of channels p =

⌈
0.01 · nlc

⌉
;

15: while (ψbest − ψl < εc)and(p > 0) do
16: get channel low-frequency sensitivity with LFS and set Dl;
17: remove p channels with the smallest sensitivity from current block;
18: get accuracy of pruned model: ψl = Acc (Mprune,Dtest);
19: update p with p = min

(
d(2− (ψbest − ψl)/εt) · pe , dp+ (nlc − p)/4e, nlc

)
;

20: end while
21: remove p channels with the smallest sensitivity from current block;
22: get accuracy of pruned model: ψl = Acc (Mprune,Dtest);
23: update ψbest = ψl

24: end for
Output:

The compressed ViT model,Mprune;

A.2 Distribution of selected tokens
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Figure 1: Distribution of selected tokens. All results are achieved by reducing dimension with TSNE.

In the introduction, we have indicated that selecting tokens only with attention values may maintain
many similar tokens. To give a better illustration, the distribution of selected tokens with attention-
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based approach (EViT) and our proposed LFE are visualized in Figure 1. it is obviously that our
method can obtain diverse tokens rather than similar tokens.

A.3 Details of pruning and fine-tuning

The detailed hyper-parameters of pruning and fine-tuning are reported in Table 1 and Table 2, so that
our work can be reproduced by other researchers. The results of fine-tuning with different epochs are
listed in Table 3.

Table 1: Hyper-parameters for pruning.

model (acc1) allowable drop ε ratio ρ cutoff factor σc, σt
DeiT-Tiny (71.6%) 9.5 0.56 0.1, 0.85

DeiT-Small (79.4%) 14 0.35 0.1, 0.85

DeiT-Base (81.3%) 14 0.3 0.1, 0.85

Table 2: Hyper-parameters for fine-tuning.

config value
optimizer AdamW

base learning rate 1e-4
weight decay 0.05

optimizer momentum β1, β2=0.9, 0.999
batch size 512 (Tiny), 256 (Small), 128 (Base)

learning rate schedule cosine decay
warmup epochs 0
training epochs 300 (Tiny), 150 (Small), 150 (Base)
label smoothing 0.1

mixup 0.8
cutmix 1.0

drop path 0.1
exp. moving average (EMA) 0.99996

distillation loss corss entropy loss
distillation-alpha 0.1 (Tiny), 0.25 (Small/Base)

layer-decay 0.9

Table 3: Fine-tuning with different epochs.

Model 75 epochs 150 epochs 300 epochs GPU Days (A10)
Top1/Top5(%) Top1/Top5(%) Top1/Top5(%) 75ep/150ep/300ep

DeiT-Tiny 70.1/89.9 70.8/90.2 71.6/90.7 2.3/4.6/9.2

DeiT-Small 78.6/94.4 79.4/94.6 79.8/94.9 3.3/6.7/13.3

DeiT-Base 81.2/95.2 81.3/95.3 81.3/95.1 7.5/15.0/30.0

A.4 Approximation of LFS

Here, we provide the detailed derivation for the approximated low-frequency sensitivity (LFS) ŝj .
Given complete LFS sj formulated as:

sj = λ ·
(
L(X̃ | wj = 0)− L(X̃)

)2
+ (1− λ) ·

(
KL(T̃ , T | wj = 0)−KL(T̃ , T )

)2
. (1)

By performing the Taylor expansion, the loss functions L(X̃ | wj = 0) and KL(T̃ , T | wj = 0) can
be rewritten as:

L(X̃ | wj = 0) = L(X̃) + ∂L(X̃)
∂wj

· wj + θ(L),
KL(T̃ , T | wj = 0) = KL(T̃ , T ) + ∂KL(T̃ ,T )

∂wj
· wj + θ(KL),

(2)
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where θ(L) and θ(KL) are the sum of high-order terms. Considering that the first-order expansion
has had high correlation to the original loss function and the calculation for the higher-order terms is
inefficient, only the zero-order and first-order terms are maintained:

L(X̃ | wj = 0) = L(X̃) + ∂L(X̃)
∂wj

· wj ,

KL(T̃ , T | wj = 0) = KL(T̃ , T ) + ∂KL(T̃ ,T )
∂wj

· wj .
(3)

Substituting this expansion into the complete LFS, the approximated LFS ŝj is formulated as:

ŝj = λ ·

(
∂L(X̃)

∂wj
· wj

)2

+ (1− λ) ·

(
∂KL(T̃ , T )

∂wj
· wj

)2

, (4)

A.5 Resistance of pruned models to different noises

In addition to the salt-and-pepper noise shown in the introduction, the resistance of models to other
noises (including Gaussian noise, exponential noise, and uniform noise) are also evaluated. As shown
in Figure 2, for all kinds of noises, the performance of our pruned models drops slower, which
demonstrates the robustness of channels selected by our method.
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Figure 2: Noise resistance of spatial domain pruning and our pruning.

A.6 Throughput of different models

Table 4: Throughput of baselines and compressed models. ‘Speed up’ means the improvement in
throughput. ‘base’ denotes the baseline model, and ‘pruned’ is the compressed model.

Model Acc1 (%) FLOPs (G) Params (M) Throughput Speed upbase/pruned base/pruned base/pruned base/pruned

DeiT-Tiny 72.2/71.6 1.3/0.67 5.7/5.1 2648.7/4496.2 69.7%
72.2/71.0 1.3/0.73 5.7/4.2 2648.7/4021.9 51.8%

DeiT-Small 79.8/79.4 4.6/2.10 22.1/17.7 987.9/1946.3 97.0%
79.8/79.6 4.6/2.44 22.1/15.3 987.9/1617.9 63.8%

DeiT-Base 81.8/81.3 17.6/7.46 86.4/63.5 314.7/651.9 107.1%
81.8/81.6 17.6/8.02 86.4/56.8 314.7/609.3 93.6%

A.7 Performances on ImageNet-Real and CIFAR-10

Apart from ImageNet-1k, the pruned models are also evaluated on ImageNet-Real and CIFAR-10.
For CIFAR-10, the compressed DeiT-Tiny/Small/Base is fine-tuned for 300/150/75 epochs. The
results shown in Table 5 demonstrates that the pruned models perform well on other datasets.

A.8 Spectrum of channels

The spectra of output features corresponding to saved channels and pruned channels are visualized
in Figure 3, where the map with green box is saved while the map with red box is pruned. The
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Table 5: Performance on ImageNet-Real and CIFAR-10.

Dataset Model Top1 (%) Top5 (%) FLOPs (G) Params (M)
base/pruned base/pruned base/pruned base/pruned

ImageNet-Real
DeiT-Tiny 80.1/79.5 94.4/94.2 1.3/0.7 5.7/5.1
DeiT-Small 85.7/85.4 96.9/96.7 4.6/2.1 22.1/17.7
DeiT-Base 86.8/86.2 97.1/96.9 17.6/7.5 86.4/63.5

CIFAR-10
DeiT-Tiny 98.1/97.9 99.9/99.9 1.3/0.7 5.5/4.9
DeiT-Small 98.6/98.6 99.9/99.9 4.6/2.1 21.7/17.3
DeiT-Base 98.9/98.8 99.9/99.9 17.6/7.5 85.8/62.7

baseline method (NViT) without taking advantage of characteristic in frequency domain is selected
for comparison. Although selection of two methods in channels is similar, our method tends to save
the channel with more low-frequency components (row 1, column 4 in Figure 3(b)) while NViT
chooses the channel with uniform values (row 2, column 3 in Figure 3(a)). The accumulation of such
changes in selection finally result in our better performance, which further proves the importance of
low-frequency information to ViTs.
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Figure 3: Output spectrum of each channel in Fourier domain. The green box means the saved
channel, while the red box denotes the pruned channel.

A.9 Architecture of pruned models

To give a straightforward visualization for the pruned models, the ratios of saved channels and tokens
in each block is presented in Figure 4. It can be observed that more channels are pruned than tokens
in shallow blocks (e.g. block-1 and block-2), while more tokens are reduced in deep blocks. This
inspires that the architecture with thin channels in shallow layers and few tokens in deep layers may
be more suitable to ViTs.
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(a) DeiT-Tiny(Acc1:71.6%, FLOPs:0.67G)
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(b) DeiT-Tiny(Acc1:71.0%, FLOPs:0.73G)

2 4 6 8 10 12
Block index

0.0

0.2

0.4

0.6

0.8

1.0

Sa
ve

d 
ra

tio

Channels
Tokens

(c) DeiT-Small(Acc1:79.4%, FLOPs:2.10G)
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(d) DeiT-Small(Acc1:79.6%, FLOPs:2.44G)
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(e) DeiT-Base(Acc1:81.3%, FLOPs:7.46G)
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(f) DeiT-Base(Acc1:81.6%, FLOPs:8.02G)

Figure 4: Architecture of pruned models.

A.10 Distributions of importance scores

The distributions of the proposed importance scores for channels (LFS) and tokens (LFE×attention-
score) are displayed in Fig. 5. 2000 images from ImageNet-1k are sampled and fed into DeiT-Tiny
to obtain the average LFS for each channel and scores for tokens. Compared to the original model
(Fig. 5(a)), the density of LFS near zero is lower in the pruned model. Similarly, the token scores in
the pruned model are denser than those in the original model (Fig. 5(b)).

A.11 Low-pass filtering on input images

In Figure 6, the images filtered with different cutoff factors are visualized in both the spatial domain
and the Fourier domain.
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(a) Channel scores in models (b) Token scores in models

Figure 5: Distributions of importance scores. ‘channel scores’ denotes LFS (low-frequency sensitiv-
ity). ‘token scores’ means ‘LFE (low-frequency energy)×attention-score’.
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(b) Fourier domain

Figure 6: Images after filtering. (a) is the images after low-pass filtering. (b) is the spectrum of
images in the Fourier domain.
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